JPH0732022B2 - Lithium ion conductive gel electrolyte - Google Patents

Lithium ion conductive gel electrolyte

Info

Publication number
JPH0732022B2
JPH0732022B2 JP6277686A JP6277686A JPH0732022B2 JP H0732022 B2 JPH0732022 B2 JP H0732022B2 JP 6277686 A JP6277686 A JP 6277686A JP 6277686 A JP6277686 A JP 6277686A JP H0732022 B2 JPH0732022 B2 JP H0732022B2
Authority
JP
Japan
Prior art keywords
gel electrolyte
electrolyte
lithium
battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6277686A
Other languages
Japanese (ja)
Other versions
JPS62219468A (en
Inventor
龍 長井
浩 堀家
耕三 梶田
俊勝 真辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP6277686A priority Critical patent/JPH0732022B2/en
Publication of JPS62219468A publication Critical patent/JPS62219468A/en
Publication of JPH0732022B2 publication Critical patent/JPH0732022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、リチウム電池などに使用される非水系電解
質、とくにリチウム塩と非水系溶媒とゲル化剤である高
分子ポリマーとからなるリチウムイオン伝導性ゲル状電
解質に関するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte used in a lithium battery or the like, particularly a lithium ion composed of a lithium salt, a non-aqueous solvent, and a polymer as a gelling agent. The present invention relates to a conductive gel electrolyte.

〔従来の技術〕[Conventional technology]

一般に、リチウム電池は、正極集電板と負極集電板との
間に、正極とリチウムまたはリチウム合金からなる負極
とこれら両極間に介在するセパレータおよび非水系電解
質とで構成される電池要素を封入した構造を有してい
る。そして、上記非水系電解質としては、炭酸プロピレ
ンやγ−ブチロラクトンなどの高沸点非水系溶媒にリチ
ウム塩を溶解した高流動性の液体電解質が汎用されてい
る(文献不詳)。
In general, a lithium battery encloses, between a positive electrode current collector plate and a negative electrode current collector plate, a battery element composed of a positive electrode, a negative electrode made of lithium or a lithium alloy, a separator interposed between these electrodes, and a non-aqueous electrolyte. It has a structure. As the non-aqueous electrolyte, a high-fluidity liquid electrolyte in which a lithium salt is dissolved in a high-boiling-point non-aqueous solvent such as propylene carbonate or γ-butyrolactone is widely used (literature unknown).

ところが、近年における電子機器類の小型化,軽量化,
薄型化などに伴い、これに使用するリチウム電池として
も小型でかつ総厚が0.5mm程度という極めて薄型の高性
能なものが要望されている。このような薄型電池では、
正負両極集電板を非常に扁平な形状とせざるを得ず、ま
た厚型電池のように両極集電板の周辺部をパツキング材
を挟んでかしめ屈曲する封止手段は構造上および加工技
術上の制約から採用困難であるため、両極集電板の対向
する平坦状の周辺部で接着剤にて封止する方法を採用せ
ざるを得ない。
However, in recent years, electronic devices have become smaller and lighter,
Along with the reduction in thickness, there is a demand for a lithium battery to be used in this, which is small and has a total thickness of about 0.5 mm and is extremely thin and has high performance. In such a thin battery,
There is no choice but to make the positive and negative electrode current collector plates extremely flat, and the sealing means that crimps and bends the periphery of the both electrode current collector plates with a packing material between them, like thick batteries, is structurally and processing technically. Since it is difficult to adopt due to the restriction of No. 2, there is no choice but to adopt the method of sealing with an adhesive at the flat peripheral portions of the bipolar current collector plates facing each other.

したがつて、かかる薄型電池に上記の高流動性の液体電
解質を使用すると、電池組立時に電解質が外部へ流出し
やすく、これによつて電解質量が不足したり、封止部分
が濡れて封止不完全になり、また接着封止材料が熱融着
性のものでは加熱封止時に電解質の飛散を起こす惧れが
あり、さらに電池の使用中においても漏液を生じやす
く、かつ二次電池にあつては負極リチウムのデンドライ
ト状(樹脂状)析出による短絡を生じて寿命が短くなる
傾向がある。
Therefore, when using the above-mentioned high-fluidity liquid electrolyte in such a thin battery, the electrolyte is likely to flow out to the outside during battery assembly, which causes insufficient electrolytic mass or sealing of the sealing part due to wetting. If the adhesive sealing material is incomplete, and the adhesive material is a heat-sealing material, the electrolyte may be scattered during heat-sealing. In that case, there is a tendency that a short circuit occurs due to dendrite-like (resin-like) deposition of the negative electrode lithium and the life is shortened.

そこで、上述のような電解質の高流動性に起因する問題
を回避するには、電解質に粘性を付与してその流動性を
低下させることが有効であると考えられる。そして、こ
のような粘性を有する電解質としては、従来ではポリメ
タクリル酸メチルをゲル化剤としたゲル状電解質が知ら
れており(特開昭54−104541号公報)、たとえばLiBF4
をγ−ブチロラクトンに溶解した溶液中にポリメタクリ
ル酸メチル添加することによつて該ポリマーが完全に溶
解した透明なゲル状の電解質が得られる。
Therefore, in order to avoid the problems caused by the high fluidity of the electrolyte as described above, it is considered effective to impart viscosity to the electrolyte to reduce the fluidity. As an electrolyte having such a viscosity, a gel electrolyte using polymethylmethacrylate as a gelling agent is conventionally known (Japanese Patent Laid-Open No. 54-104541), for example LiBF 4
By adding polymethylmethacrylate to a solution of γ-butyrolactone, a transparent gel electrolyte in which the polymer is completely dissolved can be obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、上記の如くゲル化剤としてポリメタクリル酸
メチルを用いた従来のゲル状電解質では、ゲル化剤を使
用しない高流動性の電解質に比較してイオン伝導度の低
下が大きく、かつ化学的安定性も不充分である。また、
このゲル状電解質は、電池製作時に、その粘性を利用し
て不織布などの多孔性材料からなるセパレータに含浸さ
せた形で電池内へ添加できる利点があるが、上記セパレ
ータに外部から力が加わつた場合に表面に押し出されて
しまい、セパレータ内部に電解質不足を生じて電池特性
の劣化を招くという問題点があつた。
However, as described above, the conventional gel electrolyte using polymethylmethacrylate as a gelling agent has a large decrease in ionic conductivity and is chemically stable as compared with a high fluidity electrolyte which does not use a gelling agent. The sex is also insufficient. Also,
This gel electrolyte has the advantage of being able to be added to the inside of the battery in the form of being impregnated into a separator made of a porous material such as a non-woven fabric by utilizing its viscosity at the time of manufacturing the battery, but a force is applied to the separator from the outside. In this case, it is extruded to the surface, which causes a shortage of electrolyte inside the separator, which causes deterioration of battery characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者らは、上記従来の問題点を解決するために鋭
意検討を重ねた結果、ポリメタクリル酸メチルをゲル化
剤とした従来のゲル状電解質がイオン伝導性および化学
的安定性に劣るのは該ゲル化剤がリチウム塩に対してあ
る程度の相互作用を有することに起因するとの知見を得
た。そしてさらに、この発明者らは、上記知見に基づく
継続研究において、ゲル化剤としてポリメタクリル酸メ
チルに代えて特定の高分子ポリマーを使用した場合に良
好なイオン伝導性および化学的安定性を備えたゲル状電
解質が得られ、しかもリチウム電池の組立時にこのゲル
状電解質を多孔性材料からなるセパレータに含浸させた
形で添加する際、該セパレータに外部から力が加わつて
もゲル状電解質は表面側へ押し出されにくく、セパレー
タ内部の電解質不足による性能劣化が抑制されることを
見い出し、この発明をなすに至つた。
As a result of intensive studies to solve the above-mentioned conventional problems, the present inventors found that the conventional gel electrolyte using polymethyl methacrylate as a gelling agent is inferior in ion conductivity and chemical stability. Has been found to be due to the gelling agent having some interaction with the lithium salt. Furthermore, the present inventors have found that, in a continuous study based on the above findings, they have good ion conductivity and chemical stability when a specific polymer is used instead of polymethylmethacrylate as a gelling agent. A gel electrolyte is obtained, and when the gel electrolyte is added in the form of being impregnated in a separator made of a porous material at the time of assembling a lithium battery, the gel electrolyte has a surface even if external force is applied to the separator. The present invention has been accomplished by finding that it is difficult to be pushed out to the side and deterioration of performance due to insufficient electrolyte inside the separator is suppressed.

すなわち、この発明は、リチウム塩と非水系溶媒とゲル
化剤である高分子ポリマーとからなるリチウムイオン伝
導性ゲル状電解質において、上記ポリマーが上記非水系
溶媒に対する可溶性部分と不溶性部分とを有することを
特徴とするリチウムイオン伝導性ゲル状電解質に係る。
That is, the present invention is a lithium ion conductive gel electrolyte comprising a lithium salt, a non-aqueous solvent and a high molecular polymer which is a gelling agent, wherein the polymer has a soluble portion and an insoluble portion in the non-aqueous solvent. The present invention relates to a lithium ion conductive gel electrolyte characterized by:

〔発明の構成・作用〕[Constitution / Operation of Invention]

この発明のゲル状電解質においてゲル化剤として使用す
る高分子ポリマーは、前記の如く使用される非水系溶媒
に対する可溶性部分と不溶性部分と不溶性部分とを有す
るものであり、リチウム塩を非水系溶媒に溶解した溶液
に添加した場合、上記不溶性部分の存在によつて完全に
は溶解しないが、可溶性部分の作用により層分離のない
均一分散状態となり、通常、白色不透明の均一体からな
るゲル状電解質を与える。
The polymer used as the gelling agent in the gel electrolyte of the present invention has a soluble portion, an insoluble portion and an insoluble portion for the non-aqueous solvent used as described above, and the lithium salt is used as the non-aqueous solvent. When added to a dissolved solution, it is not completely dissolved due to the presence of the insoluble portion, but due to the action of the soluble portion, a uniform dispersion state without layer separation is obtained, and a gel electrolyte composed of a white opaque homogeneous body is usually formed. give.

このようなゲル状電解質がポリメタクリル酸メチルをゲ
ル化剤とする従来のゲル状電解質に比較して良好なイオ
ン伝導性および化学的安定性を示す理由は、明確ではな
いが、上記ポリメタクリル酸メチルでは一般にこの種の
電解質に使用される炭酸プロピレンやγ−ブチロラクト
ンなどの非水系溶媒に可溶であるため、電解質中でゲル
化剤のポリマー全体がリチウム塩と相互作用してイオン
伝導性を低下させるとともに化学的安定性を損なうのに
対し、この発明で使用するゲル化剤の高分子ポリマーで
はその不溶性部分はリチウム塩と相互作用しないため、
それだけイオン伝導性および化学的安定性に及ぼす悪影
響が軽減されるものと推測される。
The reason why such a gel electrolyte exhibits good ionic conductivity and chemical stability as compared with the conventional gel electrolyte using polymethyl methacrylate as a gelling agent is not clear, but the above polymethacrylic acid is used. Methyl is generally soluble in non-aqueous solvents such as propylene carbonate and γ-butyrolactone used for this type of electrolyte, so the entire polymer of the gelling agent interacts with the lithium salt in the electrolyte to improve ionic conductivity. While it lowers the chemical stability as well as lowers, in the high molecular polymer of the gelling agent used in the present invention, its insoluble portion does not interact with the lithium salt,
It is presumed that the adverse effects on the ionic conductivity and chemical stability are reduced.

また、この発明のゲル状電解質を不織布などの多孔性材
料に含浸させた場合、ゲル化剤である高分子ポリマーの
不溶性部分が液相の保持体として機能してかつ上記多孔
性材料の微細構造中に機械的にからみ込まれるため、電
池製作時にゲル状電解質を含浸させた上記材料からなる
セパレータに取扱い中および電池内への組み込み中に外
部から力が加わつても、表面側へ押し出される電解質量
は少なく、セパレータ内部での電解質不足による抵抗増
加を生じにくく電池性能の低下が抑制されると考えられ
る。
Further, when the gel electrolyte of the present invention is impregnated into a porous material such as a non-woven fabric, the insoluble portion of the high molecular polymer which is the gelling agent functions as a liquid phase retainer and has a fine structure of the porous material. Since it is mechanically entangled in the inside, the electrolyte that is extruded to the surface side even when external force is applied during handling of the separator made of the above material impregnated with gel electrolyte during battery fabrication and during assembly into the battery. The amount is small, and it is considered that the increase in resistance due to insufficient electrolyte inside the separator is unlikely to occur and the deterioration in battery performance is suppressed.

この発明でゲル化剤に用いる上記高分子ポリマーとして
は、使用する非水系溶媒の種類に応じてそれぞれ適当な
ものが存在するが、一般的にはそのホモポリマーが上記
非水系溶媒に溶解しうるモノマーと同じく溶解しないモ
ノマーとの共重合体が好適である。なお、この共重合体
はブロツク共重合体およびランダム共重合体のいずれで
もよい。
As the above-mentioned polymer used for the gelling agent in the present invention, there are suitable ones depending on the kind of the non-aqueous solvent used, but generally, the homopolymer can be dissolved in the non-aqueous solvent. Copolymers with monomers that are insoluble as well as monomers are preferred. The copolymer may be either a block copolymer or a random copolymer.

上記共重合体の好適な具体例としては、たとえば非水系
溶媒にリチウム電池の電解質用として代表的な炭酸プロ
ピレン、γ−ブチロラクトンなどの高沸点溶媒を使用す
る場合、下記一般式(I); (R1は水素またはメチル基、R2はメチル基またはエチル
基)で示されるモノマーと、下記一般式(II); (R3は水素またはメチル基、R4は炭素数3以上通常15ま
でのアルキル基)で示されるモノマーとの共重合体が挙
げられる。すなわち、この共重合体では、上記一般式
(I)のモノマーに基づく構造部が上記高沸点溶媒に対
する可溶性部分となり、また上記一般式(II)のモノマ
ーに基づく構造部が同じく不溶性部分となる。
As a preferred specific example of the above-mentioned copolymer, for example, when a high boiling point solvent such as propylene carbonate or γ-butyrolactone, which is a typical electrolyte for a lithium battery, is used as a non-aqueous solvent, the following general formula (I); (R 1 is hydrogen or a methyl group, R 2 is a methyl group or an ethyl group), and the following general formula (II); (R 3 is hydrogen or a methyl group, R 4 is an alkyl group having 3 or more and usually 15 carbon atoms) and a copolymer with a monomer. That is, in this copolymer, the structural part based on the monomer of the general formula (I) becomes a soluble part in the high boiling point solvent, and the structural part based on the monomer of the general formula (II) also becomes an insoluble part.

上述の如きゲル化剤である高分子ポリマーの数平均分子
量は5,000〜100,000程度がよい。またその非水系溶媒に
対する可溶性部分/不溶性部分の割合は、構成モノマー
のモル比で1/0.1〜1/0.7程度が好ましく、可溶性部分が
多すぎると前記従来のゲル状電解質と同様の問題を生起
し、逆に不溶性部分が多すぎると本来のゲル化機能が不
充分になるとともに電解質中で均一な分散状態を呈しに
くくなる。さらに、この高分子ポリマーによつてゲル化
作用を充分に発揮させるには、非水系溶媒の種類によつ
てある程度差はあるが、一般にその使用量を非水系溶媒
100重量部に対して5〜50重量部程度となる割合とする
のがよい。
The number average molecular weight of the high molecular weight polymer as the gelling agent as described above is preferably about 5,000 to 100,000. Further, the ratio of the soluble portion / insoluble portion to the non-aqueous solvent is preferably about 1 / 0.1 to 1 / 0.7 in terms of the molar ratio of the constituent monomers, and if the soluble portion is too much, the same problem as the conventional gel electrolyte occurs. On the contrary, if the insoluble portion is too much, the original gelling function becomes insufficient and it becomes difficult to exhibit a uniform dispersed state in the electrolyte. Further, in order to sufficiently exert the gelling action by using this high molecular polymer, there is a certain degree of difference depending on the kind of the non-aqueous solvent, but generally the amount used is the non-aqueous solvent.
It is preferable that the ratio is about 5 to 50 parts by weight with respect to 100 parts by weight.

この発明のゲル状電解質の構成成分の一つであるリチウ
ム塩としては、従来よりリチウム電池などの電解質成分
として知られる種々のものを使用可能であるが、とくに
好適なものとしてはLiBφ(φはフエニル基を意味す
る)、LiBF4、LiPF6、LiCF3So3、LiAsF6などが挙げられ、
これらは予め非水系溶媒の付加物とした形態でも使用で
き、2種以上を併用してもよい。これらリチウム塩の使
用量は、電解質中の濃度が0.3〜2モル/l程度となるよ
うな割合とするのがよい。
As the lithium salt which is one of the constituents of the gel electrolyte of the present invention, various ones conventionally known as electrolyte components for lithium batteries and the like can be used, but LiBφ 4 (φ Means a phenyl group), LiBF 4 , LiPF 6 , LiCF 3 So 3 , LiAsF 6 and the like,
These may be used in the form of an adduct of a non-aqueous solvent in advance, and two or more kinds may be used in combination. The amount of these lithium salts used is preferably such that the concentration in the electrolyte is about 0.3 to 2 mol / l.

非水系溶媒としては、上記リチウム塩と反応せず、この
リチウム塩を溶解でき、かつ前記ゲル化剤の高分子ポリ
マーを部分的に溶解するとともに該ゲル化剤と混合して
ゲル化する性質を有するものであれば種々使用可能であ
る。その代表例としては、既述した炭酸プロピレン、γ
−ブチロラクトンのほか、ジメトキシエタン、ジオキシ
ランなどが挙げられ、これらは単独または2種以上の混
合形態で使用できる。そして、とくにゲル化剤が前記し
た一般式(I)および(II)のモノマーの共重合体であ
るとき、炭酸プロピレンおよびγ−ブチロラクトンの単
独または混合溶媒、ならびにこれらを主溶媒としてジメ
トキシエタンを少量加えた混合溶媒が最適であり、後者
のジメトキシエタンを少量混合したものはリチウム電池
用として電池特性を向上する効果がある。
The non-aqueous solvent has a property that it does not react with the lithium salt, can dissolve the lithium salt, and partially dissolves the high molecular weight polymer of the gelling agent and mixes with the gelling agent to form a gel. Various materials can be used as long as they have them. Typical examples thereof include propylene carbonate and γ described above.
In addition to butyrolactone, dimethoxyethane, dioxirane and the like can be mentioned, and these can be used alone or in a mixed form of two or more kinds. In particular, when the gelling agent is a copolymer of the monomers of the above-mentioned general formulas (I) and (II), propylene carbonate and γ-butyrolactone are used alone or as a mixed solvent, and a small amount of dimethoxyethane is used as the main solvent. The mixed solvent added is most suitable, and the latter mixed with a small amount of dimethoxyethane has the effect of improving battery characteristics for lithium batteries.

なお、この発明のゲル状電解質は、リチウム電池用電解
質に限らず、エレクトロクロミツク表示素子その他のリ
チウムイオンが導電イオン種である各種電気化学的素子
に使用されるリチウムイオン伝導性電解質として使用可
能であるが、とくに正負両極集電板の対向する平坦状の
周辺部で接着封止する構造の薄型リチウム電池に対して
最適である。
The gel electrolyte of the present invention can be used not only as an electrolyte for lithium batteries, but also as a lithium ion conductive electrolyte used in various electrochemical elements in which an electrochromic display element or other lithium ion is a conductive ion species. However, it is most suitable for a thin lithium battery having a structure in which the positive and negative bipolar current collector plates are bonded and sealed at opposite flat peripheral portions.

第1図は上記薄型リチウム電池の一例を示すものであ
る。図において、1はステンレス鋼からなる方形平板状
の正極集電板、2は周辺を一面側へ段状に折曲して主面
と同じ向きの平坦状の周辺部2aを設けたステンレス鋼か
らなる浅い方形皿状の負極集電板、3は両極集電板1,2
の対向する周辺部1a,2a間を封止した接着剤層、4は両
極集電板1,2間に構成される空間5内において正極集電
板1側に配された正極、6は空間5内において負極集電
板2側に装填されたリチウムまたはリチウム合金からな
る負極、7は両極4,6間に介在させた多孔性ポリプロピ
レンなどの多孔性材料からなるセパレータ、8は正極4
を取囲むように配設されたポリプロピレンなどからなる
方形環状の枠体である。
FIG. 1 shows an example of the thin lithium battery. In the figure, 1 is a square flat plate positive electrode current collector plate made of stainless steel, 2 is a stainless steel plate having a flat peripheral portion 2a bent in the same direction as the main surface by bending the periphery in one step Narrow shallow dish-shaped negative electrode current collector plates 3 are bipolar electrode current collector plates 1 and 2
Adhesive layer sealing between the opposing peripheral portions 1a, 2a of the positive electrode, 4 is a positive electrode arranged on the side of the positive electrode current collector plate 1 in the space 5 formed between the two current collector plates 1, 2, and 6 is a space A negative electrode made of lithium or a lithium alloy loaded on the negative electrode current collector plate 2 side in 5, a separator 7 made of a porous material such as porous polypropylene interposed between both electrodes 4 and 6, and a positive electrode 4
It is a rectangular annular frame body made of polypropylene or the like and arranged so as to surround it.

この場合、前述したこの発明のゲル状電解質は通常では
組込み前のセパレータ7に予め塗布して含浸させること
により、電池内部に添加される。このときゲル状電解質
は、組立て基面に多少の傾斜があつたり、振動が加わつ
ても周辺へ流出することがなく、塗り付け位置から組込
み位置へのセパレータ7の運搬時にも滴下する惧れはな
く、かつ添加量を広範囲で調整することが可能である。
In this case, the above-mentioned gel electrolyte of the present invention is usually added to the inside of the battery by pre-coating and impregnating the separator 7 before incorporation. At this time, the gel electrolyte does not flow out to the surroundings even if the assembly base surface is slightly inclined or vibration is applied, and there is a fear that the gel electrolyte may be dropped when the separator 7 is transported from the application position to the installation position. Moreover, it is possible to adjust the addition amount over a wide range.

一方、接着剤層3としては、一般的な塗料溶液型の接着
剤も使用できるが、とくに熱融着性材料からなるものが
好適である。この熱融着性材料3としては、熱融着前の
形態が両極集電板1,2の周辺部1a,2aの幅に対応する幅に
予め設定した環状などの成形シートであるものを使用で
きる。すなわち、封止操作は上記両周辺部1a,2a間に上
記成形シートを挟んで圧接し、この状態で両周辺部1a,2
a部分を所定温度まで加熱すればよい。そして、この加
熱過程においては既述のようにゲル状電解質は従来汎用
の高流動性液体からなる電解質のように飛散することが
なく、容易に確実な封止が達成される。また上述のよう
に熱融着前の形態が固形の成形物であることから、取扱
い操作および組付け操作が非常に容易であると共に、塗
料溶液型接着剤を用いる場合のように空間5内へ流入し
てゲル状電解質と混じり合う惧れがない。
On the other hand, as the adhesive layer 3, a general coating solution type adhesive can be used, but one made of a heat-fusible material is particularly preferable. As the heat-fusible material 3, use is made of a molded sheet such as an annular shape whose shape before heat-sealing is preset to a width corresponding to the width of the peripheral portions 1a, 2a of the bipolar current collector plates 1, 2. it can. That is, in the sealing operation, the molded sheet is sandwiched between both the peripheral portions 1a and 2a and pressed, and in this state, the peripheral portions 1a and 2a are pressed.
It suffices to heat the part a to a predetermined temperature. In the heating process, as described above, the gel electrolyte does not scatter like an electrolyte made of a conventionally used high fluidity liquid, and reliable sealing can be easily achieved. Further, as described above, since the form before heat fusion is a solid molded product, the handling operation and the assembling operation are very easy, and, as in the case of using a coating solution type adhesive, There is no fear that it will flow in and mix with the gel electrolyte.

なお、このような熱融着性材料3にはホツトメルト型接
着剤、ハーメチツクシール可能なセラミツクを始め、種
々のものを使用できる。
As the heat-fusible material 3, various materials such as a hot-melt adhesive and a ceramic capable of hermetic sealing can be used.

また、正極4としては、活物質とテフロン粉末などの結
合剤と必要に応じてカルボニルニツケルなどの電子伝導
助剤とを混合してシート状に成形したものを使用しても
よいが、前述したゲル状電解質を活物質と必要に応じて
導電助剤に混練して粘稠物としたものを好適に使用でき
る。すなわち、後者の粘稠物はスクリーン印刷やスキー
ジ塗布法などによつて正極集電板1上に塗布形成できる
ため、前者のような成形工程が不要となり、形成操作も
極めて簡単で低コスト化が図れると共に、薄層化が容易
であることから薄型電池への適用性にすぐれる。
Further, as the positive electrode 4, a material formed by mixing an active material, a binder such as Teflon powder, and an electron conduction aid such as carbonyl nickel, if necessary, and forming it into a sheet may be used. A viscous material obtained by kneading a gel electrolyte with an active material and, if necessary, a conductive additive can be preferably used. That is, since the latter viscous material can be applied and formed on the positive electrode current collector plate 1 by screen printing or a squeegee application method, the former molding step is unnecessary, and the forming operation is extremely simple and the cost can be reduced. In addition to being able to achieve a thin layer, it can be easily applied to a thin battery.

そして、枠体8は正極4として上記粘稠物を使用する場
合にその塗布量を設定する機能を持つものである。すな
わち、予めこの枠体8を正極集電板1上に載置してお
き、その内側に一杯に上記粘稠物を塗布充填することに
よつて塗布量が一定になる。
The frame 8 has a function of setting the coating amount when the viscous material is used as the positive electrode 4. That is, the coating amount is made constant by placing the frame body 8 on the positive electrode current collector plate 1 in advance and filling and filling the viscous material inside thereof.

正極4に使用する活物質としては、従来よりリチウム電
池用の正極活物質として知られる種々のものを使用でき
るが、とくに好適なものとしてTiS2、MoS2、V6O13、V2O5、V
Se2、NiPS3が挙げられ、これらは2種以上を併用しても
よい。
As the active material used for the positive electrode 4, various materials conventionally known as positive electrode active materials for lithium batteries can be used, but TiS 2 , MoS 2 , V 6 O 13 , and V 2 O 5 are particularly preferable. , V
Se 2 and NiPS 3 are mentioned, and these may be used in combination of two or more kinds.

さらに、負極6としてはリチウムおよびリチウム合金の
いずれも使用可能であるが、リチウム単独では長期の間
に前記ゲル状電解質と反応する可能性があるため、アル
ミニウムなどとの合金化を図ることが望ましい。
Further, both lithium and lithium alloy can be used as the negative electrode 6, but lithium alone may react with the gel electrolyte for a long period of time, so it is desirable to alloy with aluminum or the like. .

なお、このような薄型リチウム電池における両極集電板
は、第1図で示すようにその一方を皿形とする以外に、
両方を共に皿形としたり、あるいは両方を共に平板状と
して周辺部間にスペーサを介在させてもよい。また電池
総厚は1.0mm以下、好適には0.3〜0.7mm程度である。
The bipolar current collector plate in such a thin lithium battery has one of the dish-shaped ones as shown in FIG.
Both may be plate-shaped, or both may be plate-shaped and a spacer may be interposed between the peripheral portions. The total thickness of the battery is 1.0 mm or less, preferably about 0.3 to 0.7 mm.

〔発明の効果〕〔The invention's effect〕

この発明に係るリチウムイオン伝導性ゲル状電解質は、
ゲル化剤として非水系溶媒に対する可溶性部分と不可溶
性部分とを有する高分子ポリマーを使用しているため、
従来のゲル状電解質に比較してイオン伝導度および化学
的安定性にすぐれており、しかもリチウム電池用電解質
として多孔性材料からなるセパレータに含浸させた形で
電池内に添加する場合、該セパレータに外部から力が加
わつても表面へ押し出されにくく、かつ上記高分子ポリ
マーの不溶性部分が液相の保持体として機能するため、
セパレータ内部の電解質不足に起因する電池性能の低下
が抑制されるという利点がある。
The lithium ion conductive gel electrolyte according to the present invention,
Since a high molecular polymer having a soluble portion and an insoluble portion in a non-aqueous solvent is used as a gelling agent,
It has superior ionic conductivity and chemical stability compared to conventional gel electrolytes, and when it is added to the battery as a lithium battery electrolyte impregnated in a separator made of a porous material, the separator is It is difficult to be extruded to the surface even if a force is applied from the outside, and since the insoluble part of the high molecular polymer functions as a liquid phase holder,
There is an advantage that deterioration of battery performance due to insufficient electrolyte inside the separator is suppressed.

〔実施例〕〔Example〕

以下に、この発明の実施例および比較例を示す。 Examples and comparative examples of the present invention will be shown below.

実施例1 炭酸プロピレンにLiCF3So3を1モル/l濃度で溶解した溶
液100重量部に、メタクリル酸メチルとアクリル酸2−
エチルヘキシルとのモル比82:18の共重合体(数平均分
子量約50,000)を40重量部添加混合したのち、100℃に
て3時間放置したところ、白色不透明で均一なゲル状電
解質が得られた。このゲル状電解質の10gを採取して、
遠心分離機(国産遠心器社製の形式H−108NA2)にて3,
500回/分の回転速度で5分間遠心分離処理を施したと
ころ、全く層分離は認められなかつた。
Example 1 100 parts by weight of a solution of LiCF 3 So 3 dissolved in propylene carbonate at a concentration of 1 mol / l was added with methyl methacrylate and acrylic acid 2-
40 parts by weight of a copolymer (number average molecular weight: about 50,000) with a molar ratio of 82:18 with ethylhexyl was added and mixed, and the mixture was allowed to stand at 100 ° C. for 3 hours to obtain a white opaque and uniform gel electrolyte. . Collect 10g of this gel electrolyte,
With a centrifuge (model H-108NA2 manufactured by domestic centrifuge) 3,
When centrifugation was performed for 5 minutes at a rotation speed of 500 times / minute, no layer separation was observed.

実施例2 実施例1の共重合体に代えてメタクリル酸メチルとメタ
クリル酸エチルとメタクリル酸ブチルとのモル比1.2:6
7.1:31.7の共重合体(数平均分子量約30,000)を40重量
部使用した以外は、実施例1と同様にして白色不透明で
均一なゲル状電解質を得た。このゲル状電解質は実施例
1と同様の遠心分離処理を施しても層分離が全く認めら
れなかつた。
Example 2 Instead of the copolymer of Example 1, the molar ratio of methyl methacrylate, ethyl methacrylate and butyl methacrylate was 1.2: 6.
A white opaque and uniform gel electrolyte was obtained in the same manner as in Example 1 except that 40 parts by weight of the 7.1: 31.7 copolymer (number average molecular weight of about 30,000) was used. No layer separation was observed in this gel electrolyte even after the centrifugal separation treatment as in Example 1.

実施例3 実施例1の共重合体に代えてアクリル酸メチルとメタク
リル酸ブチルとのモル比70:30の共重合体(数平均分子
量約50,000)を40重量部使用した以外は、実施例1と同
様にして白色不透明で均一なゲル状電解質を得た。この
ゲル状電解質は実施例1と同様の遠心分離処理を施して
も層分離が全く認められなかつた。
Example 3 Example 1 was repeated except that 40 parts by weight of a copolymer of methyl acrylate and butyl methacrylate at a molar ratio of 70:30 (number average molecular weight of about 50,000) was used in place of the copolymer of Example 1. A white opaque and uniform gel electrolyte was obtained in the same manner as in. No layer separation was observed in this gel electrolyte even after the centrifugal separation treatment as in Example 1.

比較例 実施例1の共重合体に代えてポリメタクリル酸メチル
(数平均分子量約20,000)を40重量部使用した以外は、
実施例1と同様にしてゲル状電解質を得た。このゲル状
電解質は無色透明の均一体であつた。
Comparative Example Except that 40 parts by weight of polymethylmethacrylate (number average molecular weight of about 20,000) was used instead of the copolymer of Example 1,
A gel electrolyte was obtained in the same manner as in Example 1. This gel electrolyte was a colorless and transparent uniform body.

以上の実施例および比較例のゲル状電解質について、20
℃におけるイオン伝導度を測定したところ、つぎの第1
表に示す結果が得られた。
For the gel electrolytes of the above Examples and Comparative Examples, 20
When the ionic conductivity at ℃ was measured,
The results shown in the table were obtained.

つぎに、実施例および比較例のゲル状電解質をそれぞれ
100μm厚のポリプロピレン製不織布に約100mg/cm2の割
合で塗布含浸させ、この不織布の両面に直径10mm,厚さ
0.1mmのリチウム金属板を貼り合わせ、両金属板間に100
g,500g,1Kgの圧力を印加してそれぞれ圧力を解いたのち
の1KHzの交流抵抗を測定したところ、次表で示す結果が
得られた。
Next, the gel electrolytes of Examples and Comparative Examples are respectively
A 100 μm thick polypropylene non-woven fabric is coated and impregnated at a rate of about 100 mg / cm 2 , and both sides of this non-woven fabric have a diameter of 10 mm and a thickness of 10 μm.
Laminate a 0.1 mm lithium metal plate and put 100 between both metal plates.
After applying pressures of g, 500 g and 1 Kg and releasing the respective pressures, the AC resistance of 1 KHz was measured, and the results shown in the following table were obtained.

さらに、上記実施例および比較例のゲル状電解質を用い
てつぎの方法によつて第1図で示す構造の薄型リチウム
電池を製作した。
Further, a thin lithium battery having the structure shown in FIG. 1 was manufactured by the following method using the gel electrolytes of the above Examples and Comparative Examples.

まず、ゲル状電解質とTiS2粉末とを重量比1:1で混練
し、この混練物をスクリーン印刷法により一辺15mmの正
方形で厚さ0.1mmのステンレス製平板からなる正極集電
板の表面に、その上に載置したポリプロピレン製の方形
枠体の内側に一杯になるように塗布し、一辺10mmの正方
形で厚さ0.1mmの正極を形成した。この正極上に、厚さ1
00μmのポリプロピレン不織布からなるセパレータ(ポ
リプラスチツク社製の商品名ジユラガード5411)にゲル
状電解質を約100mg/cm2の割合で塗り付けて均一に含浸
させたものを積層し、さらにこのセパレータ上にリチウ
ム−アルミニウム合金製で一辺4mmの正方形箔からなる
厚さ80μmの負極を積層した。
First, the gel electrolyte and TiS 2 powder were kneaded at a weight ratio of 1: 1 and the kneaded product was screen-printed on the surface of a positive electrode current collector plate made of a stainless steel flat plate having a square shape of 15 mm on a side and a thickness of 0.1 mm. Then, it was applied so as to fill the inside of a square frame made of polypropylene placed thereon, and a square having a side of 10 mm and a positive electrode having a thickness of 0.1 mm was formed. On this positive electrode, thickness 1
A separator made of polypropylene non-woven fabric of 00 μm (trade name: JYURAGARD 5411 manufactured by Polyplastics Co., Ltd.) was coated with a gel electrolyte at a rate of about 100 mg / cm 2 and uniformly impregnated, and laminated on the separator. -A negative electrode having a thickness of 80 µm made of a square foil made of an aluminum alloy and having a side of 4 mm was laminated.

つぎに、正極集電板の周辺部上に厚さ60μm,幅2mmの方
形環状シートからなる変性ポリオレフイン形ホツトメル
ト接着剤が載置された状態で一辺15mmの正方形で厚さ0.
1mmの皿形ステンレス製板からなる負極集電板を被冠
し、両集電板の周辺部を圧接下で185℃に加熱して熱融
着封止し、電池総厚0.5mmの薄型リチウム電池を作製し
た。
Next, a modified polyolefin-type hot melt adhesive consisting of a square annular sheet having a thickness of 60 μm and a width of 2 mm was placed on the peripheral portion of the positive electrode current collector plate, and a square having a side of 15 mm and a thickness of 0.
A negative electrode current collector made of a 1 mm dish-shaped stainless steel plate is capped, and the peripheral parts of both current collectors are heated to 185 ° C. under pressure and heat-sealed to form a thin lithium battery with a total thickness of 0.5 mm. A battery was made.

かくして作製した各薄型リチウム電池について、25℃に
おいて200μA定電流放電特性を調べたところ、第2図
に示す結果が得られた。なお、図中の曲線A1は実施例
1、曲線A2は実施例2、曲線A3は実施例3、曲線Bは比
較例のそれぞれゲル状電解質を用いた電池の特性を示
す。
The 200 μA constant current discharge characteristics of each thin lithium battery thus produced were examined at 25 ° C., and the results shown in FIG. 2 were obtained. In the figure, a curve A 1 shows the characteristics of a battery using the gel electrolyte of Example 1, a curve A 2 of Example 2, a curve A 3 of Example 3, and a curve B of Comparative Example.

上記第1表および第2表の結果から、この発明のゲル状
電解質(実施例1〜3)は、従来のゲル状電解質(比較
例)に比べ、イオン伝導性にすぐれており、しかも多孔
性材料に含浸させた場合に該材料に圧力が加わつても外
部へ押し出されにくく内部に充分に保持されてその内部
抵抗の増大が抑えられため、電池製作時に多孔性材料か
らなるセパレータに含浸させた形で添加するのに適して
いることが明らかである。また第2図の結果から、この
発明のゲル状電解質を用いた電池(曲線A1,A2,A3)は、
従来のゲル状電解質を用いた電池(曲線B)よりも放電
特性が良好であることが判る。
From the results shown in Tables 1 and 2 above, the gel electrolytes of the present invention (Examples 1 to 3) were superior in ion conductivity to the conventional gel electrolytes (Comparative Examples) and were porous. When the material is impregnated, even if pressure is applied to the material, it is difficult to be pushed out to the outside and is sufficiently retained inside and the increase in the internal resistance is suppressed, so that the separator made of a porous material is impregnated at the time of manufacturing the battery. It is clear that it is suitable for addition in the form. From the results shown in FIG. 2, the batteries (curves A 1 , A 2 , A 3 ) using the gel electrolyte of the present invention are
It can be seen that the discharge characteristics are better than those of the battery using the conventional gel electrolyte (curve B).

【図面の簡単な説明】[Brief description of drawings]

第1図は薄型リチウム電池の構造例を示す断面図、第2
図は実施例および比較例のゲル状電解質を使用した薄型
リチウム電池の定電流放電特性図である。
FIG. 1 is a sectional view showing a structural example of a thin lithium battery, FIG.
The figure is a constant current discharge characteristic diagram of thin lithium batteries using the gel electrolytes of Examples and Comparative Examples.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウム塩と非水系溶媒とゲル化剤である
高分子ポリマーとからなるリチウムイオン伝導性ゲル状
電解質において、上記高分子ポリマーが上記非水系溶媒
に対する可溶性部分と不溶性部分とを有することを特徴
とするリチウムイオン伝導性ゲル状電解質。
1. A lithium ion conductive gel electrolyte comprising a lithium salt, a non-aqueous solvent and a polymer as a gelling agent, wherein the polymer has a soluble portion and an insoluble portion in the non-aqueous solvent. A lithium ion conductive gel electrolyte characterized by the above.
【請求項2】ゲル化剤である高分子ポリマーが、下記一
般式(I); (R1は水素原子またはメチル基、R2はメチル基またはエ
チル基)で示されるモノマーと、下記一般式(II); (R3は水素原子またはメチル基、R4は炭素数3以上のア
ルキル基)で示されるモノマーとの共重合体である特許
請求の範囲第(1)項記載のリチウムイオン伝導性ゲル
状電解質。
2. A high molecular polymer which is a gelling agent has the following general formula (I): (R 1 is a hydrogen atom or a methyl group, R 2 is a methyl group or an ethyl group), and the following general formula (II); The lithium ion conductive gel electrolyte according to claim 1, which is a copolymer with a monomer represented by (R 3 is a hydrogen atom or a methyl group, and R 4 is an alkyl group having 3 or more carbon atoms). .
JP6277686A 1986-03-19 1986-03-19 Lithium ion conductive gel electrolyte Expired - Lifetime JPH0732022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6277686A JPH0732022B2 (en) 1986-03-19 1986-03-19 Lithium ion conductive gel electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6277686A JPH0732022B2 (en) 1986-03-19 1986-03-19 Lithium ion conductive gel electrolyte

Publications (2)

Publication Number Publication Date
JPS62219468A JPS62219468A (en) 1987-09-26
JPH0732022B2 true JPH0732022B2 (en) 1995-04-10

Family

ID=13210112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6277686A Expired - Lifetime JPH0732022B2 (en) 1986-03-19 1986-03-19 Lithium ion conductive gel electrolyte

Country Status (1)

Country Link
JP (1) JPH0732022B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288470A (en) * 2003-03-20 2004-10-14 Sumitomo Bakelite Co Ltd Lithium ion conductive gelatinous electrolyte

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228221A (en) 1998-11-30 2000-08-15 Sanyo Electric Co Ltd Polymer electrolyte battery and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288470A (en) * 2003-03-20 2004-10-14 Sumitomo Bakelite Co Ltd Lithium ion conductive gelatinous electrolyte

Also Published As

Publication number Publication date
JPS62219468A (en) 1987-09-26

Similar Documents

Publication Publication Date Title
KR20070051706A (en) Gel electrolyte and gel electrolyte battery
KR20020010563A (en) Supercapacitor structure and method of making same
JP4041670B2 (en) Gel electrolyte and non-aqueous electrolyte battery using the same
US8313052B2 (en) Powder mixture for manufacture of a battery electrode, a respective battery electrode and a method for manufacturing same
JPH0732022B2 (en) Lithium ion conductive gel electrolyte
JPS62219469A (en) Lithium battery
JP4132945B2 (en) Nonaqueous electrolyte lithium ion battery and separator therefor
JPS6220262A (en) Thin type lithium battery
JPH08148140A (en) Manufacture of current collector-integrated sheet-like composite positive electrode and manufacture of polymer solid electrolyte battery using the positive electrode
JPH0574195B2 (en)
JP2004247180A (en) Electrode mix, electrode structure using it, and nonaqueous electrochemical element
JPS62254303A (en) Lithium ion conducting polymer electrolyte
CN1142612C (en) Polymer electrolyte film and lithium battery prepared with it
JP2000182600A (en) Lithium battery
KR100199245B1 (en) Solid polymer electrolyte composite
JPS6220263A (en) Thin type lithium battery
JPH0746611B2 (en) Thin lithium battery manufacturing method
JPS6222375A (en) Thin lithium battery
JPS61214374A (en) Thin lithium secondary battery
JPS5856467B2 (en) Battery manufacturing method
JPS6222376A (en) Thin lithium battery
JPS63121247A (en) Negative electrode of secondary battery
US20020122950A1 (en) Polymeric binder for adherent coatings
KR20210040371A (en) Slurry composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, separator for non-aqueous secondary battery, and non-aqueous secondary battery
JP2900426B2 (en) Manufacturing method of electric double layer capacitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term