JPS61214364A - Thin lithium battery - Google Patents

Thin lithium battery

Info

Publication number
JPS61214364A
JPS61214364A JP60055185A JP5518585A JPS61214364A JP S61214364 A JPS61214364 A JP S61214364A JP 60055185 A JP60055185 A JP 60055185A JP 5518585 A JP5518585 A JP 5518585A JP S61214364 A JPS61214364 A JP S61214364A
Authority
JP
Japan
Prior art keywords
electrolyte
separator
battery
lithium
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60055185A
Other languages
Japanese (ja)
Inventor
Tatsu Nagai
龍 長井
Kazunobu Matsumoto
和伸 松本
Kozo Kajita
梶田 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60055185A priority Critical patent/JPS61214364A/en
Publication of JPS61214364A publication Critical patent/JPS61214364A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape

Abstract

PURPOSE:To make assembly easy and increase performance by using a separator having specified surface structure, and using a viscous electrolyte formed by adding a gelling agent. CONSTITUTION:A viscous solution containing a lithium salt, a nonaqueous solvent, and a gelling agent is used as an electrolyte 9. A microporous propylene film having a lot of recessed and projecting parts on its both sides is used as a separator 8. Since a sufficient volume of electrolyte 9 is retained in the recessed parts, the interface between the separator 8 and a positive electrode 5 and that between the separator 8 and a negative electrode 7 are prevented from the lack of electrolyte, and battery performance is improved. In the battery assembly, the viscous electrolyte 9 does not flow out to the periphery 2a, and the desirable amount of electrolyte can easily be obtained by coating. Furthermore, when the battery is sealed by hot-melt-bonding, the electrolyte does not splash out. Therefore, reliable sealing is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発嬰は、リチウムまたはリチウム合金を負極とし、
正負両極集電板の周辺部において熱融着性材料にて融着
封止された構造を有する薄型リチウム電池に関する。
[Detailed description of the invention] [Industrial application field] This invention uses lithium or a lithium alloy as a negative electrode,
The present invention relates to a thin lithium battery having a structure in which the peripheral portions of positive and negative current collector plates are fused and sealed with a heat-fusible material.

〔従来の技術〕[Conventional technology]

ボタン型やコイン型などのリチウム電池は、一般に正極
活物質と結合剤を含む正極とリチウムまたはリチウム合
金からなる負極との間に多孔性合成樹脂フィルムと合成
繊維不織布を積層したセパレータを介在させ、このセパ
レータにリチウム塩を非水系溶媒に溶解した高流動性の
液体からなる電解質を吸収保持させると共に、これら電
池要素を収めた正負両極集電板の周縁をバッキング材を
挾んで屈曲して封止した構造を有している(文献不詳)
Button-type and coin-type lithium batteries generally have a separator made of a laminated layer of a porous synthetic resin film and a synthetic fiber nonwoven fabric interposed between a positive electrode containing a positive active material and a binder and a negative electrode made of lithium or a lithium alloy. This separator absorbs and holds an electrolyte made of a highly fluid liquid containing lithium salt dissolved in a non-aqueous solvent, and the periphery of the positive and negative current collector plates containing these battery elements is bent and sealed with a backing material in between. (Reference unknown)
.

しかしながら、近年における電子機器類の小型化、軽量
化、精密化などに伴って、リチウム電池としてもカード
型やフレキシブル型などのたとえば総厚が0.5fl程
度という非常に薄型で高性能なものが要望されている。
However, as electronic devices have become smaller, lighter, and more precise in recent years, extremely thin and high-performance lithium batteries such as card-type and flexible types with a total thickness of about 0.5 fl have become available. It is requested.

このような薄型電池では、上述のボタン型やコイン型に
おけるような構造では薄形化に限界があるため、セパレ
ータとして微孔性ポリプロピレンフィルムなどの表裏面
に透通ずる0、02〜0.4μ径程度の多数の微孔を有
し厚さが25μ程度である微孔性合成樹脂フィルムを使
用すると共に、正負両極集電板の周辺部で接着封止する
ことが必要となる(文献不詳)。
In such a thin battery, there is a limit to how thin it can be made with the above-mentioned button-type or coin-type structure, so a separator with a diameter of 0.02 to 0.4μ that penetrates the front and back surfaces of a microporous polypropylene film, etc. is used as a separator. It is necessary to use a microporous synthetic resin film with a thickness of approximately 25 μm and having as many micropores as possible, and to adhesively seal the peripheral portions of the positive and negative current collector plates (unspecified literature).

[発明が解決しようとする問題点] しかるに、上述した薄型電池ではセパレータが非常に薄
く空隙量も少なくて液体電解質を充分に保持できないこ
とから、電解質を電池内に添加する手段として予めセパ
レータに含浸させる方法を採った場合、セパレータと正
負極との界面部において電解質の不足を生じ、良好な電
池性能が得られないという問題点がある。そこで、従来
では内部の電池要素全体が液体電解質に浸漬する状態と
しているが、電池組立て時に上記浸漬状態となすために
液体電解質を滴下によって添加する際、薄型電池用とし
ての両極集電板がほぼ平板状であることから電解質が周
辺側へ流れ出し易く、必要量をうまく添加することが非
常に困難であった。
[Problems to be Solved by the Invention] However, in the above-mentioned thin battery, the separator is very thin and has a small amount of voids, and cannot hold a sufficient amount of liquid electrolyte. If this method is adopted, there is a problem in that electrolyte is insufficient at the interface between the separator and the positive and negative electrodes, making it impossible to obtain good battery performance. Therefore, conventionally, the entire internal battery element is immersed in the liquid electrolyte, but when the liquid electrolyte is added dropwise to achieve the above-mentioned immersion state during battery assembly, the bipolar current collector plates for thin batteries are almost completely immersed. Because of the flat plate shape, the electrolyte tends to flow out to the periphery, making it extremely difficult to add the required amount.

一方、前述のように正負両極集電板の周辺部で接着封止
する場合、塗料溶液型の接着剤を用いると、封止部幅が
非常に狭くかつ平坦状であるために周辺部全域に適量を
均等に塗布することが困難であり、硬化前の接着剤が電
池内部に流入して電解質と混じり合って電池性能に悪影
響を及ぼす惧れがある。また封止をホットメルト型接着
剤などの熱融着性材料による熱融着にて行う場合、該材
料として予め幅や厚みを適当に設定した環状シート形態
のものを使用できるので上記塗料溶液型における欠点は
解消されるが、融着時の加熱にて液体電解質の蒸気圧が
高まり、液が飛散して封止自体が困難になるという問題
点があった。
On the other hand, when adhesively sealing the periphery of the positive and negative current collector plates as described above, if a paint solution type adhesive is used, the width of the sealing part is very narrow and flat, so the entire periphery can be sealed. It is difficult to apply the appropriate amount evenly, and there is a risk that uncured adhesive may flow into the battery and mix with the electrolyte, adversely affecting battery performance. In addition, when sealing is performed by heat fusion using a heat-fusible material such as a hot-melt adhesive, an annular sheet with an appropriate width and thickness can be used as the material, so the above-mentioned paint solution type However, there was a problem in that the vapor pressure of the liquid electrolyte increased due to heating during fusion, causing the liquid to scatter and making sealing itself difficult.

したがってこの発明は、上述の如き問題点を解決するこ
とにより、組立製作が容易でかつ優れた性能を備えた薄
型リチウム電池を提供することを目的としている。
Therefore, an object of the present invention is to provide a thin lithium battery that is easy to assemble and has excellent performance by solving the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者らは、上記目的において鋭意検討を重ねた結
果、セパレータとして特定の表面構造を有するものを使
用し、かつ電解質としてゲル化剤にて粘性化したものを
使用することにより、電解質が塗り付は手段にて電池内
に添加可能となり従来の液体電解質の如き周辺部への流
れ出しを防止でき1.、シかもセパレータと正負極との
界面部に充分な量の電解液を保持させることが可能とな
り、かつ熱融着性材料の熱融着による封止方式を採用し
ても加熱時に電解質が飛散せず、容易に確実な封止を行
い得ることを見い出し、この発明をなすに至った。
As a result of extensive studies for the above purpose, the inventors found that by using a separator with a specific surface structure and an electrolyte made viscous with a gelling agent, the electrolyte can be coated. The electrolyte can be added into the battery by some means, and can prevent it from flowing out to the surrounding areas like conventional liquid electrolytes.1. However, it is possible to hold a sufficient amount of electrolyte at the interface between the separator and the positive and negative electrodes, and even if a sealing method using thermally adhesive material is used, the electrolyte will not scatter during heating. The present inventors have discovered that it is possible to easily perform reliable sealing without having to do so, and have come up with the present invention.

すなわち、この発明は、正極集電板と負極集電板との間
に正極とリチウムまたはリチウム合金からなる負極と両
極間に介在するセパレータとを含む電池要素が配置され
、上記両極集電板の周辺部で熱融着性材料にて融着封止
された構造の薄型リチウム電池において、上記セパレー
タが表裏面に多数の凹凸を有する微孔性ポリプロピレン
フィル。
That is, in the present invention, a battery element including a positive electrode, a negative electrode made of lithium or a lithium alloy, and a separator interposed between the two electrodes is arranged between a positive electrode current collector plate and a negative electrode current collector plate, and In a thin lithium battery having a structure in which the peripheral portion is fused and sealed with a heat-fusible material, the separator is a microporous polypropylene filler having a large number of irregularities on the front and back surfaces.

ムからなり、このセパレータの凹部にリチウム塩と非水
系溶媒とゲル化剤とを含む粘性体からなる電解質が保持
されていることを特徴とする薄型リチウム電池に係る。
The present invention relates to a thin lithium battery characterized in that an electrolyte made of a viscous body containing a lithium salt, a nonaqueous solvent, and a gelling agent is held in the recesses of the separator.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明において使用する電解質は、既述のようにリチ
ウム塩と非水系溶媒とゲル化剤とからな    、−る
ものであり、ゲル化剤による増粘作用にて従来の液体電
解質のような高流動性を示さない粘性体となっているこ
とから、セパレータなどの電池要素に塗り付けて電池内
へ添加できると共に、熱融着による封止時の加熱によっ
ても飛散しないという優れた特徴を持っている。
As mentioned above, the electrolyte used in this invention is composed of a lithium salt, a non-aqueous solvent, and a gelling agent. Since it is a viscous material that does not exhibit fluidity, it can be applied to battery elements such as separators and added into the battery, and it also has the excellent feature of not scattering even when heated during sealing by heat fusion. There is.

このような電解質に使用するリチウム塩および非水系溶
媒としては、従来よりリチウム電池用として知られる種
々のものをいずれも使用可能である。たとえば、好適な
リチウム塩の代表例としては、LiBφ4(φはフェニ
ル基を意味する)、LiPF6、L icF、SO8、
[,1AsFaなどが挙げられ、これらは2種以上を併
用しても差し支えなく、また予め非水系溶媒の付加物と
したものであってもよい。一方、非水系溶媒の好適な代
表例としてはプロピレンカーボネート、T−ブチロラク
トン、ジメトキシエタン、ジオキソランなどが挙げられ
、これらは2種以上を併用しても差し支えない。なおリ
チウム塩の濃度は0.3〜3m0I!/l!が好ましい
As the lithium salt and non-aqueous solvent used in such an electrolyte, any of the various ones conventionally known for use in lithium batteries can be used. For example, representative examples of suitable lithium salts include LiBφ4 (φ means a phenyl group), LiPF6, LicF, SO8,
[, 1AsFa, etc., and these may be used in combination of two or more types, or may be made into an adduct of a non-aqueous solvent in advance. On the other hand, suitable typical examples of the non-aqueous solvent include propylene carbonate, T-butyrolactone, dimethoxyethane, dioxolane, etc., and two or more of these may be used in combination. The concentration of lithium salt is 0.3 to 3 m0I! /l! is preferred.

ゲル化剤としては、リチウム塩と反応せずかつ非水系溶
媒と均一に混じり合ってゲル化する性質を備えるもので
あればよく、その好適な代表例としてポリメタクリル酸
アルキルエステル、とくに好ましくは構成単位であるメ
タクリル酸アルキルエステルの一般式CH2=C(CH
3)C0ORで示されるRがメチル基、エチル基、プロ
ピル基などの低級アルキル基からなり、平均分子量がs
、ooo〜20.000程度のものが挙げられる。この
ゲル化剤の使用量は粘性体の粘度が適度な範囲となるよ
うに設定すればよ(、この際粘度があまりに高(なりす
ぎると粘稠性が高過ぎて塗り付けが困難となり、逆に低
くなりすぎると流動性が大き過ぎて従来の液体電解質と
同様の問題を生じる。因にゲル化剤としてポリメタクリ
ル酸アルキルエステルを使用する場合は、その使用量は
非水系溶媒100重量部に対して10〜30重量部程度
が使用量の目安である。
The gelling agent may be any material as long as it does not react with lithium salts and has the property of uniformly mixing with non-aqueous solvents to form a gel, and representative examples include polymethacrylic acid alkyl esters, and particularly preferred compositions The general formula of the unit methacrylic acid alkyl ester is CH2=C(CH
3) R represented by C0OR consists of a lower alkyl group such as a methyl group, an ethyl group, or a propyl group, and the average molecular weight is s
, ooo to about 20,000. The amount of gelling agent to be used should be set so that the viscosity of the viscous material is within an appropriate range (in this case, if the viscosity is too high, the viscosity will be too high and it will be difficult to apply. If it becomes too low, the fluidity will be too high, causing the same problems as with conventional liquid electrolytes.Incidentally, when polymethacrylic acid alkyl ester is used as a gelling agent, the amount used is 100 parts by weight of the non-aqueous solvent. On the other hand, the amount to be used is approximately 10 to 30 parts by weight.

この発明の特徴点は電解質として上記粘性体を使用する
こと、ならびにセパレータとして表裏面に多数の凹凸を
有する微孔性ポリプロピレンフィルムを使用することに
ある。すなわち、電解質は粘性体であるためにセパレー
タの表裏面あるいは正負極の対セパレータ側面に塗り付
けることにより電池内に添加できるが、薄型電池用とし
て用いられるセパレータが非常に薄くその内部つまり微
孔部分に保持できる電解質量は僅かであり、通常の平坦
状のセパレータでは電池封止時の正負極との圧接にて塗
り付けた電解質の大部分が側方へ移動してしまい、正負
両極とセパレータとの界面部で電解質が不足して電池性
能の低下を招く。しかしながら、表裏面に多数の凹凸を
有するセパレータではその凹部に電解液が保持される結
果、セパレータ部分とくに正負極との界面部に充分な量
の電解液を存在させることができ、−次電池および二次
電池のいずれにおいても高い性能が達成される0 このような微孔性ポリプロピレンフィルムからなるセパ
レータの表裏面に多数の凹凸を形成する手段としては、
凹凸表面を有する部分的に加熱したロール間に上記フィ
ルムの原シートを通過させたり、この原シートもしくは
切断加工後のセパレータを凹凸表面を有する成形型間に
挾んで部分的に加熱変形する方法を採用できるが、少量
を対象にする場合には加熱した棒材の先端をセパレータ
に何回も押し付けて凹凸を形成してもよい。このような
凹凸の大きさは凹部の深さがセパレータの厚みより大き
いことが望ましく、とくに凹部の深さが0.05〜0.
4tx程度であるものが好適である。
The feature of this invention is to use the above-mentioned viscous body as an electrolyte, and to use a microporous polypropylene film having many irregularities on the front and back surfaces as a separator. In other words, since the electrolyte is a viscous substance, it can be added to the inside of the battery by applying it to the front and back surfaces of the separator or the sides of the positive and negative electrodes opposite the separator. The amount of electrolyte that can be retained is small, and when a normal flat separator is pressed against the positive and negative electrodes during battery sealing, most of the applied electrolyte moves to the side, causing the difference between the positive and negative electrodes and the separator. Electrolyte becomes insufficient at the interface, leading to a decline in battery performance. However, in a separator that has many irregularities on the front and back surfaces, the electrolyte is retained in the recesses, so that a sufficient amount of electrolyte can be present in the separator part, especially at the interface with the positive and negative electrodes, and High performance can be achieved in any secondary battery.Means for forming a large number of irregularities on the front and back surfaces of a separator made of such a microporous polypropylene film include:
The original sheet of the film described above is passed between partially heated rolls having an uneven surface, or the original sheet or the separator after cutting is sandwiched between molds having an uneven surface and partially heated to deform it. However, if a small amount is to be used, the tip of a heated bar may be pressed against the separator many times to form irregularities. As for the size of such irregularities, it is desirable that the depth of the recesses is larger than the thickness of the separator, and in particular, the depth of the recesses is 0.05 to 0.
It is preferable that the amount is about 4tx.

また凹部の形状は半球形、多角形、溝状、不定形溝状な
ど様々な形となし得る。
Further, the shape of the recessed portion can be various shapes such as a hemispherical shape, a polygonal shape, a groove shape, and an irregular groove shape.

なお、セパレータの材質をポリプロピレンとしているの
は、耐溶剤性、強度、加工性などの点から薄型リチウム
電池用セパレータとしての適性に優れていること、なら
びに現状で製造可能な微孔性フィルムの空隙率が小さく
この発明の適用効果が大きいことによる。またこのよう
な微孔性ポリプロピレンフィルムの厚さは25〜50μ
程度、微孔径は0.02〜0.4/”程度が好適である
The material of the separator is polypropylene because it is highly suitable as a separator for thin lithium batteries in terms of solvent resistance, strength, processability, etc., and also because it has excellent porosity in the microporous film that can be manufactured at present. This is because the ratio is small and the effect of applying this invention is large. Moreover, the thickness of such microporous polypropylene film is 25 to 50 μm.
The suitable pore diameter is about 0.02 to 0.4/''.

次に、この発明の電池構成を図面に基づいて説明する。Next, the battery configuration of the present invention will be explained based on the drawings.

第1図はこの発明を適用した薄型リチウム電池の要部の
縦断面図、第2図は第1図の円内■の拡大図である。第
1図において、1はステンレス鋼からなる方形平板状の
正極集電板、2は同様にステンレス鋼からなる方形平板
状の負極集電板、3は両極集電板1,2の周辺部1a、
2 a間に介在する方形環状のセラミック製スペーサ、
4は両極集電板1,2の周辺部1a、2a内面とスペー
サ30表裏面との間を熱融着封止したホットメルト接着
剤やハーメチックシール可能なセラミックなどからなる
熱融着性材料、5は両極集電板1,2間に構成される空
間6内において正極集電板1側に配置した正極、7は空
間5内において負極集電板2側に配置されたリチウムま
たはリチウム合金からなる負極、8は両極5,7間に介
在させた表裏面に多数の凹凸を有する微孔性ポリプロピ
レンフィルムカラなるセパレータである。
FIG. 1 is a vertical cross-sectional view of the essential parts of a thin lithium battery to which the present invention is applied, and FIG. 2 is an enlarged view of the circle (2) in FIG. 1. In FIG. 1, 1 is a rectangular flat positive electrode current collector plate made of stainless steel, 2 is a rectangular flat negative electrode current collector plate also made of stainless steel, and 3 is a peripheral portion 1a of the bipolar current collector plates 1 and 2. ,
2 a rectangular annular ceramic spacer interposed between
4 is a heat-fusible material made of a hot-melt adhesive or a hermetically sealable ceramic that heat-seals the inner surfaces of the peripheral parts 1a and 2a of the bipolar current collector plates 1 and 2 and the front and back surfaces of the spacer 30; 5 is a positive electrode placed on the positive electrode current collector plate 1 side in the space 6 formed between the two electrode current collector plates 1 and 2, and 7 is a lithium or lithium alloy placed in the space 5 on the negative electrode current collector plate 2 side. The negative electrode 8 is a microporous polypropylene film color separator interposed between the two electrodes 5 and 7 and having many irregularities on the front and back surfaces.

第2図で示すように、粘性体からなる電解質9はセパレ
ータ8の両面に予め塗り付けるか、電池要素組込み時に
その組込み手順に応じて正負極1゜2の対セパレータ面
または/およびセパレータ8表面に塗り付けることによ
り電池内に添加されるが、封止時に正負極1,2とセパ
レータ8とが圧接されてもセパレータ8の両面の凹部8
aに保持される。なお8bはセパレータ8の微孔であり
、この内部にも電解質9が浸透している。
As shown in FIG. 2, the electrolyte 9 made of a viscous material can be applied to both sides of the separator 8 in advance, or applied to the separator surface of the positive and negative electrodes 1°2 or/and the surface of the separator 8, depending on the installation procedure when assembling the battery elements. It is added into the battery by coating, but even if the positive and negative electrodes 1 and 2 and the separator 8 are pressed together during sealing, the recesses 8 on both sides of the separator 8
It is held at a. Note that 8b is a micropore in the separator 8, into which the electrolyte 9 also permeates.

熱融着性材料4としては、熱融着前の形態が両極集電板
1,2の周辺部1a、2aの幅に対応する幅に予め設定
した環状などの成形シートであるものを使用できる。す
なわち、封止操作は上記成形シートを両極集電板1,2
とスペーサ3との間に挾んで圧接し、この状態で同周辺
部1a、2a部分を所定温度まで加熱すればよい。この
加熱過程においては電解質9が粘性体であるために従来
の液体のように飛散することがなく、容易に確実な封止
が達成される。また上述のように熱融着前の形態が固形
の成形物であることから、取扱い操作および組付は操作
が非常に容易であると共に、塗料溶液型接着剤を用いる
場合のように空間6内へ流入して電解質と混じり合う惧
れかない。
As the heat-fusible material 4, it is possible to use a material whose form before heat-fusion is a formed sheet, such as an annular sheet, whose width is preset to correspond to the width of the peripheral parts 1a and 2a of the bipolar current collector plates 1 and 2. . That is, in the sealing operation, the molded sheet is placed between the bipolar current collector plates 1 and 2.
and the spacer 3, and in this state, the peripheral parts 1a and 2a are heated to a predetermined temperature. In this heating process, since the electrolyte 9 is a viscous substance, it does not scatter unlike conventional liquids, and reliable sealing is easily achieved. Furthermore, as mentioned above, since the form before heat fusion is a solid molded product, it is very easy to handle and assemble. There is no danger that it will flow into the water and mix with electrolytes.

なお、このような熱融着性材料4にはホットメルト型接
着剤、ハーメチックシール可能なセラミックを始め、種
々のものを使用できる。
Note that various materials can be used as the heat-fusible material 4, including a hot-melt adhesive and a hermetically sealable ceramic.

また正極5としては、活物質とテフロン粉末などの結合
剤と必要に応じてカーボン粉末などの電子伝導助剤を混
合してシート状に成形したものを使用してもよいが、前
述した電解質9の粘性体を活物質と必要に応じて導電助
剤に混練して粘稠物としたものを好適に使用できる。す
なわち、後者の粘稠物はスクリーン印刷などによって正
極集電板1上に塗布形成できるため、前者のような成形
工程が不要となり形成操作も極めて簡単で低コスト化b
i図れると共に、薄層化が容易であることから薄型電池
への適用性に優れる。
Further, as the positive electrode 5, a sheet formed by mixing an active material, a binder such as Teflon powder, and an electron conduction aid such as carbon powder as necessary may be used. A viscous material obtained by kneading a viscous material with an active material and, if necessary, a conductive additive, can be preferably used. That is, since the latter viscous material can be applied and formed on the positive electrode current collector plate 1 by screen printing or the like, the forming process like the former is unnecessary, and the forming operation is extremely simple and cost-effective.
It is excellent in applicability to thin batteries because it can be easily made into thin layers.

正極5に使用する活物質としては、従来よりリチウム電
池用の正極活物質として知られる種々のものを使用でき
るが、とくに好適なものとしてTiS2、Mo5z、 
VsO13、■203、VSe2、N1PSaが挙げら
れ、これらは2種以上を併用してもよい。
As the active material used for the positive electrode 5, various materials conventionally known as positive electrode active materials for lithium batteries can be used, but particularly preferred ones include TiS2, Mo5z,
Examples include VsO13, ■203, VSe2, and N1PSa, and two or more of these may be used in combination.

さらに、負極7としてはリチウムおよびリチウム合金の
いずれも使用可能であるが、リチウム単独では長期の間
に電解質9と反応する可能性があるため、アルミニウム
などとの合金化を図ることが望ましい。
Furthermore, both lithium and lithium alloys can be used as the negative electrode 7, but since lithium alone may react with the electrolyte 9 over a long period of time, it is desirable to alloy it with aluminum or the like.

なお、第1図の電池構成では、封止部にスペーサ3を介
挿しているが、正負極集電板1,2の一方もしくは両方
を周辺部が曲折した皿形とすれば、スペーサ3を介さず
に空間5を確保でき、両極集電板1,2を直接に熱融着
性材料3にて融着封止可能である。またここでいう薄型
電池とは電池総厚が1.0朋以下、とくに0.3〜0.
7羽程度のものを指し、外形は方形以外に円形など用途
に応じた形状とできる。
In the battery configuration shown in FIG. 1, the spacer 3 is inserted in the sealing part, but if one or both of the positive and negative electrode current collector plates 1 and 2 is shaped like a dish with a bent peripheral part, the spacer 3 can be inserted into the sealing part. The space 5 can be secured without intervening, and the bipolar current collector plates 1 and 2 can be directly fused and sealed with the heat-fusible material 3. Furthermore, the term "thin battery" as used herein means that the total thickness of the battery is 1.0 mm or less, particularly 0.3 to 0.0 mm.
It refers to about 7 birds, and the external shape can be round or round depending on the purpose.

以上のように構成されるこの発明の薄型リチウム電池は
セパレータと正負極との界面に常時充分な量の電解質が
存在する状態となり、充放電による物質移動に伴う負極
表面の形状変化を電解質が補完して隙間が生じず、正負
極と電解質との実質的な接触が安定して維持される。こ
のため、この発明を適用した一次電池では正負極活物質
の放電利用率が向上し、また二次電池では充放電−回当
たりの放電利用率と充放電サイクル特性が改善される。
In the thin lithium battery of the present invention constructed as described above, a sufficient amount of electrolyte is always present at the interface between the separator and the positive and negative electrodes, and the electrolyte compensates for changes in the shape of the negative electrode surface due to mass transfer during charging and discharging. Thus, no gaps are created, and substantial contact between the positive and negative electrodes and the electrolyte is stably maintained. Therefore, in a primary battery to which the present invention is applied, the discharge utilization rate of the positive and negative electrode active materials is improved, and in a secondary battery, the discharge utilization rate per charging/discharging cycle and charge/discharge cycle characteristics are improved.

[発明の効果] この発明に係る薄型リチウム電池は、電解質としてゲル
化剤を含む粘性体を使用し、かつセパレータとして表裏
面に多数の凹凸を備えた微孔性ポリプロピレンフィルム
を用いているから、薄型電池用としてのセパレータが非
常に薄くそれ自体の電解質保持能力が僅少であるにもか
かわらず、凹部に充分な量の電解質が保持されてセパレ
ータと正負極の界面で電解質不足を生じず、優れた電池
特性を発揮する。また、この発明の電池を組立製作する
際、電解質が粘性体であるため、従来の高流動性液体か
らなる電解質のように周辺側へ流出する惧れがな(、塗
り付は手段によって容易に適量を電池内に添加でき、し
かも熱融着による封止時に電解質が飛散せず、確実な封
止が行える。
[Effects of the Invention] The thin lithium battery according to the present invention uses a viscous material containing a gelling agent as an electrolyte, and uses a microporous polypropylene film with many irregularities on the front and back surfaces as a separator. Although the separator for thin batteries is very thin and has only a small electrolyte retention capacity, it is an excellent battery because a sufficient amount of electrolyte is retained in the recesses and no electrolyte shortage occurs at the interface between the separator and the positive and negative electrodes. Demonstrates excellent battery characteristics. In addition, when assembling and manufacturing the battery of this invention, since the electrolyte is a viscous substance, there is no risk of it flowing out to the surrounding area, unlike conventional electrolytes made of highly fluid liquids. An appropriate amount can be added into the battery, and the electrolyte does not scatter during sealing by heat fusion, allowing reliable sealing.

〔実施例〕〔Example〕

以下、この発明の実施例を比較例に対比して具体的に説
明する。なお、以下において部とあるのは重量部を意味
する。
Examples of the present invention will be specifically described below in comparison with comparative examples. In addition, in the following, parts mean parts by weight.

実施例 一辺11a+の正方形とした厚さ25μの微孔性ポリプ
ロピレンフィルム(ポリプラスチック社製商品名ジュラ
ガード2400)に、先端が半径0.3調の半球状であ
る金属棒を150°Cに加熱して多数回押し付け、半球
形凹部の深さが約0.3朋である凹凸構造のセパレータ
を作製した。
Example A metal rod having a hemispherical tip with a radius of 0.3 was heated to 150°C on a microporous polypropylene film (product name: Duraguard 2400, manufactured by Polyplastics Co., Ltd.) with a square shape of 11a+ on one side and a thickness of 25μ. The separator was pressed many times to produce a separator with an uneven structure in which the depth of the hemispherical recesses was approximately 0.3 mm.

一方、LiBφ4のジメトキシエタン付加物(L + 
B11’4・3部ME)22.4部、プロピレンカーボ
ネート47.6部およびポリメチルメタクリレート(平
均分子量12,000 ) 10.5部からなる混合物
を密・封下120℃で30分間放置し、均一な粘性体か
らなる電解質を調製した。この電解質は25℃における
イオン伝導度1.8X10S/amであった。
On the other hand, LiBφ4 dimethoxyethane adduct (L +
A mixture consisting of 22.4 parts of B11'4.3 parts ME), 47.6 parts of propylene carbonate, and 10.5 parts of polymethyl methacrylate (average molecular weight 12,000) was allowed to stand at 120°C for 30 minutes under a sealed lid. An electrolyte consisting of a homogeneous viscous substance was prepared. This electrolyte had an ionic conductivity of 1.8 x 10 S/am at 25°C.

次に、この電解質とTiS2粉末とを体積比30ニア0
で混練し、得られた混線物をスクリーン印刷法により一
辺15w11の正方形で厚さ0.05rtmのステンレ
ス製平板からなる正極集電板上に塗布し、−辺10闘の
正方形で厚さ0.1 mtの正極を形成した。この正極
上に、上記電解質を予め両面に均一に塗り付けた上記凹
凸構造のセパレータを積層し、さらにこのセパレータ上
にリチウム−アルミニウム合金製の一辺4朋、厚さ10
0JtInの正方形板からなる負極を積層した。
Next, this electrolyte and TiS2 powder were mixed at a volume ratio of 30 near 0.
The resulting mixture was coated by screen printing on a positive electrode current collector plate consisting of a stainless steel flat plate with a square side of 15w11 and a thickness of 0.05rtm. A 1 mt positive electrode was formed. On top of this positive electrode, the separator having the uneven structure with the electrolyte uniformly applied on both sides is laminated, and on top of this separator, there are 4 pieces of lithium-aluminum alloy with a thickness of 10 mm on each side.
Negative electrodes made of square plates of 0JtIn were laminated.

次に正極集電板の周辺部上に厚さ301in1幅2朋の
方形環状シートからなる変性ポリオレフィン系ホットメ
ルト接着剤と厚さ0.3 ttttx、幅2朋の方形環
状であるセラミック製スペーサとさらにこのスペーサ上
に上記同様のホットメルト接着剤とが載置された状態で
、正極集電体と同様の負極集電体を被冠し、両極集電板
の周辺部を圧接下で180℃に加熱して熱融着封止し、
第1図で示す構造の総厚0.45mの薄型リチウム電池
を作製した。
Next, a modified polyolefin hot-melt adhesive consisting of a rectangular annular sheet with a thickness of 301 inches and a width of 2 mm and a ceramic spacer in the shape of a rectangular ring with a thickness of 0.3 ttttx and a width of 2 mm were placed on the peripheral part of the positive electrode current collector plate. Furthermore, with hot melt adhesive similar to the above placed on this spacer, a negative electrode current collector similar to the positive electrode current collector is covered, and the peripheral parts of both electrode current collector plates are pressed at 180°C. Heat it to seal it by heat fusion,
A thin lithium battery having the structure shown in FIG. 1 and having a total thickness of 0.45 m was manufactured.

比較例 セパレータとして凹凸構造を有さない平坦状の微孔性ポ
リプロピレンフィルム(実施例で用いた原フィルム)を
使用した以外は、実施例と同様にして薄型リチウム電池
を作製した。
Comparative Example A thin lithium battery was produced in the same manner as in the example except that a flat microporous polypropylene film (original film used in the example) having no uneven structure was used as a separator.

たところ、第3図で示す結果を得た。また上記同電池に
ついて充電終止2゜7V、放電終止1.5V。
As a result, the results shown in Figure 3 were obtained. Also, for the same battery mentioned above, the end of charging was 2°7V and the end of discharging was 1.5V.

30μA放電、30μA充電として充放電サイクル特性
を調べたところ、第4図で示す結果を得たなお、両図中
の曲線Aは実施例、曲線Bは比較例の電池の特性である
When the charge/discharge cycle characteristics were examined using 30 μA discharge and 30 μA charge, the results shown in FIG. 4 were obtained. In both figures, curve A is the characteristic of the battery of the example, and curve B is the characteristic of the battery of the comparative example.

第3図および第4図の結果から明らかなように、凹凸を
有するセパレータを用いたこの発明の電池は、電解質と
して粘性体を用いているがセパレータが平坦状である比
較例の電池に比べ、放電利用率が高く、かつ二次電池と
しても充放電の繰り返しに伴う放電容量の低下が少な(
高性能であることが判る。
As is clear from the results shown in FIGS. 3 and 4, the battery of the present invention using a separator with unevenness has a higher temperature than the battery of the comparative example, which uses a viscous material as an electrolyte but has a flat separator. It has a high discharge utilization rate, and as a secondary battery, there is little decrease in discharge capacity due to repeated charging and discharging (
It can be seen that it has high performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る電池の一例における要部縦断面
図、第2図は第1図の円内■の拡大図、第3図はこの発
明の実施例および比較例で得られた電池の定電流放電特
性図、第4図は同電池の充放電サイクル特性図である。 1・・・正極集電板、1a・・・周辺部、2・・・負極
集電板、2a・・・周辺部、4・・・熱融着性材料、5
・・・正極、7・・・負極、8・・・セパレータ、8a
・・・凹部、8b・・・微孔、9・・・電解質 特許出願人  日立マクセル株式会社 第2図 9;電)V貫 第3図 11(mA→
Fig. 1 is a vertical cross-sectional view of the main part of an example of a battery according to the present invention, Fig. 2 is an enlarged view of the circle (■) in Fig. 1, and Fig. 3 is a battery obtained in an example of the present invention and a comparative example. Fig. 4 is a constant current discharge characteristic diagram of the same battery. DESCRIPTION OF SYMBOLS 1... Positive electrode current collector plate, 1a... Peripheral part, 2... Negative electrode current collector plate, 2a... Peripheral part, 4... Heat-fusible material, 5
...Positive electrode, 7...Negative electrode, 8...Separator, 8a
...concavity, 8b...micropore, 9...electrolyte patent applicant Hitachi Maxell Co., Ltd. Fig. 2 9; electric) V through Fig. 3 11 (mA→

Claims (1)

【特許請求の範囲】[Claims] (1)正極集電板と負極集電板との間に正極とリチウム
またはリチウム合金からなる負極と両極間に介在するセ
パレータとを含む電池要素が配置され、上記両極集電板
の周辺部で熱融着性材料にて融着封止された構造の薄型
リチウム電池において、上記セパレータが表裏面に多数
の凹凸を有する微孔性ポリプロピレンフィルムからなり
、このセパレータの凹部にリチウム塩と非水系溶媒とゲ
ル化剤とを含む粘性体からなる電解質が保持されている
ことを特徴とする薄型リチウム電池。
(1) A battery element including a positive electrode, a negative electrode made of lithium or a lithium alloy, and a separator interposed between the two electrodes is arranged between a positive electrode current collector plate and a negative electrode current collector plate, and a battery element including a positive electrode, a negative electrode made of lithium or a lithium alloy, and a separator interposed between the two electrodes is arranged, and In a thin lithium battery that is fused and sealed with a heat-fusible material, the separator is made of a microporous polypropylene film that has many irregularities on the front and back surfaces, and lithium salt and a non-aqueous solvent are placed in the concave parts of the separator. A thin lithium battery characterized by retaining an electrolyte made of a viscous material containing a gelling agent and a gelling agent.
JP60055185A 1985-03-19 1985-03-19 Thin lithium battery Pending JPS61214364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055185A JPS61214364A (en) 1985-03-19 1985-03-19 Thin lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055185A JPS61214364A (en) 1985-03-19 1985-03-19 Thin lithium battery

Publications (1)

Publication Number Publication Date
JPS61214364A true JPS61214364A (en) 1986-09-24

Family

ID=12991653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055185A Pending JPS61214364A (en) 1985-03-19 1985-03-19 Thin lithium battery

Country Status (1)

Country Link
JP (1) JPS61214364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454602A (en) * 1987-07-28 1989-03-02 Atomic Energy Authority Uk Polymer electrolyte
EP0651455A1 (en) * 1993-10-07 1995-05-03 Matsushita Electric Industrial Co., Ltd. Separator for an organic electrolyte lithium secondary battery and method of manufacture
EP0849819A2 (en) * 1996-12-17 1998-06-24 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and method of fabricating thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454602A (en) * 1987-07-28 1989-03-02 Atomic Energy Authority Uk Polymer electrolyte
EP0651455A1 (en) * 1993-10-07 1995-05-03 Matsushita Electric Industrial Co., Ltd. Separator for an organic electrolyte lithium secondary battery and method of manufacture
EP0849819A2 (en) * 1996-12-17 1998-06-24 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and method of fabricating thereof
EP0849819A3 (en) * 1996-12-17 2003-09-24 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and method of fabricating thereof

Similar Documents

Publication Publication Date Title
JP2001351616A (en) Manufacturing method of electrode
US6127060A (en) Recharge catalyst with thin film low corrosion coating, metal-air electrode including said catalyst and methods for making said catalyst and electrode
CN110323391A (en) Membrane for polymer and preparation method thereof and dispersion and lithium ion battery and preparation method thereof
KR20130136150A (en) Solid high-ionic conductor for lithium battery and lithium battery using the same
JPS61214364A (en) Thin lithium battery
JPS5919414B2 (en) Manufacturing method of non-aqueous electrolyte battery
CN109830745A (en) A kind of gel button flexible package lithium cell and preparation process
JPS61214365A (en) Thin lithium battery
CN109411701A (en) Battery anode slice and its manufacturing method and lithium ion battery and its manufacturing method
JPS6220262A (en) Thin type lithium battery
JPS5856467B2 (en) Battery manufacturing method
JPS6222375A (en) Thin lithium battery
JPS5830065A (en) Manufacture of button type zinc-air cell
CN109449444A (en) Battery anode slice and its manufacturing method and lithium ion battery and its manufacturing method
JPS5836828B2 (en) Battery manufacturing method
JP4190133B2 (en) Gel electrolyte lithium secondary battery
JPS62219468A (en) Lithium ion conductive gelled electrolyte
JPH0378745B2 (en)
JP3021517B2 (en) Organic electrolyte secondary battery
JPS6222376A (en) Thin lithium battery
JPS62126544A (en) Manufacture of battery
KR970005958Y1 (en) Cathodic collector of lithium thionil chloride
JPS5836827B2 (en) Battery manufacturing method
JPS6237879A (en) Manufacture of thin type lithium battery
JPS62226560A (en) Nonaqueous electrolyte battery