JP2008204858A - Electrode integrated polymer electrolyte membrane and electrochemical element using the same - Google Patents

Electrode integrated polymer electrolyte membrane and electrochemical element using the same Download PDF

Info

Publication number
JP2008204858A
JP2008204858A JP2007040853A JP2007040853A JP2008204858A JP 2008204858 A JP2008204858 A JP 2008204858A JP 2007040853 A JP2007040853 A JP 2007040853A JP 2007040853 A JP2007040853 A JP 2007040853A JP 2008204858 A JP2008204858 A JP 2008204858A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
precursor
electrode
polymer
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007040853A
Other languages
Japanese (ja)
Inventor
Michio Satsuma
道夫 薩摩
Yutaka Kishii
豊 岸井
Yoshihiro Uetani
慶裕 植谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2007040853A priority Critical patent/JP2008204858A/en
Publication of JP2008204858A publication Critical patent/JP2008204858A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode integrated polymer electrolyte membrane in which a deformation under a high temperature is controlled. <P>SOLUTION: An electrolyte membrane precursor composed of a partially cross-linked polymer containing a structure unit as shown in a formula (1) gets impregnation of electrolyte solution containing an ion species and an oligomer as shown in a formula (2) and is cross-linked while it is pinched between a pair of electrodes and is integrated with electrodes while the precursor serves as an electrolyte membrane and the electrolyte membrane is obtained. In the formula (1), R<SB>1</SB>is for H or CH<SB>3</SB>, R<SB>2</SB>for CH<SB>3</SB>or C<SB>2</SB>H<SB>6</SB>and n for a natural number of 2-12. In the formula (2), R<SB>3</SB>is for CH<SB>3</SB>, C<SB>2</SB>H<SB>6</SB>or C<SB>3</SB>H<SB>8</SB>, R<SB>4</SB>for H or CH<SB>3</SB>and m for a natural number of 3-12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高分子電解質膜と電極とが一体化された電極一体型高分子電解質膜と、これを用いた電気化学素子に関する。   The present invention relates to an electrode-integrated polymer electrolyte membrane in which a polymer electrolyte membrane and an electrode are integrated, and an electrochemical device using the same.

固体状態でイオン伝導性を示す物質を固体電解質という。特に、高分子(ポリマー)をベースとする高分子固体電解質(高分子電解質)は、柔軟性および屈曲性に優れるというポリマー由来の特性に基づき、形状加工の自由度および電極との密着性に優れるなどの特長を有することから、近年、リチウム二次電池などの電気化学素子(以下、単に「素子」ともいう)に用いる次世代の電解質として注目されている。   A substance that exhibits ionic conductivity in a solid state is called a solid electrolyte. In particular, a polymer solid electrolyte (polymer electrolyte) based on a polymer (polymer) is excellent in flexibility of shape processing and adhesion to an electrode based on a property derived from a polymer having excellent flexibility and flexibility. In recent years, it has attracted attention as a next-generation electrolyte for use in electrochemical devices (hereinafter also simply referred to as “devices”) such as lithium secondary batteries.

高分子電解質を用いた素子は、一般的な電解質溶液(例えば、イオン種としてリチウム塩などの電解質塩を非水溶媒に溶解させた溶液)を用いた素子に比べて、液漏れなどの心配がなく、安全性に優れている。また、膜状の高分子電解質(高分子電解質膜)とすることにより、素子形状の自由度を高くすることができ、情報・携帯機器に用いる電源への応用が期待される。高分子電解質膜を電気化学素子に用いる場合、当該素子は、通常、高分子電解質膜を一対の電極(正極および負極)により狭持した構造を有する。   Devices using polymer electrolytes are more susceptible to liquid leakage than devices using general electrolyte solutions (for example, solutions in which electrolyte salts such as lithium salts as ionic species are dissolved in a non-aqueous solvent). There is no safety. Further, by using a membrane-shaped polymer electrolyte (polymer electrolyte membrane), the degree of freedom of the element shape can be increased, and application to a power source used for information and portable devices is expected. When a polymer electrolyte membrane is used for an electrochemical device, the device usually has a structure in which the polymer electrolyte membrane is held between a pair of electrodes (a positive electrode and a negative electrode).

また、高分子電解質のベースとなるポリマー(ベースポリマー)として、従来、ポリエチレンオキシド、ポリプロピレンオキシドなどのアルキレンオキシド基を側鎖に有するポリマーが数多く検討されている(例えば、特許文献1に記載)。特許文献1に記載のポリマーは、プロピレンオキシド基を側鎖に有する構造単位を含むポリエーテル共重合体である。
特開平10−204172号公報
In addition, as a polymer (base polymer) serving as a base of a polyelectrolyte, many polymers having an alkylene oxide group such as polyethylene oxide and polypropylene oxide in the side chain have been studied (for example, described in Patent Document 1). The polymer described in Patent Document 1 is a polyether copolymer containing a structural unit having a propylene oxide group in the side chain.
JP-A-10-204172

特許文献1に記載のポリマーなどの従来のベースポリマーと、イオン種とを複合化して電解質膜とし、当該電解質膜を一対の電極により狭持して電気化学素子を構成した場合、異常発熱時など、素子が高温雰囲気となった場合に電解質膜が変形する、典型的には収縮する、ことがある。電解質膜が変形すると素子としての機能が失われる他、その程度があまりにも酷くなると、最悪の場合、電極間の短絡にもつながりかねない。   When a conventional base polymer such as the polymer described in Patent Document 1 is combined with an ionic species to form an electrolyte membrane, and the electrochemical membrane is sandwiched between a pair of electrodes to form an electrochemical device, abnormal heat generation, etc. When the element is in a high temperature atmosphere, the electrolyte membrane may be deformed, typically contracted. If the electrolyte membrane is deformed, the function as an element is lost, and if the degree becomes too severe, in the worst case, it may lead to a short circuit between the electrodes.

そこで本発明は、高温下(例えば、100℃以上)での電解質膜の変形が抑制され、仮に高温雰囲気となった場合にも、従来の素子よりも機能を長く保持できる素子を実現可能な、電解質膜と電極とが一体化された高分子電解質膜(電極一体型高分子電解質膜)の提供を目的とする。   Therefore, the present invention is capable of realizing an element capable of holding the function longer than that of the conventional element even when the deformation of the electrolyte membrane under high temperature (for example, 100 ° C. or more) is suppressed and the atmosphere becomes a high temperature atmosphere. An object is to provide a polymer electrolyte membrane (electrode-integrated polymer electrolyte membrane) in which an electrolyte membrane and an electrode are integrated.

本発明の電極一体型高分子電解質膜は、アルキレンオキシド基を側鎖に有する以下の化学式(1)に示す第1の構造単位を含む部分架橋ポリマーからなる膜状の電解質膜前駆体を、イオン種と以下の化学式(2)に示すアルキレンオキシドオリゴマーとを含む電解液を含浸させ、かつ、一対の電極により狭持した状態で、さらに架橋させることにより、前記前駆体を電解質膜とするとともに前記一対の電極と一体化させて得た電解質膜である。   The electrode-integrated polymer electrolyte membrane of the present invention comprises a membrane-like electrolyte membrane precursor made of a partially crosslinked polymer containing an alkylene oxide group in the side chain and containing a first structural unit represented by the following chemical formula (1). The precursor is made into an electrolyte membrane by impregnating an electrolyte solution containing a seed and an alkylene oxide oligomer represented by the following chemical formula (2) and further cross-linking in a state of being sandwiched by a pair of electrodes. It is an electrolyte membrane obtained by integrating with a pair of electrodes.

Figure 2008204858
Figure 2008204858

Figure 2008204858
Figure 2008204858

上記式(1)において、R1は、HまたはCH3であり、R2は、CH3またはC26であり、nは、2以上12以下の自然数である。上記式(2)において、R3は、CH3、C26またはC38であり、R4は、HまたはCH3であり、mは、3以上12以下の自然数である。 In the above formula (1), R 1 is H or CH 3 , R 2 is CH 3 or C 2 H 6 , and n is a natural number of 2 or more and 12 or less. In the above formula (2), R 3 is CH 3 , C 2 H 6 or C 3 H 8 , R 4 is H or CH 3 , and m is a natural number of 3 or more and 12 or less.

本発明の電気化学素子は、一対の電極と、前記一対の電極によって狭持された電解質膜とを含む電気化学素子であって、前記一対の電極および電解質膜として、上記本発明の電極一体型高分子電解質膜を備える。   The electrochemical element of the present invention is an electrochemical element including a pair of electrodes and an electrolyte membrane sandwiched between the pair of electrodes, and the electrode integrated type of the present invention is used as the pair of electrodes and the electrolyte membrane. A polymer electrolyte membrane is provided.

本発明の電極一体型高分子電解質膜によれば、高温下での電解質膜の変形を抑制でき、仮に高温雰囲気となった場合にも、従来の素子よりも機能を長く保持できる電気化学素子を実現できる。   According to the electrode-integrated polymer electrolyte membrane of the present invention, an electrochemical device that can suppress deformation of the electrolyte membrane at a high temperature and can maintain a longer function than a conventional device even in a high temperature atmosphere. realizable.

(電解質膜前駆体)
本発明の電極一体型高分子電解質膜は、以下の化学式(1)に示す第1の構造単位を含む部分架橋ポリマーからなる膜状の電解質膜前駆体から形成される。式(1)において、R1は、HまたはCH3であり、R2は、CH3またはC26であり、nは、2以上12以下の自然数である。
(Electrolyte membrane precursor)
The electrode-integrated polymer electrolyte membrane of the present invention is formed from a membrane-shaped electrolyte membrane precursor made of a partially crosslinked polymer containing a first structural unit represented by the following chemical formula (1). In Formula (1), R 1 is H or CH 3 , R 2 is CH 3 or C 2 H 6 , and n is a natural number of 2 or more and 12 or less.

Figure 2008204858
Figure 2008204858

上記式(1)により示される第1の構造単位は、アルキレンオキシド基をその側鎖に有する。このような構造単位は、アルキレンオキシド基を側鎖に有する、以下の化学式(4)に示す(メタ)アクリル酸エステルモノマーの重合により形成できる。式(4)において、R1は、HまたはCH3であり、R2は、CH3またはC26であり、nは、2以上12以下の自然数である。 The first structural unit represented by the above formula (1) has an alkylene oxide group in its side chain. Such a structural unit can be formed by polymerization of a (meth) acrylic acid ester monomer represented by the following chemical formula (4) having an alkylene oxide group in the side chain. In Formula (4), R 1 is H or CH 3 , R 2 is CH 3 or C 2 H 6 , and n is a natural number of 2 or more and 12 or less.

Figure 2008204858
Figure 2008204858

なお、本明細書における「(メタ)アクリル酸」の表記は、アクリル酸(R1=H)またはメタクリル酸(R1=CH3)を意味している。「(メタ)アクリレート」についても同様に、アクリレートまたはメタクリレートを意味する。 In addition, the notation of “(meth) acrylic acid” in the present specification means acrylic acid (R 1 = H) or methacrylic acid (R 1 = CH 3 ). Similarly, “(meth) acrylate” means acrylate or methacrylate.

電解質膜前駆体は、第1の構造単位を含む部分架橋ポリマーからなる。この部分架橋ポリマーは、当該前駆体に電解液を含浸させ、かつ、当該前駆体を一対の電極により狭持した状態で行われるさらなる架橋(以下、この架橋を「二次架橋」ともいう)により、本発明の電解質膜のベースポリマーとなる。なお、「部分架橋ポリマー」とは、内部に架橋構造を有しながら、架橋剤などによるさらなる架橋が可能であるポリマーをいう。   The electrolyte membrane precursor is made of a partially crosslinked polymer including the first structural unit. This partially crosslinked polymer is obtained by further crosslinking (hereinafter, this crosslinking is also referred to as “secondary crosslinking”) performed in a state where the precursor is impregnated with an electrolytic solution and the precursor is held between a pair of electrodes. The base polymer of the electrolyte membrane of the present invention. The “partially crosslinked polymer” refers to a polymer that has a crosslinked structure inside and can be further crosslinked by a crosslinking agent or the like.

電解質膜前駆体のゲル分率(酢酸エチルに不溶な部分の重量から求めたゲル分率)は特に限定されないが、通常、10%を超えればよく、より高いイオン伝導率を有する電解質膜を形成でき、二次架橋時における電極との一体化をより確実に行える(即ち、高温下での電解質膜の変形をより抑制できる)ことから、20%以上が好ましく、40%以上がより好ましい。上記ゲル分率の上限は第1の構造単位の具体的な構成により異なるが、通常、50から95%程度である。   The gel fraction of the electrolyte membrane precursor (the gel fraction determined from the weight of the portion insoluble in ethyl acetate) is not particularly limited, but it usually only needs to exceed 10% to form an electrolyte membrane having higher ionic conductivity. 20% or more is preferable, and 40% or more is more preferable because integration with the electrode at the time of secondary crosslinking can be performed more reliably (that is, deformation of the electrolyte membrane under high temperature can be further suppressed). The upper limit of the gel fraction varies depending on the specific structure of the first structural unit, but is usually about 50 to 95%.

電解質膜前駆体を酢酸エチルに含浸させたときの膨潤率は2倍以上であることが好ましい。膨潤率が2倍未満では、電解質膜としてのイオン伝導率が不十分となることがある。   The swelling ratio when the electrolyte membrane precursor is impregnated with ethyl acetate is preferably 2 times or more. When the swelling rate is less than twice, the ionic conductivity as the electrolyte membrane may be insufficient.

前駆体の膨潤率が、二次架橋により形成された電解質膜のイオン伝導率に影響を与える理由は明確ではないが、膨潤率が過度に低い前駆体では、当該前駆体に含浸される電解液の量が不十分となることがある他、イオン伝導に寄与すると考えられる、第1の構造単位における側鎖の運動が阻害されるようなポリマー構造が形成されている可能性がある。   The reason why the swelling rate of the precursor affects the ionic conductivity of the electrolyte membrane formed by secondary crosslinking is not clear, but in the case of a precursor with an excessively low swelling rate, the electrolyte solution impregnated in the precursor In some cases, the polymer structure may be formed such that side chain movement in the first structural unit is inhibited, which is considered to contribute to ionic conduction.

上記膨潤率は、より高いイオン伝導率を有する電解質膜を形成できることから、5倍以上、15倍以上の順に、より好ましい。ただし、前駆体の膨潤率が高いことが、二次架橋により形成された電解質膜のイオン伝導率の向上に直ちに繋がるわけではなく、電解質膜のイオン伝導率は、上記ゲル分率、前駆体に含浸させる電解液の成分など、その他の要素にも大きな影響を受ける。   The swelling rate is more preferable in the order of 5 times or more and 15 times or more because an electrolyte membrane having higher ionic conductivity can be formed. However, a high swelling rate of the precursor does not immediately lead to an improvement in the ionic conductivity of the electrolyte membrane formed by secondary cross-linking, and the ionic conductivity of the electrolyte membrane depends on the gel fraction and the precursor. Other factors such as the components of the electrolyte to be impregnated are also greatly affected.

上記膨潤率の上限は第1の構造単位の具体的な構成により異なるが、通常、5〜100倍程度である。   The upper limit of the swelling rate varies depending on the specific structure of the first structural unit, but is usually about 5 to 100 times.

第1の構造単位における上記nの値は2以上12以下の自然数である。nの値が2未満では、イオン伝導に寄与すると考えられる側鎖の長さが過度に短くなり、電解質膜としてのイオン伝導率が不十分となる。nの値が12を超えると、側鎖の長さが長くなることで結晶化が進みやすくなり、電解質膜としての柔軟性が損なわれる他、二次架橋による電極との一体化が難しくなる。   The value of n in the first structural unit is a natural number of 2 or more and 12 or less. When the value of n is less than 2, the length of the side chain considered to contribute to ionic conduction becomes excessively short, and the ionic conductivity as an electrolyte membrane becomes insufficient. When the value of n exceeds 12, crystallization is facilitated by increasing the length of the side chain, the flexibility as the electrolyte membrane is impaired, and integration with the electrode by secondary crosslinking becomes difficult.

上記nの値は、前駆体を二次架橋させて電解質膜としても、基本的に変化しない。   The value of n is basically unchanged even when the precursor is subjected to secondary crosslinking to form an electrolyte membrane.

上記nの値は、前駆体あるいは電解質膜を加水分解した後に、GPC(ゲル透過クロマトグラフ)測定および/またはNMR(核磁気共鳴)測定を行うことなどにより求めることができるが、前駆体あるいは電解質膜に含まれる複数の第1の構造単位間のバラツキを反映し平均値として測定されるため、上記nの測定値は必ずしも自然数とはならない。   The value of n can be determined by performing GPC (gel permeation chromatography) measurement and / or NMR (nuclear magnetic resonance) measurement after the precursor or electrolyte membrane is hydrolyzed. The measurement value of n is not necessarily a natural number because it is measured as an average value reflecting the variation among the plurality of first structural units included in the film.

上記nの値は、電解質膜としてより高いイオン伝導率を確保できることから、3以上11以下の自然数であることが好ましく、7以上11以下の自然数であることが好ましい。   The value of n is preferably a natural number of 3 or more and 11 or less, and preferably a natural number of 7 or more and 11 or less, because higher ionic conductivity can be secured for the electrolyte membrane.

電解質膜前駆体は、例えば、上記式(4)に示す(メタ)アクリルエステル酸モノマーと、架橋点を形成しうる官能性モノマーとを含むモノマー群を、重合および架橋して形成できる。なお、本明細書では、上記式(4)に示す(メタ)アクリルエステル酸モノマーを含むモノマー群から部分架橋ポリマーを形成する際に行われる上記架橋を、上述した「二次架橋」に対して「一次架橋」と呼ぶ。一次架橋時の架橋反応と、二次架橋時の架橋反応とは同一であっても異なっていてもよく、また、各々の架橋は、複数の架橋反応に基づくものであってもよい。架橋点を形成しうる官能性モノマーは「架橋剤」であるともいえ、本明細書では、一次架橋時にモノマー群に加えられる上記官能性モノマーを「第1の架橋剤」とも呼ぶ。   The electrolyte membrane precursor can be formed, for example, by polymerizing and crosslinking a monomer group including a (meth) acrylic acid monomer represented by the above formula (4) and a functional monomer capable of forming a crosslinking point. In addition, in this specification, the said bridge | crosslinking performed when forming a partially crosslinked polymer from the monomer group containing the (meth) acrylic-ester acid monomer shown to said Formula (4) with respect to "secondary bridge | crosslinking" mentioned above. Called “primary crosslinking”. The crosslinking reaction at the time of primary crosslinking and the crosslinking reaction at the time of secondary crosslinking may be the same or different, and each crosslinking may be based on a plurality of crosslinking reactions. Although the functional monomer capable of forming a crosslinking point is a “crosslinking agent”, in the present specification, the functional monomer added to the monomer group at the time of primary crosslinking is also referred to as a “first crosslinking agent”.

上記官能性モノマーは、上記式(4)に示す(メタ)アクリルエステル酸モノマーと共重合できるとともに、この共重合に際して架橋点を形成しうる分子構造を有する限り特に限定されず、例えば、カルボキシル基含有モノマー、ヒドロキシル基(水酸基)含有モノマーなどであってもよい。   The functional monomer is not particularly limited as long as it has a molecular structure that can be copolymerized with the (meth) acrylic acid monomer represented by the above formula (4) and can form a crosslinking point during the copolymerization. It may be a containing monomer, a hydroxyl group (hydroxyl group) containing monomer, or the like.

カルボキシル基含有モノマーとしては、例えば、(メタ)アクリル酸、カルボキシル(メタ)アクリレート、マレイン酸、イタコン酸、クロトン酸などが挙げられ、当該モノマーは、無水マレイン酸、無水イタコン酸などの酸無水物であってもよい。   Examples of the carboxyl group-containing monomer include (meth) acrylic acid, carboxyl (meth) acrylate, maleic acid, itaconic acid, crotonic acid and the like, and the monomer includes acid anhydrides such as maleic anhydride and itaconic anhydride. It may be.

ヒドロキシル基含有モノマーとしては、例えば、(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−3−ヒドロキシプロピル、(メタ)アクリル酸−4−ヒドロキシブチル、(メタ)アクリル酸−6−ヒドロキシヘキシル、(メタ)アクリル酸−8−ヒドロキシオクチル、(メタ)アクリル酸−10−ヒドロキシデシル、(メタ)アクリル酸−12−ヒドロキシラウリル、(4−ヒドロキシメチルシクロヘキシル)−メチルアクリレートなどが挙げられる。   Examples of the hydroxyl group-containing monomer include (meth) acrylic acid-2-hydroxyethyl, (meth) acrylic acid-3-hydroxypropyl, (meth) acrylic acid-4-hydroxybutyl, and (meth) acrylic acid-6- Examples include hydroxyhexyl, (meth) acrylic acid-8-hydroxyoctyl, (meth) acrylic acid-10-hydroxydecyl, (meth) acrylic acid-12-hydroxylauryl, (4-hydroxymethylcyclohexyl) -methyl acrylate, and the like. .

一次架橋時のモノマー群に含まれる官能性モノマーの量は特に限定されないが、例えば、当該官能性モノマー以外の全モノマー100重量部に対して0.01〜20重量部程度であり、0.05〜5重量部程度が好ましい。   The amount of the functional monomer contained in the monomer group at the time of primary crosslinking is not particularly limited, and is, for example, about 0.01 to 20 parts by weight with respect to 100 parts by weight of all monomers other than the functional monomer, and 0.05 About 5 parts by weight is preferable.

また、この官能性モノマーは、二次架橋時の架橋反応に利用することも可能であり、このような二次架橋における利用を考慮すると、一次架橋時のモノマー群に含まれる官能性モノマーの量は、当該官能性モノマー以外の全モノマー100重量部に対して、例えば、0.05〜40重量部程度であり、0.1〜10重量部程度が好ましい。   In addition, this functional monomer can also be used for a crosslinking reaction at the time of secondary crosslinking, and considering the utilization at such secondary crosslinking, the amount of the functional monomer contained in the monomer group at the time of primary crosslinking Is, for example, about 0.05 to 40 parts by weight and preferably about 0.1 to 10 parts by weight with respect to 100 parts by weight of all monomers other than the functional monomer.

モノマー群から部分架橋ポリマーを形成する重合および架橋方法は特に限定されず、酢酸エチルあるいはトルエンなどの一般的な重合溶媒を用いた溶液重合、および、紫外線を利用したUV重合などの各種の重合方法を用いることができる。   The polymerization and the crosslinking method for forming the partially crosslinked polymer from the monomer group are not particularly limited, and various polymerization methods such as solution polymerization using a general polymerization solvent such as ethyl acetate or toluene, and UV polymerization using ultraviolet rays. Can be used.

溶液重合としては、過酸化ベンゾイルや2,2’−アゾビスイソブチロニトリル(AIBN)などの重合開始剤を用いたラジカル重合が一般的である。その他、二酸化炭素の高圧液相中あるいは超臨界状態下における重合方法としてもよく、この方法では、モノマー群が官能性モノマーとして2官能性モノマーを含む場合においても、一次架橋の過剰な進行を抑制し、形成した部分架橋ポリマーのゲル分率が過度に大きくなったり、膨潤率が過度に小さくなったりすることを抑制できる。   As the solution polymerization, radical polymerization using a polymerization initiator such as benzoyl peroxide or 2,2'-azobisisobutyronitrile (AIBN) is generally used. In addition, it may be a polymerization method in a high-pressure liquid phase of carbon dioxide or in a supercritical state. In this method, even when the monomer group includes a bifunctional monomer as a functional monomer, excessive progress of primary crosslinking is suppressed. And it can suppress that the gel fraction of the formed partially crosslinked polymer becomes large too much, or swelling rate becomes too small.

UV重合方法、例えば、ジビニルベンゼンあるいはトリメチロールプロパン−トリ(メタ)アクリレートなどの官能性モノマーをモノマー群に加えて薄層状態とし、紫外線の照射により重合を進める方法、では、当該重合により、膜状の部分架橋ポリマーを直接形成できる。また、この方法は、モノマー群が官能性モノマーとして2官能性モノマーを含む場合においても、重合の進行が阻害されにくいなどの特徴を有する。   In the UV polymerization method, for example, a method in which a functional monomer such as divinylbenzene or trimethylolpropane-tri (meth) acrylate is added to the monomer group to form a thin layer and the polymerization proceeds by irradiation with ultraviolet rays, The partially crosslinked polymer can be directly formed. In addition, this method has such a feature that the progress of polymerization is hardly inhibited even when the monomer group includes a bifunctional monomer as a functional monomer.

重合により形成した部分架橋ポリマーが溶液状である場合、当該ポリマーを成形して膜状とする方法は特に限定されず、例えば、表面に剥離処理を施した支持フィルムに溶液状の部分架橋ポリマーを塗布した後に、塗布したポリマーを乾燥(必要により硬化)させればよい。支持フィルムには、例えば、シリコーンなどで剥離処理した紙、あるいは、ポリエチレン、ポリエチレンテレフタレート(PET)などの樹脂フィルムを好適に用いることができる。   When the partially crosslinked polymer formed by polymerization is in the form of a solution, the method for forming the polymer into a film is not particularly limited. For example, the solution-like partially crosslinked polymer is applied to a support film having a surface subjected to a peeling treatment. After the application, the applied polymer may be dried (if necessary). For the support film, for example, paper peeled with silicone or the like, or a resin film such as polyethylene or polyethylene terephthalate (PET) can be suitably used.

重合により形成した部分架橋ポリマーに対しては、必要に応じ、膜状の部分架橋ポリマーとするための架橋をさらに行ってもよい。具体的には、例えば、形成したポリマー溶液に架橋剤(第3の架橋剤)を加え、第3の架橋剤を加えたポリマー溶液を、当該架橋剤による架橋反応が起きる所定の条件下において架橋を進めればよい。なお、この架橋は、膜状の部分架橋ポリマーを得るための「一次架橋」の一部であり、「二次架橋」ではない。   If necessary, the partially crosslinked polymer formed by polymerization may be further crosslinked to form a film-like partially crosslinked polymer. Specifically, for example, a crosslinking agent (third crosslinking agent) is added to the formed polymer solution, and the polymer solution to which the third crosslinking agent is added is crosslinked under a predetermined condition in which a crosslinking reaction is caused by the crosslinking agent. You can proceed. This crosslinking is a part of “primary crosslinking” for obtaining a film-like partially crosslinked polymer, not “secondary crosslinking”.

重合により形成した部分架橋ポリマーが溶液状である場合、当該ポリマーの分子量は、膜状への成形のし易さ、および、膜状とする際の取り扱いの容易さから、重量平均分子量にして10万以上が好ましい。部分架橋ポリマーの分子量は、重合系を選択することにより制御できる。   When the partially crosslinked polymer formed by polymerization is in the form of a solution, the molecular weight of the polymer is 10 in terms of a weight average molecular weight from the viewpoint of ease of forming into a film and easy handling when forming into a film. 10,000 or more are preferable. The molecular weight of the partially crosslinked polymer can be controlled by selecting a polymerization system.

上記式(4)に示す(メタ)アクリルエステル酸モノマーと、架橋点を形成しうる官能性モノマーとを含むモノマー群を重合および架橋して得た部分架橋ポリマーは、双方のモノマーの共重合体であるともいえ、第1の構造単位と、上記官能性モノマーに対応する構造単位とを含む。   A partially crosslinked polymer obtained by polymerizing and crosslinking a monomer group containing a (meth) acrylic acid monomer represented by the above formula (4) and a functional monomer capable of forming a crosslinking point is a copolymer of both monomers. Although it is, it includes a first structural unit and a structural unit corresponding to the functional monomer.

このように、電解質膜前駆体を構成する部分架橋ポリマーは、第1の構造単位以外の構造単位を含んでいてもよい。この場合、上記部分架橋ポリマーは、上記式(4)に示す(メタ)アクリルエステル酸モノマーと、第1の構造単位以外の構造単位に対応する他のモノマー(共重合モノマー)との共重合体であり、このような部分架橋ポリマーは、上記式(4)に示す(メタ)アクリルエステル酸モノマーと、第1の構造単位以外の構造単位に対応する他のモノマーとを含むモノマー群の重合により形成できる。   Thus, the partially crosslinked polymer constituting the electrolyte membrane precursor may contain a structural unit other than the first structural unit. In this case, the partially crosslinked polymer is a copolymer of a (meth) acrylic acid monomer represented by the above formula (4) and another monomer (copolymerization monomer) corresponding to a structural unit other than the first structural unit. Such a partially crosslinked polymer is obtained by polymerization of a monomer group including the (meth) acrylic acid monomer represented by the above formula (4) and another monomer corresponding to a structural unit other than the first structural unit. Can be formed.

具体的には、例えば、部分架橋ポリマーが、前駆体に含浸させる電解液に含まれるイオン種、典型的にはリチウムイオン、の存在下で架橋反応を起こす第2の構造単位をさらに含んでいてもよい。この場合、二次架橋の際に、部分架橋ポリマー内における第2の構造単位を架橋点とする架橋反応を進行させることができる。なお、この場合、部分架橋ポリマーは、上記式(4)に示す(メタ)アクリルエステル酸モノマーと、第2の構造単位に対応するモノマーとを含むモノマー群の共重合体となる。   Specifically, for example, the partially crosslinked polymer further includes a second structural unit that causes a crosslinking reaction in the presence of an ionic species, typically lithium ions, contained in the electrolyte solution impregnated in the precursor. Also good. In this case, at the time of secondary crosslinking, a crosslinking reaction having the second structural unit in the partially crosslinked polymer as a crosslinking point can proceed. In this case, the partially crosslinked polymer is a copolymer of a monomer group including a (meth) acrylic acid monomer represented by the above formula (4) and a monomer corresponding to the second structural unit.

第2の構造単位としては、例えば、オキセタン基を側鎖に有する構造単位が挙げられ、具体的には、以下の化学式(3)に示す構造単位であってもよい。以下の式(3)におけるR5は、HまたはCH3である。 Examples of the second structural unit include a structural unit having an oxetane group in the side chain. Specifically, the second structural unit may be a structural unit represented by the following chemical formula (3). R 5 in the following formula (3) is H or CH 3 .

Figure 2008204858
Figure 2008204858

上記式(3)に示す構造単位は、以下の化学式(5)に示す、オキセタン基を側鎖に有する(メタ)アクリレートモノマーである、3−メチル−3−オキセタニルメチル(メタ)アクリレートの重合により形成できる。以下の式(5)におけるR5は、HまたはCH3である。 The structural unit represented by the above formula (3) is obtained by polymerization of 3-methyl-3-oxetanylmethyl (meth) acrylate, which is a (meth) acrylate monomer having an oxetane group in the side chain, represented by the following chemical formula (5). Can be formed. R 5 in the following formula (5) is H or CH 3 .

Figure 2008204858
Figure 2008204858

部分架橋ポリマーが上記第2の構造単位を含む場合、当該ポリマーにおける全構造単位に占める第2の構造単位の割合は特に限定されないが、例えば、2〜50%程度の範囲である。   When the partially crosslinked polymer includes the second structural unit, the ratio of the second structural unit to the total structural units in the polymer is not particularly limited, but is, for example, in the range of about 2 to 50%.

上記第2の構造単位を含む部分架橋ポリマーは、上記式(4)に示す(メタ)アクリルエステル酸モノマーと、上記式(5)に示す(メタ)アクリレートモノマーとを含むモノマー群の重合により形成できるが、当該モノマー群が、3,4−エポキシシクロヘキシル(メタ)アクリレートなどのエポキシ基含有モノマー、あるいは、脂環式エポキシ化合物を含むことが好ましい。これらの物質は、上記(メタ)アクリルエステル酸モノマーおよび(メタ)アクリレートモノマーとともに共重合した状態、あるいは、単独の状態で部分架橋ポリマー内に存在し、イオン種の存在下における当該ポリマーの二次架橋反応性を向上させる効果を有する。   The partially crosslinked polymer containing the second structural unit is formed by polymerization of a monomer group including a (meth) acrylic acid monomer represented by the above formula (4) and a (meth) acrylate monomer represented by the above formula (5). However, the monomer group preferably contains an epoxy group-containing monomer such as 3,4-epoxycyclohexyl (meth) acrylate or an alicyclic epoxy compound. These substances are present in the partially crosslinked polymer in a state of being copolymerized together with the (meth) acrylic ester acid monomer and the (meth) acrylate monomer, or in a single state, and the secondary of the polymer in the presence of an ionic species. It has the effect of improving the crosslinking reactivity.

また例えば、部分架橋ポリマーが、第1の構造単位以外の構造単位として、以下に示す各モノマーの重合により形成された構造単位を1種類あるいは2種類以上含んでいてもよい:(メタ)アクリル酸アルキルエステル−その分子構造は、直鎖状であっても分岐を有していてもよく、環状構造を含んでいてもよい。アルキル基の炭素数は、1〜18程度が好ましい。例えば、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート;ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート;N−メチロール(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミドなどのアクリルアミド類;(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、アクリロイルモルホリンなどに代表されるN−置換(メタ)アクリルアミドなどのアミド系モノマー;ジアミノエチル(メタ)アクリレートなどのアミノ基含有モノマー;酢酸ビニルおよびスチレンならびにこれらの誘導体;ビニレンカーボネート、N−ビニルピロリドン、N−ビニルカルボン酸アミド類などのビニル系モノマー;アクリロニトリル、メタクリロニトリルなどのシアノアクリレート系モノマー;テトラヒドロフルフリル(メタ)アクリレート、フッ素化アルキル(メタ)アクリレート、アルコキシアルキル(メタ)アクリレートなどの各種のモノマー類。   Further, for example, the partially crosslinked polymer may contain one or more structural units formed by polymerization of the following monomers as structural units other than the first structural unit: (meth) acrylic acid Alkyl ester—The molecular structure may be linear or branched, and may contain a cyclic structure. As for carbon number of an alkyl group, about 1-18 are preferable. For example, methyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octadecyl (meth) acrylate, isobornyl (meth) acrylate; polyester (meth) acrylate, urethane (meth) acrylate; N-methylol ( Acrylamides such as (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide; N-substituted (meta) typified by (meth) acrylamide, N, N-dimethylacrylamide, acryloylmorpholine, etc. ) Amide monomers such as acrylamide; Amino group-containing monomers such as diaminoethyl (meth) acrylate; Vinyl acetate and styrene and their derivatives; Vinylene carbonate, N-bivinyl Vinyl monomers such as lupyrrolidone and N-vinylcarboxylic acid amides; Cyanoacrylate monomers such as acrylonitrile and methacrylonitrile; Tetrahydrofurfuryl (meth) acrylate, fluorinated alkyl (meth) acrylate, alkoxyalkyl (meth) acrylate Various monomers such as

部分架橋ポリマーがこれらの構造単位を含む場合、その種類によっては、当該ポリマーの力学的および/または熱的特性を制御できる他、当該ポリマーと、当該ポリマーに含浸させる電解液に含まれるアルキレンオキシドオリゴマーとの親和性を向上できる。   When the partially crosslinked polymer contains these structural units, depending on the type, the mechanical and / or thermal properties of the polymer can be controlled, and the polymer and an alkylene oxide oligomer contained in the electrolyte impregnated in the polymer The affinity with can be improved.

(二次架橋)
本発明の電極一体型高分子電解質膜は、電解質膜前駆体を、イオン種と以下の化学式(2)に示すアルキレンオキシドオリゴマーとを含む電解液を含浸させた状態、かつ、一対の電極により狭持した状態で、さらに架橋(二次架橋)させることにより、前駆体を電解質膜とするとともに、当該前駆体を上記一対の電極と一体化させて得た電解質膜である。
(Secondary cross-linking)
The electrode-integrated polymer electrolyte membrane of the present invention has a state in which an electrolyte membrane precursor is impregnated with an electrolytic solution containing an ionic species and an alkylene oxide oligomer represented by the following chemical formula (2), and is narrowed by a pair of electrodes. The electrolyte membrane is obtained by further cross-linking (secondary cross-linking) in a held state, thereby making the precursor an electrolyte membrane and integrating the precursor with the pair of electrodes.

Figure 2008204858
Figure 2008204858

上記式(2)において、R3は、CH3、C26またはC38であり、R4は、HまたはCH3であり、mは、3以上12以下の自然数である。 In the above formula (2), R 3 is CH 3 , C 2 H 6 or C 3 H 8 , R 4 is H or CH 3 , and m is a natural number of 3 or more and 12 or less.

この二次架橋により、電解質膜前駆体に電解液が含浸して電解質膜となるとともに、当該電解質膜と電極とが接合されて、電極が一体化した高分子電解質膜となる。このような電解質膜は、従来の電解質膜に比べて高温下での変形、典型的には収縮、を抑制でき、また、このような電解質膜を備える電気化学素子は、仮に素子が高温雰囲気となった場合にも、従来の素子よりもその機能を長く保持できる。   By this secondary crosslinking, the electrolyte membrane precursor is impregnated with the electrolytic solution to become an electrolyte membrane, and the electrolyte membrane and the electrode are joined to form a polymer electrolyte membrane in which the electrodes are integrated. Such an electrolyte membrane can suppress deformation, typically shrinkage, at a higher temperature than conventional electrolyte membranes, and an electrochemical device including such an electrolyte membrane is supposed to have a high-temperature atmosphere. Even in such a case, the function can be maintained longer than that of the conventional element.

前駆体を二次架橋させる方法は特に限定されず、例えば、架橋剤(第2の架橋剤)をさらに含む電解液を前駆体に含浸させ、電解液を含浸させた当該前駆体を、上記架橋剤を架橋点とする架橋反応が起こる条件下におけばよい。   The method for secondary crosslinking of the precursor is not particularly limited. For example, the precursor is impregnated with an electrolytic solution further containing a crosslinking agent (second crosslinking agent), and the precursor impregnated with the electrolytic solution is cross-linked with the precursor. What is necessary is just to carry out on the conditions where the crosslinking reaction which makes an agent a crosslinking point occurs.

第2の架橋剤は、部分架橋ポリマーをさらに架橋させることができる限り特に限定されないが、例えば、部分架橋ポリマーが当該ポリマー中にヒドロキシル基を有する場合には多官能性イソシアネート化合物を、また、部分架橋ポリマーが当該ポリマー中にカルボキシル基を有する場合には多官能性エポキシ化合物を用いることが好ましい。この場合、二次架橋時の架橋反応の反応性を向上できる。   The second crosslinking agent is not particularly limited as long as the partially crosslinked polymer can be further crosslinked. For example, when the partially crosslinked polymer has a hydroxyl group in the polymer, a multifunctional isocyanate compound is used. When the crosslinked polymer has a carboxyl group in the polymer, it is preferable to use a polyfunctional epoxy compound. In this case, the reactivity of the crosslinking reaction at the time of secondary crosslinking can be improved.

多官能性イソシアネート化合物としては、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジフェニルエーテルジイソシアネート、ヘキサメチレンジイソシアネート、および、シクロヘキサンジイソシアネートなど(以上、2官能性)、ならびに、トリメチロールプロパンアダクト、および、イソシアヌル酸の塩であるイソシアヌレート類など(以上、3官能性)、が挙げられる。   Examples of the polyfunctional isocyanate compound include phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, diphenyl ether diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate (above bifunctional), trimethylolpropane adduct, and isocyanuric. And isocyanurates which are acid salts (trifunctional).

多官能性エポキシ化合物としては、例えば、テトラグリシジルキシレンジアミン、および、ビス−(ジグリシジルアミノメチル)シクロヘキサンなどが挙げられる。   Examples of the polyfunctional epoxy compound include tetraglycidylxylenediamine and bis- (diglycidylaminomethyl) cyclohexane.

部分架橋ポリマーが、前駆体に含浸させる電解液に含まれるイオン種の存在下で架橋反応を起こす上記第2の構造単位を含む場合、二次架橋時に、当該構造単位を架橋点とする架橋反応を進めることができる。なお、この場合、電解液は、第2の架橋剤を含んでいてもいなくてもよい。   When the partially crosslinked polymer contains the second structural unit that causes a crosslinking reaction in the presence of an ionic species contained in the electrolyte solution impregnated in the precursor, a crosslinking reaction using the structural unit as a crosslinking point during secondary crosslinking. Can proceed. In this case, the electrolytic solution may or may not contain the second crosslinking agent.

前駆体に含浸させる電解液は、上記式(2)に示すアルキレンオキシドオリゴマーを含む。このようなオリゴマーを含む電解液を含浸させることが、得られた電解質膜の高温下での変形を抑制するために必要である。また、このようなオリゴマーを含む電解液を含浸させることで、イオン伝導率に優れる電解質膜とすることができる。   The electrolytic solution impregnated in the precursor contains an alkylene oxide oligomer represented by the above formula (2). It is necessary to impregnate an electrolytic solution containing such an oligomer in order to suppress deformation of the obtained electrolyte membrane at a high temperature. Moreover, it can be set as the electrolyte membrane which is excellent in ionic conductivity by impregnating the electrolyte solution containing such an oligomer.

上記式(2)におけるmの値は3以上12以下の自然数である。mの値が3未満では、分子量が低すぎるためにオリゴマーの揮発性が過度に大きくなり、高温下における電解質膜の変形を抑制する効果が十分に得られない。mの値が12を超えると、逆に分子量が高すぎることで、電解液の粘度が過度に増大して前駆体への含浸が困難となったり、得られた電解質膜のイオン伝導率が低下したりする。   The value of m in the above formula (2) is a natural number of 3 or more and 12 or less. If the value of m is less than 3, since the molecular weight is too low, the volatility of the oligomer becomes excessively large, and the effect of suppressing deformation of the electrolyte membrane at high temperatures cannot be sufficiently obtained. If the value of m exceeds 12, on the contrary, the molecular weight is too high, the viscosity of the electrolytic solution increases excessively, making it difficult to impregnate the precursor, or the ionic conductivity of the obtained electrolyte membrane decreases. To do.

上記mの値は、二次架橋後も、基本的に変化しない。   The value of m is basically unchanged after secondary crosslinking.

上記mの値は、電解液をGPC測定および/またはNMR測定を行うことなどにより求めることができるが、電解液中に含まれる複数のオリゴマー間のバラツキを反映し平均値として測定されるため、上記mの測定値は必ずしも自然数とはならない。   The value of m can be obtained by performing GPC measurement and / or NMR measurement of the electrolytic solution, etc., but is measured as an average value reflecting variation among a plurality of oligomers contained in the electrolytic solution. The measured value of m is not necessarily a natural number.

上記mの値は、高温下での電解質膜の変形をより確実に抑制でき、電解質膜としてより良好なイオン伝導率を確保できることから、4以上11以下の自然数であることが好ましい。   The value of m is preferably a natural number of 4 or more and 11 or less because deformation of the electrolyte membrane at a high temperature can be more reliably suppressed and better ionic conductivity can be secured as the electrolyte membrane.

前駆体に含浸させる電解液はイオン種を含むが、このイオン種は、上記式(1)に示す構造単位および上記式(2)に示すアルキレンオキシドオリゴマーを介して輸送される種、即ち、電解質膜として伝導性を有する種、である限り特に限定されず、典型的には、リチウムイオンである。イオン種がリチウムイオンである場合、本発明の電解質膜は、リチウム一次/二次電池、あるいは、キャパシタなどに用いることができる。   The electrolytic solution impregnated in the precursor contains an ionic species, and this ionic species is a species transported via the structural unit represented by the above formula (1) and the alkylene oxide oligomer represented by the above formula (2), that is, an electrolyte. It is not particularly limited as long as it is a species having conductivity as a film, and is typically lithium ion. When the ionic species is lithium ion, the electrolyte membrane of the present invention can be used for lithium primary / secondary batteries, capacitors, and the like.

上記式(2)に示すオリゴマーおよびイオン種を含む電解液は、例えば、当該オリゴマー、ならびに、当該イオン種の塩を、両者を溶解可能な溶媒に溶解させて形成できる。第2の架橋剤をさらに含む電解液は、上記オリゴマー、上記イオン種の塩、および、当該架橋剤を、これら全てを溶解可能な溶媒に溶解させて形成できる。このような溶媒(電解液溶媒)としては、例えば、酢酸エチル、テトラヒドロフラン(THF)、ジメチルカーボネートなどを用いればよい。なお、イオン種がリチウムイオンである場合、電解液溶媒は非水溶媒(水を実質的に含まない溶媒)であることが好ましい。   The electrolytic solution containing the oligomer and ionic species represented by the above formula (2) can be formed, for example, by dissolving the oligomer and the salt of the ionic species in a solvent capable of dissolving both. The electrolytic solution further containing the second crosslinking agent can be formed by dissolving the oligomer, the salt of the ionic species, and the crosslinking agent in a solvent capable of dissolving them all. As such a solvent (electrolytic solution solvent), for example, ethyl acetate, tetrahydrofuran (THF), dimethyl carbonate, or the like may be used. When the ionic species is lithium ion, the electrolyte solution solvent is preferably a non-aqueous solvent (a solvent that substantially does not contain water).

イオン種がリチウムイオンである場合、上記イオン種の塩は特に限定されず、例えば、LiClO4、LiCF3SO3、LiPF6、LiBF4、LiAsF6、LiSbF6、LiN(CF3SO22、LiN(C25SO22、LiAlF4、LiGaF4、LiInF4、LiSiF6、LiN(CF3SO2)(C49SO2)などを用いればよい。混合するイオン種の量は、電解質膜として必要なイオン種の量に応じて設定すればよい。よりイオン伝導率に優れる電解質膜を形成できることから、LiBF4および/またはLiPF6を用いることが好ましい。 If the ionic species is lithium ion, the ion species of the salt is not particularly limited, for example, LiClO 4, LiCF 3 SO 3 , LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiN (CF 3 SO 2) 2 , LiN (C 2 F 5 SO 2) 2, LiAlF 4, LiGaF 4, LiInF 4, LiSiF 6, LiN (CF 3 SO 2) (C 4 F 9 SO 2) or the like may be used. What is necessary is just to set the quantity of the ionic species to mix according to the quantity of ionic species required as an electrolyte membrane. It is preferable to use LiBF 4 and / or LiPF 6 because an electrolyte membrane having better ionic conductivity can be formed.

電解液における上記オリゴマーの含有率は特に限定されないが、イオン伝導率に優れる電解質膜を形成するためには、例えば、ポリマーおよびオリゴマーのアルキルオキシドの酸素原子1個に対するLi原子の数が0.01〜1.0個程度とすればよく、当該数が0.02〜0.2個程度が好ましい。   The content of the oligomer in the electrolytic solution is not particularly limited, but in order to form an electrolyte membrane excellent in ionic conductivity, for example, the number of Li atoms relative to one oxygen atom of the alkyl oxide of the polymer and oligomer is 0.01. It may be about -1.0, and the number is preferably about 0.02-0.2.

電解液が第2の架橋剤を含む場合、電解液における第2の架橋剤の含有率は特に限定されないが、例えば、前駆体に含まれる官能基(架橋点を形成できる官能基)の量に対して0.9〜2当量程度であればよい。当該含有率が過度に大きくなると、得られた電解質膜中に未反応の架橋剤が残留して、電解質膜のイオン伝導率に悪影響を及ぼすことがある。当該含有率が過度に小さくなると、十分な二次架橋がなされず、得られた電解質膜が高温下で容易に変形することがある。   When the electrolytic solution contains the second cross-linking agent, the content of the second cross-linking agent in the electrolytic solution is not particularly limited. For example, the amount of the functional group (functional group capable of forming a cross-linking point) contained in the precursor On the other hand, it may be about 0.9 to 2 equivalents. If the content is excessively large, unreacted crosslinking agent may remain in the obtained electrolyte membrane, which may adversely affect the ionic conductivity of the electrolyte membrane. When the content is excessively small, sufficient secondary crosslinking is not performed, and the obtained electrolyte membrane may be easily deformed at high temperatures.

前駆体に電解液を含浸させる方法は特に限定されない。前駆体の架橋の程度、あるいは、電解液の粘度などによっては、前駆体に電解液を含浸させにくい状況も考えられるが、その場合は、電解液に含まれる各成分に悪影響を与えない揮発性の溶剤を電解液に添加してその粘度を低下させ、粘度を低下させた電解液を前駆体に含浸させた後に、当該溶剤を揮発させてもよい。   The method for impregnating the precursor with the electrolytic solution is not particularly limited. Depending on the degree of crosslinking of the precursor or the viscosity of the electrolyte, it may be difficult to impregnate the precursor with the electrolyte. In this case, however, the volatility does not adversely affect the components contained in the electrolyte. The solvent may be volatilized after adding the solvent to the electrolytic solution to reduce the viscosity and impregnating the precursor with the electrolytic solution having the reduced viscosity.

前駆体を一対の電極により狭持するためには、例えば、膜状の前駆体における双方の主面にそれぞれ電極を配置すればよく、電極の配置は、電解液を前駆体に含浸させる前に行っても、後で行ってもよい。なお、含浸時の取り扱いが容易であることから、膜状の前駆体における少なくとも一方の主面に電極を配置した後に、電解液を含浸させることが好ましい。   In order to sandwich the precursor between the pair of electrodes, for example, the electrodes may be disposed on both main surfaces of the film-shaped precursor, and the electrodes may be disposed before the electrolyte is impregnated with the precursor. You can do it later or later. In addition, since the handling at the time of impregnation is easy, it is preferable to impregnate electrolyte solution after arrange | positioning an electrode in at least one main surface in a film-form precursor.

本発明の電解質膜を電気化学素子に用いる場合、通常、電解質膜は素子を構成する容器、例えば、電池缶あるいは図1に示すケース7、に収容されている。この場合、二次架橋を当該容器内で行ってもよい。具体的には、例えば、膜状の電解質膜前駆体を一対の電極により狭持して積層体とし、この積層体を上記容器内に電解液とともに収容した後に、架橋反応を進めるための所定の条件に保持して二次架橋させればよい。   When the electrolyte membrane of the present invention is used for an electrochemical device, the electrolyte membrane is usually contained in a container constituting the device, for example, a battery can or a case 7 shown in FIG. In this case, secondary crosslinking may be performed in the container. Specifically, for example, a membrane-like electrolyte membrane precursor is sandwiched between a pair of electrodes to form a laminate, and after the laminate is accommodated together with the electrolyte in the container, a predetermined reaction for proceeding with the crosslinking reaction is performed. What is necessary is just to carry out secondary crosslinking, hold | maintaining on conditions.

本発明の電解質膜は、必要に応じ、ベースポリマーおよび電解液以外の材料を含んでいてもよく、例えば、ポリマーや無機物からなる絶縁性粒子を含んでいてもよい。これらの粒子は、電解質膜が用いられる環境(例えば、二次電池内)において溶解しないことが好ましい。粒子の種類を適宜選択することによって、電解質膜としての力学的特性、例えば、強度、を向上できたり、電解質膜を狭持する電極間の短絡抑制効果を向上できる。   The electrolyte membrane of the present invention may contain materials other than the base polymer and the electrolytic solution as necessary, and may contain, for example, insulating particles made of a polymer or an inorganic substance. These particles are preferably not dissolved in the environment where the electrolyte membrane is used (for example, in the secondary battery). By appropriately selecting the kind of particles, the mechanical properties as the electrolyte membrane, for example, the strength, can be improved, and the short-circuit suppressing effect between the electrodes holding the electrolyte membrane can be improved.

絶縁性粒子のサイズは平均粒径にして、1〜100μm程度が好ましい。   The size of the insulating particles is preferably about 1 to 100 μm in terms of average particle size.

絶縁性粒子の具体的な種類は特に限定されないが、例えば、アルミナ粒子、シリカ粒子などの無機粒子、および、架橋ポリスチレン粒子などのポリスチレン粒子、ポリオレフィン粒子、ポリ4フッ化エチレン粒子などのポリマー粒子が挙げられる。   Specific types of insulating particles are not particularly limited. For example, inorganic particles such as alumina particles and silica particles, and polystyrene particles such as crosslinked polystyrene particles, polymer particles such as polyolefin particles, and polytetrafluoroethylene particles may be used. Can be mentioned.

本発明の電解質膜が絶縁性粒子を含む場合、その含有量は特に限定されず、例えば、ベースポリマー100重量部に対して10〜1000重量部程度であればよい。   When the electrolyte membrane of the present invention contains insulating particles, the content thereof is not particularly limited, and may be, for example, about 10 to 1000 parts by weight with respect to 100 parts by weight of the base polymer.

本発明の電解質膜の23℃におけるイオン伝導率は、通常、1×10-5(S/cm)以上であり、電解質膜の構成によっては、1×10-4(S/cm)以上あるいは2×10-4S/cm)以上とすることができる。 The ionic conductivity of the electrolyte membrane of the present invention at 23 ° C. is usually 1 × 10 −5 (S / cm) or more, and depending on the configuration of the electrolyte membrane, 1 × 10 −4 (S / cm) or more or 2 × 10 −4 S / cm) or more.

本発明の電解質膜を製造する方法について、上述した説明をまとめると、以下のとおりとなる。   Regarding the method for producing the electrolyte membrane of the present invention, the above description can be summarized as follows.

即ち、本発明の電極一体型高分子電解質膜の製造方法は、アルキレンオキシド基を側鎖に有する以下の化学式(1)に示す第1の構造単位を含む部分架橋ポリマーからなる膜状の電解質膜前駆体を、イオン種と以下の化学式(2)に示すアルキレンオキシドオリゴマーとを含む非水電解液を含浸させ、かつ、一対の電極により狭持した状態で、さらに架橋させることにより、上記前駆体を電解質膜とするとともに上記一対の電極と一体化させる方法である。   That is, in the method for producing an electrode-integrated polymer electrolyte membrane of the present invention, a membrane-like electrolyte membrane comprising a partially crosslinked polymer having an alkylene oxide group in the side chain and containing a first structural unit represented by the following chemical formula (1) The precursor is impregnated with a nonaqueous electrolytic solution containing an ionic species and an alkylene oxide oligomer represented by the following chemical formula (2), and further crosslinked in a state of being sandwiched by a pair of electrodes, thereby the precursor. Is made into an electrolyte membrane and integrated with the pair of electrodes.

Figure 2008204858
Figure 2008204858

Figure 2008204858
Figure 2008204858

上記式(1)において、R1は、HまたはCH3であり、R2は、CH3またはC26であり、nは、2以上12以下の自然数である。上記式(2)において、R3は、CH3、C26またはC38であり、R4は、HまたはCH3であり、mは、3以上12以下の自然数である。 In the above formula (1), R 1 is H or CH 3 , R 2 is CH 3 or C 2 H 6 , and n is a natural number of 2 or more and 12 or less. In the above formula (2), R 3 is CH 3 , C 2 H 6 or C 3 H 8 , R 4 is H or CH 3 , and m is a natural number of 3 or more and 12 or less.

電解質膜前駆体は、例えば、アルキレンオキシド基を側鎖に有する以下の化学式(4)に示す(メタ)アクリル酸エステルモノマーと、架橋点を形成しうる官能性モノマー(第1の架橋剤)とを含むモノマー群を、重合および架橋(一次架橋)して形成できる。   The electrolyte membrane precursor includes, for example, a (meth) acrylic acid ester monomer represented by the following chemical formula (4) having an alkylene oxide group in the side chain, and a functional monomer (first crosslinking agent) capable of forming a crosslinking point: The monomer group containing can be formed by polymerization and crosslinking (primary crosslinking).

Figure 2008204858
Figure 2008204858

上記式(4)において、R1は、HまたはCH3であり、R2は、CH3またはC26であり、nは、2以上12以下の自然数である。 In the above formula (4), R 1 is H or CH 3 , R 2 is CH 3 or C 2 H 6 , and n is a natural number of 2 or more and 12 or less.

膜状の電解質膜前駆体は、例えば、一次架橋により形成した部分架橋ポリマーを膜状に成形して形成できるが、モノマー群の重合方法としてUV重合法を用いた場合などには、一次架橋により、膜状の部分架橋ポリマーを直接形成できる。モノマー群の重合方法として溶液重合を用いた場合など、部分架橋ポリマーがポリマー溶液として得られる場合などには、例えば、支持フィルム上にポリマー溶液を塗布した後、乾燥させればよい。また、必要に応じて、ポリマー溶液に第3の架橋剤を加え、加えた架橋剤による架橋を併用してもよい。この架橋は電解質膜前駆体を得るための一次架橋の一部である。   The membrane electrolyte membrane precursor can be formed by, for example, forming a partially crosslinked polymer formed by primary crosslinking into a film shape. However, when UV polymerization is used as a polymerization method for the monomer group, primary membrane crosslinking is performed. A film-like partially crosslinked polymer can be directly formed. When a partially crosslinked polymer is obtained as a polymer solution, such as when solution polymerization is used as a polymerization method for the monomer group, for example, the polymer solution may be applied on a support film and then dried. If necessary, a third crosslinking agent may be added to the polymer solution, and crosslinking with the added crosslinking agent may be used in combination. This crosslinking is part of the primary crosslinking to obtain the electrolyte membrane precursor.

本発明の電気化学素子は、一対の電極(正極および負極)と、この一対の電極によって狭持された電解質膜とを含む素子であって、上記一対の電極および電解質膜として、本発明の電極一体型高分子電解質膜を備える。本発明の電解質膜は、従来の電解質膜に比べて高温下での収縮が抑制された電解質膜であるため、本発明の素子は、高温雰囲気となった場合にも、従来の素子よりもその機能を長く保持できる。   The electrochemical element of the present invention is an element including a pair of electrodes (positive electrode and negative electrode) and an electrolyte membrane sandwiched between the pair of electrodes, and the electrode of the present invention is used as the pair of electrodes and electrolyte membrane. An integral polymer electrolyte membrane is provided. Since the electrolyte membrane of the present invention is an electrolyte membrane in which shrinkage at a high temperature is suppressed as compared with the conventional electrolyte membrane, the device of the present invention is more effective than the conventional device even in a high temperature atmosphere. The function can be maintained for a long time.

本発明の素子の具体的な構成は特に限定されない。正極および負極の構成、電解質膜(電解液)に含まれるイオン種などを選択することによって、一次電池、二次電池、キャパシタ、センサーなどを構成できる。   The specific configuration of the element of the present invention is not particularly limited. A primary battery, a secondary battery, a capacitor, a sensor, etc. can be comprised by selecting the structure of a positive electrode and a negative electrode, the ion seed | species contained in electrolyte membrane (electrolytic solution), etc.

図1に、本発明の電気化学素子の一例を示す。図1に示す電気化学素子1は、コイン型のリチウム二次電池である。素子1は、リチウムイオンを可逆的に吸蔵および放出できる負極活物質を含む負極2と、リチウムイオンを可逆的に吸蔵および放出できる正極活物質を含む正極3と、負極2および正極3によって狭持された電解質膜4とを含んでいる。ここで、負極2、正極3および電解質膜4は、上述した本発明の電極一体型電解質膜である。電解質膜4には、イオン種としてリチウムイオンを、および、上述したアルキレンオキシドオリゴマーを含む電解液が含浸しており、電解質膜4はリチウムイオン伝導性を有している。   FIG. 1 shows an example of the electrochemical device of the present invention. The electrochemical element 1 shown in FIG. 1 is a coin-type lithium secondary battery. The element 1 is sandwiched between a negative electrode 2 including a negative electrode active material capable of reversibly occluding and releasing lithium ions, a positive electrode 3 including a positive electrode active material capable of reversibly occluding and releasing lithium ions, and the negative electrode 2 and the positive electrode 3. The electrolyte membrane 4 is included. Here, the negative electrode 2, the positive electrode 3, and the electrolyte membrane 4 are the electrode-integrated electrolyte membrane of the present invention described above. The electrolyte membrane 4 is impregnated with lithium ions as ion species and an electrolyte solution containing the above-described alkylene oxide oligomer, and the electrolyte membrane 4 has lithium ion conductivity.

負極2、正極3および電解質膜4は、正極端子を兼ねるケース7に収容されており、ケース7の開口部は、負極端子を兼ねる封口板8および絶縁性のガスケット9により密閉されている。ケース7および封口板8は、例えば、ニッケルメッキを施したステンレス鋼板からなる。   The negative electrode 2, the positive electrode 3, and the electrolyte membrane 4 are accommodated in a case 7 that also serves as a positive electrode terminal, and the opening of the case 7 is sealed with a sealing plate 8 that also serves as a negative electrode terminal and an insulating gasket 9. The case 7 and the sealing plate 8 are made of, for example, a stainless steel plate plated with nickel.

負極2は、例えば、板状のリチウム金属や黒鉛からなり、銅ネットなどの負極集電体5を介してケース7と電気的に接続されている。正極3は、例えば、リチウムマンガン複合酸化物に代表される正極活物質と、黒鉛に代表される導電材とを、ポリエチレン、ポリプロピレンあるいはポリテトラフルオロエチレンなどの結着性樹脂と混合し、これを加圧成形して得た構造を有する。正極3は、アルミニウムネットなどの正極集電体6を介して封口板8と電気的に接続されている。   The negative electrode 2 is made of, for example, plate-like lithium metal or graphite, and is electrically connected to the case 7 via a negative electrode current collector 5 such as a copper net. The positive electrode 3 is prepared, for example, by mixing a positive electrode active material typified by a lithium manganese composite oxide and a conductive material typified by graphite with a binder resin such as polyethylene, polypropylene or polytetrafluoroethylene, It has a structure obtained by pressure molding. The positive electrode 3 is electrically connected to the sealing plate 8 via a positive electrode current collector 6 such as an aluminum net.

電気化学素子1は、負極2および正極3と一体化された電解質膜4の形成を除き、リチウム二次電池の一般的な製造方法を応用して形成できる。   The electrochemical element 1 can be formed by applying a general manufacturing method of a lithium secondary battery, except for the formation of the electrolyte membrane 4 integrated with the negative electrode 2 and the positive electrode 3.

以下、実施例により、本発明をさらに詳細に説明する。本発明は、以下の実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.

(ポリマー溶液の作製)
−溶液A−
末端がメチルエーテル(式(4)におけるR2がメチル基)であるアルキレンオキシド基(n(平均値)=7)を側鎖に有するアクリル酸エステルモノマー80重量部と、共重合モノマーとしてアクリロニトリル20重量部と、第1の架橋剤としてアクリル酸−4−ヒドロキシブチル0.5重量部とからなるモノマー群に、重合溶媒として酢酸エチル100重量部およびジメチルフォルムアミド(DMF)50重量部、ならびに、重合開始剤として2,2’−アゾビスイソブチロニトリル(AIBN)0.3重量部を加えた重合溶液100gを内容積300mlのフラスコに投入し、当該重合溶液を攪拌羽で攪拌しながらフラスコ内の空気を窒素ガスにより置換した後に全体を60〜70℃に保持し、適宜酢酸エチルを滴下しながら10時間重合させて、ポリマー濃度25重量%のポリマー溶液(溶液A)を得た。なお、得られた溶液A中のポリマーの重量平均分子量を、ゲル透過クロマトグラフィー(GPC)により別途測定したところ、約28万であった。
(Preparation of polymer solution)
-Solution A-
80 parts by weight of an acrylate ester monomer having an alkylene oxide group (n (average value) = 7) whose side chain is methyl ether (R 2 in formula (4) is a methyl group) in the side chain, and acrylonitrile 20 as a copolymerization monomer And a monomer group consisting of 0.5 parts by weight of 4-hydroxybutyl acrylate as a first crosslinking agent, 100 parts by weight of ethyl acetate and 50 parts by weight of dimethylformamide (DMF) as a polymerization solvent, and 100 g of a polymerization solution added with 0.3 part by weight of 2,2′-azobisisobutyronitrile (AIBN) as a polymerization initiator was put into a flask having an internal volume of 300 ml, and the flask was stirred while stirring the polymerization solution with a stirring blade. After replacing the air inside with nitrogen gas, the whole was kept at 60 to 70 ° C. By to give a polymer concentration of 25 wt% polymer solution (solution A). In addition, when the weight average molecular weight of the polymer in the obtained solution A was separately measured by gel permeation chromatography (GPC), it was about 280,000.

−溶液B−
上記のようにして得た溶液Aに対し、ヘキサンならびに酢酸エチルとDMFとの混合溶液(酢酸エチル:DMF(体積比)=2:1)を用いて再沈操作を3回繰り返し、ポリマー濃度15重量%のポリマー溶液(溶液B)を得た。
-Solution B-
For the solution A obtained as described above, reprecipitation was repeated three times using hexane and a mixed solution of ethyl acetate and DMF (ethyl acetate: DMF (volume ratio) = 2: 1) to obtain a polymer concentration of 15 A weight percent polymer solution (Solution B) was obtained.

−溶液C−
重合させるモノマー群を、末端がメチルエーテル(式(4)におけるR2がメチル基)であるアルキレンオキシド基(n(平均値)=7)を側鎖に有するアクリル酸エステルモノマー100重量部と、第1の架橋剤としてアクリル酸−4−ヒドロキシブチル0.4重量部とからなるモノマー群とした以外は、溶液Aと同様にして、ポリマー濃度25重量%のポリマー溶液(溶液C)を得た。なお、得られた溶液C中のポリマーの重量平均分子量をGPCにより別途測定したところ、約33万であった。
-Solution C-
A monomer group to be polymerized, 100 parts by weight of an acrylate monomer having an alkylene oxide group (n (average value) = 7) in the side chain of which the terminal is methyl ether (R 2 in formula (4) is a methyl group); A polymer solution (solution C) having a polymer concentration of 25% by weight was obtained in the same manner as the solution A, except that a monomer group consisting of 0.4 parts by weight of acrylic acid-4-hydroxybutyl was used as the first crosslinking agent. . In addition, when the weight average molecular weight of the polymer in the obtained solution C was separately measured by GPC, it was about 330,000.

−溶液D−
重合させるモノマー群を、末端がメチルエーテル(式(4)におけるR2がメチル基)であるアルキレンオキシド基(n(平均値)=11)を側鎖に有するアクリル酸エステルモノマー80重量部と、共重合モノマーとしてアクリロニトリル20重量部と、第1の架橋剤としてアクリル酸−4−ヒドロキシブチル0.6重量部とからなるモノマー群とした以外は、溶液Aと同様にして、ポリマー濃度25重量%のポリマー溶液(溶液D)を得た。なお、得られた溶液D中のポリマーの重量平均分子量をGPCにより別途測定したところ、約25万であった。
-Solution D-
A monomer group to be polymerized, 80 parts by weight of an acrylate monomer having an alkylene oxide group (n (average value) = 11) in the side chain of which the terminal is methyl ether (R 2 in formula (4) is a methyl group); The polymer concentration is 25% by weight in the same manner as in the solution A except that the monomer group is composed of 20 parts by weight of acrylonitrile as a copolymerization monomer and 0.6 parts by weight of 4-hydroxybutyl acrylate as a first crosslinking agent. A polymer solution (solution D) was obtained. In addition, when the weight average molecular weight of the polymer in the obtained solution D was separately measured by GPC, it was about 250,000.

−溶液E−
重合させるモノマー群を、末端がメチルエーテル(式(4)におけるR2がメチル基)であるアルキレンオキシド基(n(平均値)=7)を側鎖に有するアクリル酸エステルモノマー75重量部と、共重合モノマーとして(3−メチル−3−オキセタニル)メチルアクリレート20重量部および3,4−エポキシシクロヘキシルメチルメタクリレート5重量部と、第1の架橋剤としてアクリル酸−4−ヒドロキシルブチル0.2重量部とからなるモノマー群とした以外は、溶液Aと同様にして、ポリマー濃度25重量%のポリマー溶液(溶液E)を得た。なお、得られた溶液E中のポリマーの重量平均分子量をGPCにより別途測定したところ、約26万であった。
-Solution E-
A monomer group to be polymerized, 75 parts by weight of an acrylate monomer having an alkylene oxide group (n (average value) = 7) in the side chain of which the terminal is methyl ether (R 2 in formula (4) is a methyl group); 20 parts by weight of (3-methyl-3-oxetanyl) methyl acrylate and 5 parts by weight of 3,4-epoxycyclohexylmethyl methacrylate as copolymerizable monomers, and 0.2 parts by weight of acrylate-4-hydroxylbutyl acrylate as the first cross-linking agent A polymer solution (solution E) having a polymer concentration of 25% by weight was obtained in the same manner as in the solution A except that the monomer group consisting of In addition, it was about 260,000 when the weight average molecular weight of the polymer in the obtained solution E was measured separately by GPC.

−溶液F−
重合させるモノマー群を、末端がメチルエーテル(式(4)におけるR2がメチル基)であるアルキレンオキシド基(n(平均値)=7)を側鎖に有するアクリル酸エステルモノマー75重量部と、共重合モノマーとしてアクリロニトリル20重量部と、第1の架橋剤としてアクリル酸−4−ヒドロキシブチル5重量部とからなるモノマー群とした以外は、溶液Aと同様にして、ポリマー濃度25重量%のポリマー溶液(溶液F)を得た。なお、得られた溶液F中のポリマーの重量平均分子量をGPCにより別途測定したところ、約27万であった。
-Solution F-
A monomer group to be polymerized, 75 parts by weight of an acrylate monomer having an alkylene oxide group (n (average value) = 7) in the side chain of which the terminal is methyl ether (R 2 in formula (4) is a methyl group); A polymer having a polymer concentration of 25% by weight in the same manner as in solution A, except that the monomer group is composed of 20 parts by weight of acrylonitrile as a copolymerization monomer and 5 parts by weight of 4-hydroxybutyl acrylate as a first crosslinking agent. A solution (Solution F) was obtained. In addition, it was about 270,000 when the weight average molecular weight of the polymer in the obtained solution F was separately measured by GPC.

−溶液G−
重合させるモノマー群を、末端がメチルエーテル(式(4)におけるR2がメチル基)であるアルキレンオキシド基(n(平均値)=3)を側鎖に有するアクリル酸エステルモノマー75重量部と、共重合モノマーとしてアクリロニトリル20重量部と、第1の架橋剤としてアクリル酸−4−ヒドロキシブチル(ポリ−4−メチルペンテン(p−MP)0.03重量%含有)0.2重量部とからなるモノマー群とした以外は、溶液Aと同様にして、ポリマー濃度25重量%のポリマー溶液(溶液G)を得た。なお、得られた溶液G中のポリマーの重量平均分子量をGPCにより別途測定したところ、約24万であった。
-Solution G-
A monomer group to be polymerized, 75 parts by weight of an acrylate monomer having an alkylene oxide group (n (average value) = 3) in the side chain of which the terminal is methyl ether (R 2 in formula (4) is a methyl group); It consists of 20 parts by weight of acrylonitrile as a copolymerization monomer and 0.2 parts by weight of 4-hydroxybutyl acrylate (containing 0.03% by weight of poly-4-methylpentene (p-MP)) as a first crosslinking agent. A polymer solution (solution G) having a polymer concentration of 25% by weight was obtained in the same manner as in solution A except that the monomer group was used. In addition, it was about 240,000 when the weight average molecular weight of the polymer in the obtained solution G was measured separately by GPC.

溶液A〜溶液Gの作製に用いたアクリル酸モノマーのnの値、共重合モノマーおよび架橋剤の種類、ならびに、上記各成分の重量部を、以下の表1にまとめて示す。   Table 1 below collectively shows the value of n of the acrylic acid monomer used for the preparation of the solutions A to G, the types of the copolymerization monomer and the crosslinking agent, and the parts by weight of the respective components.

Figure 2008204858
Figure 2008204858

(電解液の作製)
電解質膜前駆体(作製方法は後述)に含浸させる電解液は、以下のように作製した。
(Preparation of electrolyte)
The electrolyte solution to be impregnated in the electrolyte membrane precursor (the preparation method will be described later) was prepared as follows.

−電解液A−
アルゴン雰囲気下において、アルカリ金属塩としてリチウム−ビス−トリフルオロメタンスルホンイミド(LiTFSI:キシダ化学社製)2.8gと、アルキレンオキシドオリゴマーとしてテトラエチレングリコールジメチルエーテル(和光純薬社製)2.0gと、第2の架橋剤として3官能イソシアネート(日本ポリウレタン社製コロネートC/HL)のテトラヒドロフラン(THF)200倍希釈液0.3gと、電解液溶媒としてTHF3gとを混合して、溶媒中にLiTFSIを完全に溶解させた後に、室温で3時間、次いで50℃で3時間の真空乾燥処理を行って、電解液Aとした。
-Electrolyte A-
Under an argon atmosphere, 2.8 g of lithium-bis-trifluoromethanesulfonimide (LiTFSI: manufactured by Kishida Chemical Co., Ltd.) as an alkali metal salt, 2.0 g of tetraethylene glycol dimethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.) as an alkylene oxide oligomer, A trifunctional isocyanate (Coronate C / HL manufactured by Nippon Polyurethane Co., Ltd.) in a 200-fold dilution of tetrahydrofuran (THF) 0.3 times as a second cross-linking agent and THF 3 g as an electrolyte solvent are mixed, and LiTFSI is completely contained in the solvent. Then, a vacuum drying treatment was performed at room temperature for 3 hours and then at 50 ° C. for 3 hours to obtain an electrolytic solution A.

−電解液B−
アルキレンオキシドオリゴマーとして、テトラエチレングリコールジメチルエーテルの代わりにポリエチレングリコールジメチルエーテル(平均分子量500:m(平均値)=11:Aldrich社製)を用いた以外は、電解液Aと同様にして、電解液Bを作製した。
-Electrolyte B-
As the alkylene oxide oligomer, an electrolytic solution B was prepared in the same manner as the electrolytic solution A except that polyethylene glycol dimethyl ether (average molecular weight 500: m (average value) = 11: manufactured by Aldrich) was used instead of tetraethylene glycol dimethyl ether. Produced.

−電解液C−
第2の架橋剤(3官能イソシアネート)を加えなかった以外は、電解液Aと同様にして、電解液Cを作製した。
-Electrolytic solution C-
An electrolytic solution C was produced in the same manner as the electrolytic solution A except that the second crosslinking agent (trifunctional isocyanate) was not added.

−電解液D−
アルキレンオキシドオリゴマーとして、ジエチレングリコールジメチルエーテル(和光純薬社製)を用いた以外は、電解液Aと同様にして、電解液Bを作製した。
-Electrolyte D-
Electrolytic solution B was produced in the same manner as electrolytic solution A, except that diethylene glycol dimethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the alkylene oxide oligomer.

−電解液E−
アルカリ金属塩としてLiTFSI(キシダ化学社製)2.1gと、溶媒としてエチレンカーボネート1.0gおよびジメチルカーボネート2.0gとを混合して、LiTFSiを溶媒に完全に溶解させて電解液Eとした。
-Electrolyte E-
LiTFSI (manufactured by Kishida Chemical Co., Ltd.) (2.1 g) as an alkali metal salt and ethylene carbonate (1.0 g) and dimethyl carbonate (2.0 g) as a solvent were mixed, and LiTFSi was completely dissolved in the solvent to obtain an electrolytic solution E.

(電解質膜前駆体および電解質膜サンプルの作製)
次に、上記のようにして作製したポリマー溶液を用いて電解質膜前駆体を形成し、形成した電解質膜前駆体に電解液を含浸させて、実施例7種類(サンプル1〜6、12)、比較例4種類(サンプル7〜10)の電解質膜サンプルを作製した。各サンプルの作製方法を以下に示す。
(Preparation of electrolyte membrane precursor and electrolyte membrane sample)
Next, an electrolyte membrane precursor is formed using the polymer solution prepared as described above, and the electrolyte membrane precursor thus formed is impregnated with an electrolytic solution. Seven types of Examples (Samples 1 to 6, 12), Four types of comparative membrane samples (samples 7 to 10) were prepared. A method for manufacturing each sample is shown below.

−サンプル1−
ポリマー溶液Aに第3の架橋剤として3官能イソシアネート(日本ポリウレタン社製、コロネートC/HL)を、溶液A中のポリマー100重量部に対して0.5重量部加えて配合液とし、この配合液を、剥離処理を表面に施した支持フィルムであるポリエチレンテレフタレート(PET)フィルムの当該表面に塗布して乾燥させた後、50℃において5日間保持して第3の架橋剤による架橋を進行させ、PETフィルム上に電解質膜前駆体(厚さ約10μm、直径約20mmの円板状)を形成した。
-Sample 1-
A trifunctional isocyanate (manufactured by Nippon Polyurethane Co., Coronate C / HL) as a third crosslinking agent is added to the polymer solution A in an amount of 0.5 parts by weight with respect to 100 parts by weight of the polymer in the solution A to obtain a blended solution. The liquid is applied to the surface of a polyethylene terephthalate (PET) film, which is a support film subjected to a release treatment, and dried, and then held at 50 ° C. for 5 days to advance crosslinking with a third crosslinking agent. An electrolyte membrane precursor (disk shape having a thickness of about 10 μm and a diameter of about 20 mm) was formed on the PET film.

次に、形成した電解質膜前駆体におけるPETフィルム側とは反対側の表面に直径約18mmの円形の白金電極板を貼付した後、前駆体とPETフィルムとを剥離し、前駆体全体に電解液A0.05gをスポイトで塗布して含浸させ、室温で3時間放置した。   Next, after attaching a circular platinum electrode plate having a diameter of about 18 mm to the surface opposite to the PET film side of the formed electrolyte membrane precursor, the precursor and the PET film are peeled off, and the electrolyte solution is applied to the entire precursor. 0.05 g of A was applied with a dropper and impregnated, and left at room temperature for 3 hours.

この放置により電解液Aが十分に電解質膜前駆体に含浸したことを確認後、電解液が含浸した前駆体を既に貼付した白金電極板とともに狭持するように、直径約18mmの円形の白金電極板を新たに前駆体に貼付し、全体を50℃において7日間保持して二次架橋させ、電解質膜と当該電解質膜を狭持する一対の白金電極とが一体化された電解質膜サンプル(サンプル1)を作製した。   After confirming that the electrolyte membrane precursor was sufficiently impregnated with the electrolytic solution A by this standing, a circular platinum electrode having a diameter of about 18 mm was sandwiched with the platinum electrode plate to which the precursor impregnated with the electrolytic solution was already attached. An electrolyte membrane sample (sample) in which a plate is newly affixed to a precursor, and the whole is held at 50 ° C. for 7 days for secondary crosslinking, and an electrolyte membrane and a pair of platinum electrodes sandwiching the electrolyte membrane are integrated. 1) was produced.

なお、サンプル1の作製とは別に、電解液を含浸させる前の電解質膜前駆体のゲル分率および膨潤度を以下のように評価した。   In addition to the preparation of Sample 1, the gel fraction and the degree of swelling of the electrolyte membrane precursor before impregnating with the electrolytic solution were evaluated as follows.

電解質膜前駆体の一部を重量にしてWp(g)切り出し、切り出した破片を酢酸エチル中に室温で7日間浸漬させた後に、全体を80メッシュのナイロン紗で濾過し、ナイロン紗上に残留したゲルの表面の酢酸エチルを拭き取った後、当該ゲルの重量Wb(g)を測定し、さらにこれを乾燥させた乾燥ゲルの重量Wg(g)を測定して、以下の計算式(A)、(B)から、電解質膜前駆体のゲル分率および膨潤度をそれぞれ求めた。なお、酢酸エチルへの浸漬および各重量の測定は、23℃で行った。
(膨潤度) =Wb/Wg (倍) ・・・(A)
(ゲル分率)=Wg/Wp×100(%) ・・・(B)
Part of the electrolyte membrane precursor was weighed and Wp (g) was cut out, and the cut pieces were immersed in ethyl acetate at room temperature for 7 days, and then the whole was filtered through an 80 mesh nylon bottle and remained on the nylon bottle. After wiping off the ethyl acetate on the surface of the gel, the weight Wb (g) of the gel was measured, the weight Wg (g) of the dried gel obtained by drying the gel was measured, and the following calculation formula (A) From (B), the gel fraction and swelling degree of the electrolyte membrane precursor were determined. In addition, the immersion in ethyl acetate and the measurement of each weight were performed at 23 degreeC.
(Swelling degree) = Wb / Wg (times) (A)
(Gel fraction) = Wg / Wp × 100 (%) (B)

−サンプル2−
ポリマー溶液Aに加える3官能イソシアネートの量を、溶液A中のポリマー100重量部に対して1.5重量部とした以外は、サンプル1と同様にして、PETフィルム上に電解質膜前駆体(厚さ約10μm、直径約20mmの円板状)を形成した。
-Sample 2-
The electrolyte membrane precursor (thickness) was formed on the PET film in the same manner as in Sample 1, except that the amount of the trifunctional isocyanate added to the polymer solution A was 1.5 parts by weight with respect to 100 parts by weight of the polymer in the solution A. A disk having a diameter of about 10 μm and a diameter of about 20 mm).

次に、形成した電解質膜前駆体におけるPETフィルム側とは反対側の表面に直径約18mmの円形の白金電極板を貼付した後、前駆体とPETフィルムとを剥離し、前駆体全体に電解液A0.05gをスポイトで塗布して含浸させ、室温で3時間放置した。   Next, after attaching a circular platinum electrode plate having a diameter of about 18 mm to the surface opposite to the PET film side of the formed electrolyte membrane precursor, the precursor and the PET film are peeled off, and the electrolyte solution is applied to the entire precursor. 0.05 g of A was applied with a dropper and impregnated, and left at room temperature for 3 hours.

この放置により電解液Aが十分に電解質膜前駆体に含浸したことを確認後、電解液が含浸した前駆体を既に貼付した白金電極板とともに狭持するように、直径約18mmの円形の白金電極板を新たに前駆体に貼付し、全体を50℃において7日間保持して二次架橋させ、電解質膜と当該電解質膜を狭持する一対の白金電極とが一体化された電解質膜サンプル(サンプル2)を作製した。   After confirming that the electrolyte membrane precursor was sufficiently impregnated with the electrolytic solution A by this standing, a circular platinum electrode having a diameter of about 18 mm was sandwiched with the platinum electrode plate to which the precursor impregnated with the electrolytic solution was already attached. An electrolyte membrane sample (sample) in which a plate is newly affixed to a precursor, and the whole is held at 50 ° C. for 7 days for secondary crosslinking, and an electrolyte membrane and a pair of platinum electrodes sandwiching the electrolyte membrane are integrated. 2) was produced.

なお、サンプル2の作製とは別に、電解液を含浸させる前の電解質膜前駆体のゲル分率および膨潤度をサンプル1と同様に評価した。   In addition to the preparation of Sample 2, the gel fraction and the degree of swelling of the electrolyte membrane precursor before impregnation with the electrolytic solution were evaluated in the same manner as Sample 1.

−サンプル3−
ポリマー溶液として溶液Aの代わりに溶液Bを用いた以外は、サンプル1と同様にして、PETフィルム上に電解質膜前駆体(厚さ約10μm、直径約20mmの円板状)を形成した。
-Sample 3-
An electrolyte membrane precursor (disk shape having a thickness of about 10 μm and a diameter of about 20 mm) was formed on a PET film in the same manner as in Sample 1, except that the solution B was used instead of the solution A as the polymer solution.

次に、形成した電解質膜前駆体におけるPETフィルム側とは反対側の表面に直径約18mmの円形の白金電極板を貼付した後、前駆体とPETフィルムとを剥離し、前駆体全体に電解液A0.05gをスポイトで塗布して含浸させ、室温で3時間放置した。   Next, after attaching a circular platinum electrode plate having a diameter of about 18 mm to the surface opposite to the PET film side of the formed electrolyte membrane precursor, the precursor and the PET film are peeled off, and the electrolyte solution is applied to the entire precursor. 0.05 g of A was applied with a dropper and impregnated, and left at room temperature for 3 hours.

この放置により電解液Aが十分に電解質膜前駆体に含浸したことを確認後、電解液が含浸した前駆体を既に貼付した白金電極板とともに狭持するように、直径約18mmの円形の白金電極板を新たに前駆体に貼付し、全体を50℃において7日間保持して二次架橋させ、電解質膜と当該電解質膜を狭持する一対の白金電極とが一体化された電解質膜サンプル(サンプル3)を作製した。   After confirming that the electrolyte membrane precursor was sufficiently impregnated with the electrolytic solution A by this standing, a circular platinum electrode having a diameter of about 18 mm was sandwiched with the platinum electrode plate to which the precursor impregnated with the electrolytic solution was already attached. An electrolyte membrane sample (sample) in which a plate is newly affixed to a precursor, and the whole is held at 50 ° C. for 7 days for secondary crosslinking, and an electrolyte membrane and a pair of platinum electrodes sandwiching the electrolyte membrane are integrated. 3) was produced.

なお、サンプル3の作製とは別に、電解液を含浸させる前の電解質膜前駆体のゲル分率および膨潤度をサンプル1と同様に評価した。   In addition to the preparation of Sample 3, the gel fraction and the degree of swelling of the electrolyte membrane precursor before impregnation with the electrolytic solution were evaluated in the same manner as Sample 1.

−サンプル4−
ポリマー溶液として溶液Aの代わりに溶液Cを用いた以外は、サンプル1と同様にして、配合液を形成し、この配合液を、剥離処理を表面に施した支持フィルムであるPETフィルムの当該表面に塗布して乾燥させ、PETフィルム上にポリマー膜(厚さ約5μm)を形成した。
-Sample 4-
The surface of the PET film, which is a support film having a mixture solution formed on the surface in the same manner as Sample 1, except that the solution C was used instead of the solution A as the polymer solution. The polymer film (thickness of about 5 μm) was formed on the PET film.

次に、形成したポリマー膜におけるPETフィルム側とは反対側の表面に、平均粒子径にして約20μmのアルミナ粒子を、形成したポリマー膜100重量部に対して200重量部、均一に配置した後、同様に形成した別のポリマー膜を、当該ポリマー膜がアルミナ粒子と接するように積層圧着させ、全体を50℃において5日間保持してポリマー膜に含まれる第3の架橋剤による架橋を進行させ、一対のPETフィルムにより狭持され、内部にアルミナ粒子が分散した電解質膜前駆体(厚さ約10μm、直径約20mmの円板状)を形成した。   Next, after the alumina particles having an average particle diameter of about 20 μm are uniformly disposed on the surface of the formed polymer film opposite to the PET film side, 200 parts by weight with respect to 100 parts by weight of the formed polymer film. Then, another polymer film formed in the same manner is laminated and pressure-bonded so that the polymer film is in contact with the alumina particles, and the whole is held at 50 ° C. for 5 days to proceed with the crosslinking by the third crosslinking agent contained in the polymer film. An electrolyte membrane precursor (a disk shape having a thickness of about 10 μm and a diameter of about 20 mm) sandwiched between a pair of PET films and having alumina particles dispersed therein was formed.

次に、形成した電解質膜前駆体と一方のPETフィルムとを剥離し、電解質膜前駆体における剥離面に直径18mmの円形の白金電極板を貼付した後、さらに他方のPETフィルムを剥離して、前駆体全体に電解液A0.05gをスポイトで塗布して含浸させ、室温で3時間放置した。   Next, the formed electrolyte membrane precursor and one PET film are peeled off, a circular platinum electrode plate having a diameter of 18 mm is attached to the peeling surface of the electrolyte membrane precursor, and then the other PET film is peeled off, The entire precursor was impregnated with 0.05 g of the electrolytic solution A with a dropper and allowed to stand at room temperature for 3 hours.

この放置により電解液Aが十分に電解質膜前駆体に含浸したことを確認後、電解液が含浸した前駆体を既に貼付した白金電極板とともに狭持するように、直径約18mmの円形の白金電極板を新たに前駆体に貼付し、全体を50℃において7日間保持して二次架橋させ、電解質膜と当該電解質膜を狭持する一対の白金電極とが一体化された電解質膜サンプル(サンプル4)を作製した。   After confirming that the electrolyte membrane precursor was sufficiently impregnated with the electrolytic solution A by this standing, a circular platinum electrode having a diameter of about 18 mm was sandwiched with the platinum electrode plate to which the precursor impregnated with the electrolytic solution was already attached. An electrolyte membrane sample (sample) in which a plate is newly affixed to a precursor, and the whole is held at 50 ° C. for 7 days for secondary crosslinking, and an electrolyte membrane and a pair of platinum electrodes sandwiching the electrolyte membrane are integrated. 4) was produced.

なお、サンプル4の作製とは別に、電解液を含浸させる前の電解質膜前駆体のゲル分率および膨潤度をサンプル1と同様に評価した。   In addition to the preparation of Sample 4, the gel fraction and the degree of swelling of the electrolyte membrane precursor before impregnation with the electrolytic solution were evaluated in the same manner as Sample 1.

−サンプル5−
ポリマー溶液として溶液Aの代わりに溶液Dを用いた以外は、サンプル1と同様にして、PETフィルム上に電解質膜前駆体(厚さ約10μm、直径約20mmの円板状)を形成した。
-Sample 5-
An electrolyte membrane precursor (disk shape having a thickness of about 10 μm and a diameter of about 20 mm) was formed on a PET film in the same manner as in Sample 1, except that the solution D was used instead of the solution A as the polymer solution.

次に、形成した電解質膜前駆体におけるPETフィルム側とは反対側の表面に直径約18mmの円形の白金電極板を貼付した後、前駆体とPETフィルムとを剥離し、前駆体全体に電解液B0.05gをスポイトにより塗布して含浸させ、室温で3時間放置した。   Next, after attaching a circular platinum electrode plate having a diameter of about 18 mm to the surface opposite to the PET film side of the formed electrolyte membrane precursor, the precursor and the PET film are peeled off, and the electrolyte solution is applied to the entire precursor. 0.05 g of B was applied and impregnated with a dropper, and left at room temperature for 3 hours.

この放置により電解液Bが十分に電解質膜前駆体に含浸したことを確認後、電解液が含浸した前駆体を既に貼付した白金電極板とともに狭持するように、直径約18mmの円形の白金電極板を新たに前駆体に貼付し、全体を50℃において7日間保持して二次架橋させ、電解質膜と当該電解質膜を狭持する一対の白金電極とが一体化された電解質膜サンプル(サンプル5)を作製した。   After confirming that the electrolyte solution precursor was sufficiently impregnated with the electrolytic solution B by this standing, a circular platinum electrode having a diameter of about 18 mm was sandwiched with the platinum electrode plate to which the precursor impregnated with the electrolytic solution was already attached. An electrolyte membrane sample (sample) in which a plate is newly affixed to a precursor, and the whole is held at 50 ° C. for 7 days for secondary crosslinking, and an electrolyte membrane and a pair of platinum electrodes sandwiching the electrolyte membrane are integrated. 5) was produced.

なお、サンプル5の作製とは別に、電解液を含浸させる前の電解質膜前駆体のゲル分率および膨潤度をサンプル1と同様に評価した。   In addition to the preparation of Sample 5, the gel fraction and the degree of swelling of the electrolyte membrane precursor before impregnating with the electrolytic solution were evaluated in the same manner as Sample 1.

−サンプル6−
ポリマー溶液として溶液Aの代わりに溶液Eを用いた以外は、サンプル1と同様にして、PETフィルム上に電解質膜前駆体(厚さ約10μm、直径約20mmの円板状)を形成した。
-Sample 6
An electrolyte membrane precursor (disk shape having a thickness of about 10 μm and a diameter of about 20 mm) was formed on a PET film in the same manner as in Sample 1, except that the solution E was used instead of the solution A as the polymer solution.

次に、形成した電解質膜前駆体におけるPETフィルム側とは反対側の表面に直径約18mmの円形の白金電極板を貼付した後、前駆体とPETフィルムとを剥離し、前駆体全体に電解液C0.05gをスポイトで塗布して含浸させ、室温で3時間放置した。   Next, after attaching a circular platinum electrode plate having a diameter of about 18 mm to the surface opposite to the PET film side of the formed electrolyte membrane precursor, the precursor and the PET film are peeled off, and the electrolyte solution is applied to the entire precursor. 0.05 g of C was applied and impregnated with a dropper, and left at room temperature for 3 hours.

この放置により電解液Cが十分に電解質膜前駆体に含浸したことを確認後、電解液が含浸した前駆体を既に貼付した白金電極板とともに狭持するように、直径約18mmの円形の白金電極板を新たに前駆体に貼付し、全体を50℃において7日間保持して二次架橋させ、電解質膜と当該電解質膜を狭持する一対の白金電極とが一体化された電解質膜サンプル(サンプル6)を作製した。   After confirming that the electrolyte solution precursor was sufficiently impregnated with the electrolytic solution C by this standing, a circular platinum electrode having a diameter of about 18 mm was sandwiched with the platinum electrode plate on which the precursor impregnated with the electrolytic solution was already attached. An electrolyte membrane sample (sample) in which a plate is newly affixed to a precursor, and the whole is held at 50 ° C. for 7 days for secondary crosslinking, and an electrolyte membrane and a pair of platinum electrodes sandwiching the electrolyte membrane are integrated. 6) was produced.

なお、サンプル6の作製とは別に、電解液を含浸させる前の電解質膜前駆体のゲル分率および膨潤度をサンプル1と同様に評価した。   In addition to the preparation of Sample 6, the gel fraction and the degree of swelling of the electrolyte membrane precursor before impregnation with the electrolytic solution were evaluated in the same manner as Sample 1.

−サンプル7(比較例)−
サンプル1と同様にして、PETフィルム上に電解質膜前駆体(厚さ約10μm、直径約20mmの円板状)を形成した。
-Sample 7 (comparative example)-
In the same manner as Sample 1, an electrolyte membrane precursor (a disk shape having a thickness of about 10 μm and a diameter of about 20 mm) was formed on a PET film.

次に、形成した電解質膜前駆体におけるPETフィルム側とは反対側の表面に直径約18mmの円形の白金電極板を貼付した後、前駆体とPETフィルムとを剥離し、前駆体全体に電解液D0.05gをスポイトで塗布して含浸させ、室温で3時間放置した。   Next, after attaching a circular platinum electrode plate having a diameter of about 18 mm to the surface opposite to the PET film side of the formed electrolyte membrane precursor, the precursor and the PET film are peeled off, and the electrolyte solution is applied to the entire precursor. D0.05g was applied and impregnated with a dropper, and left at room temperature for 3 hours.

この放置により電解液Dが十分に電解質膜前駆体に含浸したことを確認後、電解液が含浸した前駆体を既に貼付した白金電極板とともに狭持するように、直径約18mmの円形の白金電極板を新たに前駆体に貼付し、全体を50℃において7日間保持して二次架橋させ、比較例である電解質膜サンプル(サンプル7)を作製した。   After confirming that the electrolyte D was sufficiently impregnated with the electrolyte D by this standing, a circular platinum electrode having a diameter of about 18 mm was sandwiched between the precursor impregnated with the electrolyte and the platinum electrode plate already attached. A plate was newly affixed to the precursor, and the whole was held at 50 ° C. for 7 days for secondary crosslinking to produce an electrolyte membrane sample (sample 7) as a comparative example.

−サンプル8(比較例)−
ポリマー溶液として溶液Aの代わりに溶液Fを用い、ポリマー溶液に加える第3の架橋剤(3官能イソシアネート)の量を、溶液F中のポリマー100重量部に対して18重量部とした以外は、サンプル1と同様にして、PETフィルム上に電解質膜前駆体(厚さ約10μm、直径約20mmの円板状)を形成した。
-Sample 8 (comparative example)-
The solution F is used instead of the solution A as the polymer solution, and the amount of the third crosslinking agent (trifunctional isocyanate) added to the polymer solution is 18 parts by weight with respect to 100 parts by weight of the polymer in the solution F. In the same manner as Sample 1, an electrolyte membrane precursor (a disk shape having a thickness of about 10 μm and a diameter of about 20 mm) was formed on a PET film.

次に、形成した電解質膜前駆体におけるPETフィルム側とは反対側の表面に直径約18mmの円形の白金電極板を貼付した後、前駆体とPETフィルムとを剥離し、前駆体全体に電解液A0.05gをスポイトで塗布して含浸させ、室温で3時間放置した。   Next, after attaching a circular platinum electrode plate having a diameter of about 18 mm to the surface opposite to the PET film side of the formed electrolyte membrane precursor, the precursor and the PET film are peeled off, and the electrolyte solution is applied to the entire precursor. 0.05 g of A was applied with a dropper and impregnated, and left at room temperature for 3 hours.

この放置により電解液Aが十分に電解質膜前駆体に含浸したことを確認後、電解液が含浸した前駆体を既に貼付した白金電極板とともに狭持するように、直径約18mmの円形の白金電極板を新たに前駆体に貼付し、全体を50℃において7日間保持して二次架橋させ、比較例である電解質膜サンプル(サンプル8)を作製した。   After confirming that the electrolyte membrane precursor was sufficiently impregnated with the electrolytic solution A by this standing, a circular platinum electrode having a diameter of about 18 mm was sandwiched with the platinum electrode plate to which the precursor impregnated with the electrolytic solution was already attached. A plate was newly affixed to the precursor, and the whole was held at 50 ° C. for 7 days for secondary crosslinking to produce an electrolyte membrane sample (sample 8) as a comparative example.

なお、サンプル8の作製とは別に、電解液を含浸させる前の電解質膜前駆体のゲル分率および膨潤度をサンプル1と同様に評価した。   In addition to the preparation of Sample 8, the gel fraction and the degree of swelling of the electrolyte membrane precursor before impregnation with the electrolytic solution were evaluated in the same manner as Sample 1.

−サンプル9(比較例)−
第3の架橋剤(3官能イソシアネート)の代わりにイソシアン酸ベンジルを、溶液A中のポリマー100重量部に対して1重量部加えた以外は、サンプル1と同様にして、PETフィルム上に電解質膜前駆体(厚さ約10μm、直径約20mmの円板状)を形成した。
-Sample 9 (comparative example)-
An electrolyte membrane was formed on the PET film in the same manner as in Sample 1, except that 1 part by weight of benzyl isocyanate was added to 100 parts by weight of the polymer in Solution A instead of the third crosslinking agent (trifunctional isocyanate). A precursor (a disk shape having a thickness of about 10 μm and a diameter of about 20 mm) was formed.

次に、形成した電解質膜前駆体におけるPETフィルム側とは反対側の表面に直径約18mmの円形の白金電極板を貼付した後、前駆体とPETフィルムとを剥離し、前駆体全体に電解液A0.05gをスポイトで塗布して含浸させ、室温で3時間放置した。   Next, after attaching a circular platinum electrode plate having a diameter of about 18 mm to the surface opposite to the PET film side of the formed electrolyte membrane precursor, the precursor and the PET film are peeled off, and the electrolyte solution is applied to the entire precursor. 0.05 g of A was applied with a dropper and impregnated, and left at room temperature for 3 hours.

この放置により電解液Aが十分に電解質膜前駆体に含浸したことを確認後、電解液が含浸した前駆体を既に貼付した白金電極板とともに狭持するように、直径約18mmの円形の白金電極板を新たに前駆体に貼付し、全体を50℃において7日間保持して二次架橋させ、比較例である電解質膜サンプル(サンプル9)を作製した。   After confirming that the electrolyte membrane precursor was sufficiently impregnated with the electrolytic solution A by this standing, a circular platinum electrode having a diameter of about 18 mm was sandwiched with the platinum electrode plate to which the precursor impregnated with the electrolytic solution was already attached. A plate was newly affixed to the precursor, and the whole was held at 50 ° C. for 7 days for secondary crosslinking to produce an electrolyte membrane sample (sample 9) as a comparative example.

なお、サンプル9の作製とは別に、電解液を含浸させる前の電解質膜前駆体のゲル分率および膨潤度をサンプル1と同様に評価したところ、ゲル分率はほぼ0%であり、また、当該前駆体全体が酢酸エチルに溶解してしまったために膨潤度の評価はできなかった。   In addition to the preparation of Sample 9, when the gel fraction and swelling degree of the electrolyte membrane precursor before impregnating the electrolyte solution were evaluated in the same manner as Sample 1, the gel fraction was almost 0%, Since the whole precursor was dissolved in ethyl acetate, the degree of swelling could not be evaluated.

−サンプル10(比較例)−
サンプル1と同様にして、PETフィルム上に電解質膜前駆体(厚さ約10μm、直径約20mmの円板状)を形成した。
-Sample 10 (comparative example)-
In the same manner as Sample 1, an electrolyte membrane precursor (a disk shape having a thickness of about 10 μm and a diameter of about 20 mm) was formed on a PET film.

次に、形成した電解質膜前駆体におけるPETフィルム側とは反対側の表面に直径約18mmの円形の白金電極板を貼付した後、前駆体とPETフィルムとを剥離し、前駆体全体に電解液E0.05gをスポイトで塗布して含浸させ、室温で3時間放置した。   Next, after attaching a circular platinum electrode plate having a diameter of about 18 mm to the surface opposite to the PET film side of the formed electrolyte membrane precursor, the precursor and the PET film are peeled off, and the electrolyte solution is applied to the entire precursor. E0.05 g was applied and impregnated with a dropper, and allowed to stand at room temperature for 3 hours.

この放置により電解液Eが十分に電解質膜前駆体に含浸したことを確認後、電解液が含浸した前駆体を既に貼付した白金電極板とともに狭持するように、直径約18mmの円形の白金電極板を新たに前駆体に貼付して、比較例である電解質膜サンプル(サンプル10)とした。   After confirming that the electrolyte solution precursor was sufficiently impregnated with the electrolytic solution E by this standing, a circular platinum electrode having a diameter of about 18 mm was sandwiched with the platinum electrode plate already pasted with the precursor impregnated with the electrolytic solution. A plate was newly attached to the precursor to obtain an electrolyte membrane sample (sample 10) as a comparative example.

−サンプル11(従来例)−
実施例および比較例の各電解質膜サンプルとは別に、従来例として、ポリプロピレン多孔質膜(厚さ20μm)に電解液Eを含浸させた後、電解液を含浸させた当該多孔質膜を一対の白金電極板(直径18mmの円形)により狭持して、従来例である電解質膜サンプル(サンプル11)とした。
-Sample 11 (conventional example)-
Separately from the electrolyte membrane samples of Examples and Comparative Examples, as a conventional example, a polypropylene porous membrane (thickness 20 μm) was impregnated with an electrolytic solution E, and then the porous membrane impregnated with the electrolytic solution was paired with It was sandwiched by a platinum electrode plate (circular with a diameter of 18 mm) to obtain a conventional electrolyte membrane sample (sample 11).

−サンプル12−
ポリマー溶液として溶液Aの代わりに溶液Gを用いた以外は、サンプル1と同様にして、PETフィルム上に電解質膜前駆体(厚さ約10μm、直径約20mmの円板状)を形成した。
-Sample 12-
An electrolyte membrane precursor (disk shape having a thickness of about 10 μm and a diameter of about 20 mm) was formed on a PET film in the same manner as in Sample 1, except that the solution G was used instead of the solution A as the polymer solution.

次に、形成した電解質膜前駆体におけるPETフィルム側とは反対側の表面に直径約18mmの円形の白金電極板を貼付した後、前駆体とPETフィルムとを剥離し、前駆体全体に電解液A0.05gをスポイトで塗布して含浸させ、室温で3時間放置した。   Next, after attaching a circular platinum electrode plate having a diameter of about 18 mm to the surface opposite to the PET film side of the formed electrolyte membrane precursor, the precursor and the PET film are peeled off, and the electrolyte solution is applied to the entire precursor. 0.05 g of A was applied with a dropper and impregnated, and left at room temperature for 3 hours.

この放置により電解液Aが十分に電解質膜前駆体に含浸したことを確認後、電解液が含浸した前駆体を既に貼付した白金電極板とともに狭持するように、直径約18mmの円形の白金電極板を新たに前駆体に貼付し、全体を50℃において7日間保持して二次架橋させ、電解質膜と当該電解質膜を狭持する一対の白金電極とが一体化された電解質膜サンプル(サンプル12)を作製した。   After confirming that the electrolyte membrane precursor was sufficiently impregnated with the electrolytic solution A by this standing, a circular platinum electrode having a diameter of about 18 mm was sandwiched with the platinum electrode plate to which the precursor impregnated with the electrolytic solution was already attached. An electrolyte membrane sample (sample) in which a plate is newly affixed to a precursor, and the whole is held at 50 ° C. for 7 days for secondary crosslinking, and an electrolyte membrane and a pair of platinum electrodes sandwiching the electrolyte membrane are integrated. 12) was produced.

なお、サンプル12の作製とは別に、電解液を含浸させる前の電解質膜前駆体のゲル分率および膨潤度をサンプル1と同様に評価した。   In addition to the preparation of Sample 12, the gel fraction and the degree of swelling of the electrolyte membrane precursor before impregnation with the electrolytic solution were evaluated in the same manner as Sample 1.

(イオン伝導率の評価)
このようにして作製した各電解質膜サンプルのイオン伝導率を測定した。測定は、以下のように行った。
(Evaluation of ionic conductivity)
The ionic conductivity of each electrolyte membrane sample thus produced was measured. The measurement was performed as follows.

各電解質膜サンプルの白金電極板にインピーダンス測定装置(263Aポテンショスタット+5210アンプ:プリンストン アプライド リサーチ社製)を接続し、全体をアルゴン雰囲気下のグローブボックスに収容して23℃に保持した状態で、複素インピーダンス解析法により、高周波数側の円弧と低周波数側の直線との交点である実数インピーダンス成分R(Ω)を求めた。電解質サンプルのイオン伝導率σ(S/cm)は、インピーダンス成分R(Ω)、電解質サンプルの厚さd(cm)、および、白金電極と電解質サンプルとが接触している面積A(cm2)から、式σ=d/(R・A)により求めた。 An impedance measuring device (263A potentiostat + 5210 amplifier: manufactured by Princeton Applied Research) is connected to the platinum electrode plate of each electrolyte membrane sample, and the whole is housed in a glove box under an argon atmosphere and kept at 23 ° C. A real impedance component R (Ω), which is the intersection of the arc on the high frequency side and the straight line on the low frequency side, was obtained by the impedance analysis method. The ionic conductivity σ (S / cm) of the electrolyte sample is the impedance component R (Ω), the thickness d (cm) of the electrolyte sample, and the area A (cm 2 ) where the platinum electrode is in contact with the electrolyte sample. From this, it was obtained by the formula σ = d / (R · A).

(耐熱性の評価)
各電解質膜サンプルをアルゴン雰囲気下のグローブボックスに収容して150℃で1時間加熱した後に、室温に戻し、その形状の変化を目視により確認した。電解質膜の形状の変化(収縮)が大きく、そのイオン伝導率を測定できない場合を「×」とし、形状変化の程度が小さいかあるいはほとんど見られず、そのイオン伝導率を測定できる場合を「○」とした。「○」のサンプルについては、上記方法により、再度イオン伝導率を評価した。
(Evaluation of heat resistance)
Each electrolyte membrane sample was housed in a glove box under an argon atmosphere, heated at 150 ° C. for 1 hour, then returned to room temperature, and the change in shape was visually confirmed. When the electrolyte membrane shape change (shrinkage) is large and its ionic conductivity cannot be measured, “X” is indicated, and when the degree of shape change is small or rarely observed and the ionic conductivity can be measured, “○ " About the sample of "(circle)", the ionic conductivity was evaluated again by the said method.

各電解質膜前駆体におけるゲル分率および膨潤度の評価結果を以下の表2に、各電解質膜サンプルのイオン伝導率および耐熱性の評価結果を以下の表3に示す。   The evaluation results of the gel fraction and swelling degree of each electrolyte membrane precursor are shown in Table 2 below, and the ionic conductivity and heat resistance evaluation results of each electrolyte membrane sample are shown in Table 3 below.

Figure 2008204858
Figure 2008204858

Figure 2008204858
Figure 2008204858

表2、3に示すように、実施例サンプル1〜6および12では、23℃において、5×10-5(S/cm)以上の高いイオン伝導率が得られた。また、150℃1時間の加熱後も電解質膜の収縮の程度は小さく、2×10-5(S/cm)以上の高いイオン伝導率を確保できた。 As shown in Tables 2 and 3, in Example Samples 1 to 6 and 12, a high ion conductivity of 5 × 10 −5 (S / cm) or more was obtained at 23 ° C. Further, even after heating at 150 ° C. for 1 hour, the degree of shrinkage of the electrolyte membrane was small, and a high ion conductivity of 2 × 10 −5 (S / cm) or more could be secured.

これに対して、上記mの値が2であるアルキレンオキシドオリゴマーを含む電解液を前駆体に含浸させた比較例サンプル7、前駆体のゲル分率が0である(即ち、前駆体が部分架橋ポリマーではない)比較例サンプル9、LiTFSI、エチレンカーボネートおよびジメチルカーボネートの混合物である電解液Eを前駆体に含浸させた比較例サンプル10、ならびに、従来例サンプル11では、その形成直後こそ、2×10-5(S/cm)以上の高いイオン伝導率が得られたものの、150℃1時間の加熱により、電解質膜が大きく収縮して加熱後のイオン伝導率を測定できなかった。また、前駆体の膨潤率が1.5と、2未満の値である比較例サンプル8では、150℃1時間の加熱後もイオン伝導率の測定は可能であったが、その値は8×10-7(S/cm)と実施例サンプルに比べて大きく低下した。 In contrast, Comparative Example Sample 7 in which the precursor was impregnated with an electrolyte containing an alkylene oxide oligomer having a value of m of 2, and the precursor had a gel fraction of 0 (that is, the precursor was partially crosslinked) In Comparative Example Sample 9, which is not a polymer), LiTFSI, Comparative Example Sample 10 in which an electrolytic solution E which is a mixture of ethylene carbonate and dimethyl carbonate is impregnated in the precursor, and Conventional Example Sample 11, 2 × Although a high ion conductivity of 10 −5 (S / cm) or higher was obtained, the electrolyte membrane was greatly contracted by heating at 150 ° C. for 1 hour, and the ion conductivity after heating could not be measured. Further, in the comparative sample 8 in which the swelling rate of the precursor was 1.5 and a value less than 2, the ionic conductivity could be measured even after heating at 150 ° C. for 1 hour, but the value was 8 × 10 -7 (S / cm), which was significantly lower than that of the example sample.

本発明によれば、高温下での変形が抑制された電極一体型高分子電解質膜を提供でき、この電解質膜によれば、高温雰囲気となった場合にも、従来の素子よりも機能を長く保持できる電気化学素子を実現できる。   According to the present invention, it is possible to provide an electrode-integrated polymer electrolyte membrane in which deformation at high temperatures is suppressed. According to this electrolyte membrane, the function is longer than that of a conventional device even in a high temperature atmosphere. An electrochemical element that can be held can be realized.

本発明の電解質膜は、一次電池、二次電池、電気二重層キャパシタ、ケミカルコンデンサー、センサー、エレクトロクロミックデバイスなど、各種の電気化学素子に用いることができる。   The electrolyte membrane of the present invention can be used for various electrochemical elements such as primary batteries, secondary batteries, electric double layer capacitors, chemical capacitors, sensors, and electrochromic devices.

本発明の電気化学素子の一例を示す模式図である。It is a schematic diagram which shows an example of the electrochemical element of this invention.

符号の説明Explanation of symbols

1 電気化学素子(リチウム二次電池)
2 負極
3 正極
4 電解質膜
5 負極集電体
6 正極集電体
7 ケース
8 封口板
9 ガスケット
1 Electrochemical element (lithium secondary battery)
2 Negative Electrode 3 Positive Electrode 4 Electrolyte Membrane 5 Negative Electrode Current Collector 6 Positive Electrode Current Collector 7 Case 8 Sealing Plate 9 Gasket

Claims (13)

アルキレンオキシド基を側鎖に有する以下の化学式(1)に示す第1の構造単位を含む部分架橋ポリマーからなる膜状の電解質膜前駆体を、
イオン種と以下の化学式(2)に示すアルキレンオキシドオリゴマーとを含む電解液を含浸させ、かつ、一対の電極により狭持した状態で、さらに架橋させることにより、前記前駆体を電解質膜とするとともに前記一対の電極と一体化させて得た電極一体型高分子電解質膜。
Figure 2008204858
Figure 2008204858
上記式(1)において、R1は、HまたはCH3であり、R2は、CH3またはC26であり、nは、2以上12以下の自然数である。
上記式(2)において、R3は、CH3、C26またはC38であり、R4は、HまたはCH3であり、mは、3以上12以下の自然数である。
A membrane-like electrolyte membrane precursor comprising a partially cross-linked polymer containing a first structural unit represented by the following chemical formula (1) having an alkylene oxide group in the side chain,
The precursor is used as an electrolyte membrane by impregnating an electrolytic solution containing an ionic species and an alkylene oxide oligomer represented by the following chemical formula (2) and further cross-linking in a state of being sandwiched by a pair of electrodes. An electrode-integrated polymer electrolyte membrane obtained by integrating with the pair of electrodes.
Figure 2008204858
Figure 2008204858
In the above formula (1), R 1 is H or CH 3 , R 2 is CH 3 or C 2 H 6 , and n is a natural number of 2 or more and 12 or less.
In the above formula (2), R 3 is CH 3 , C 2 H 6 or C 3 H 8 , R 4 is H or CH 3 , and m is a natural number of 3 or more and 12 or less.
酢酸エチルに不溶な部分の重量から求めた前記前駆体のゲル分率が20%以上である請求項1に記載の電極一体型高分子電解質膜。   2. The electrode-integrated polymer electrolyte membrane according to claim 1, wherein the gel fraction of the precursor determined from the weight of a portion insoluble in ethyl acetate is 20% or more. 酢酸エチルに不溶な部分の重量から求めた前記前駆体のゲル分率が55%以上である請求項1に記載の電極一体型高分子電解質膜。   2. The electrode-integrated polymer electrolyte membrane according to claim 1, wherein the gel fraction of the precursor obtained from the weight of a portion insoluble in ethyl acetate is 55% or more. 酢酸エチルに含浸させたときの前記前駆体の膨潤率が2倍以上である請求項1に記載の電極一体型高分子電解質膜。   The electrode-integrated polymer electrolyte membrane according to claim 1, wherein the swelling rate of the precursor when impregnated with ethyl acetate is 2 times or more. 酢酸エチルに含浸させたときの前記前駆体の膨潤率が5倍以上である請求項1に記載の電極一体型高分子電解質膜。   The electrode-integrated polymer electrolyte membrane according to claim 1, wherein the swelling rate of the precursor when impregnated with ethyl acetate is 5 times or more. 前記nが、3以上11以下の自然数である請求項1に記載の電極一体型高分子電解質膜。   2. The electrode-integrated polymer electrolyte membrane according to claim 1, wherein n is a natural number of 3 or more and 11 or less. 前記mが、4以上11以下の自然数である請求項1に記載の電極一体型高分子電解質膜。   The electrode-integrated polymer electrolyte membrane according to claim 1, wherein the m is a natural number of 4 or more and 11 or less. 前記電解液が架橋剤をさらに含む請求項1に記載の電極一体型高分子電解質膜。   The electrode-integrated polymer electrolyte membrane according to claim 1, wherein the electrolytic solution further contains a crosslinking agent. 前記部分架橋ポリマーが、前記イオン種の存在下で架橋反応を起こす第2の構造単位をさらに含む請求項1に記載の電極一体型高分子電解質膜。   The electrode-integrated polymer electrolyte membrane according to claim 1, wherein the partially crosslinked polymer further comprises a second structural unit that causes a crosslinking reaction in the presence of the ionic species. 前記第2の構造単位が、オキセタン基を側鎖に有する以下の化学式(3)に示す構造単位である請求項9に記載の電極一体型高分子電解質膜。
Figure 2008204858
上記式(3)において、R5は、HまたはCH3である。
The electrode-integrated polymer electrolyte membrane according to claim 9, wherein the second structural unit is a structural unit represented by the following chemical formula (3) having an oxetane group in a side chain.
Figure 2008204858
In the above formula (3), R 5 is H or CH 3 .
前記電解質膜の内部に、平均粒径にして1〜100μm程度のサイズの絶縁性粒子が配置されている請求項1に記載の電極一体型高分子電解質膜。   2. The electrode-integrated polymer electrolyte membrane according to claim 1, wherein insulating particles having an average particle size of about 1 to 100 μm are disposed inside the electrolyte membrane. 前記イオン種がリチウムイオンである請求項1に記載の電極一体型高分子電解質膜。   The electrode-integrated polymer electrolyte membrane according to claim 1, wherein the ionic species is lithium ion. 一対の電極と、
前記一対の電極によって狭持された電解質膜とを含む電気化学素子であって、
前記一対の電極および電解質膜として、請求項1に記載の電極一体型高分子電解質膜を備える電気化学素子。
A pair of electrodes;
An electrochemical device including an electrolyte membrane sandwiched between the pair of electrodes,
An electrochemical device comprising the electrode-integrated polymer electrolyte membrane according to claim 1 as the pair of electrodes and the electrolyte membrane.
JP2007040853A 2007-02-21 2007-02-21 Electrode integrated polymer electrolyte membrane and electrochemical element using the same Pending JP2008204858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040853A JP2008204858A (en) 2007-02-21 2007-02-21 Electrode integrated polymer electrolyte membrane and electrochemical element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040853A JP2008204858A (en) 2007-02-21 2007-02-21 Electrode integrated polymer electrolyte membrane and electrochemical element using the same

Publications (1)

Publication Number Publication Date
JP2008204858A true JP2008204858A (en) 2008-09-04

Family

ID=39782121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040853A Pending JP2008204858A (en) 2007-02-21 2007-02-21 Electrode integrated polymer electrolyte membrane and electrochemical element using the same

Country Status (1)

Country Link
JP (1) JP2008204858A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099938B1 (en) * 2012-02-23 2012-12-19 株式会社日立製作所 Nonaqueous electrolyte secondary battery separator, method for producing the same, and nonaqueous electrolyte secondary battery
JP2014504788A (en) * 2011-01-20 2014-02-24 エルジー・ケム・リミテッド ELECTROLYTE FOR ELECTROCHEMICAL DEVICE, PROCESS FOR PRODUCING THE SAME, AND ELECTROCHEMICAL DEVICE HAVING THE SAME
CN111574705A (en) * 2020-05-21 2020-08-25 西安近代化学研究所 Dual-curing nitrate polyether and synthetic method thereof
WO2024111618A1 (en) * 2022-11-25 2024-05-30 キヤノン株式会社 Polymer electrolyte and secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504788A (en) * 2011-01-20 2014-02-24 エルジー・ケム・リミテッド ELECTROLYTE FOR ELECTROCHEMICAL DEVICE, PROCESS FOR PRODUCING THE SAME, AND ELECTROCHEMICAL DEVICE HAVING THE SAME
US8852815B2 (en) 2011-01-20 2014-10-07 Lg Chem, Ltd. Electrolyte for electrochemical device, method for preparing the same and electrochemical device including the same
JP5099938B1 (en) * 2012-02-23 2012-12-19 株式会社日立製作所 Nonaqueous electrolyte secondary battery separator, method for producing the same, and nonaqueous electrolyte secondary battery
CN111574705A (en) * 2020-05-21 2020-08-25 西安近代化学研究所 Dual-curing nitrate polyether and synthetic method thereof
CN111574705B (en) * 2020-05-21 2022-10-25 西安近代化学研究所 Dual-curing nitrate polyether and synthetic method thereof
WO2024111618A1 (en) * 2022-11-25 2024-05-30 キヤノン株式会社 Polymer electrolyte and secondary battery

Similar Documents

Publication Publication Date Title
Costa et al. Poly (vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems
KR100982822B1 (en) Method for producing battery using reactive polymer-supported porous film for battery separator, and electrode/porous assembly
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
KR101498330B1 (en) Battery separator and method for producing same, and lithium ion secondary battery and method for producing same
KR100846020B1 (en) Crosslinking polymer-supported porous film for battery separator and method for producing battery using the same
WO2008032658A1 (en) Novel polymer electrolyte and electrochemical device
JP2007106875A (en) (meth)acrylic polymer, its production method, polymeric solid electrolite and electro chemical element using the same
KR20190030583A (en) Solid electrolyte composition for secondary battery and solid electrolyte
JP5260075B2 (en) Reactive polymer-supported porous film for battery separator and electrode / separator assembly obtained therefrom
Sun et al. Highly conductive and reusable electrolyte based on sodium polyacrylate composite for flexible Al-air batteries
TWI740221B (en) Improved solid electrolyte for organic batteries
JP2008204858A (en) Electrode integrated polymer electrolyte membrane and electrochemical element using the same
JP2007122902A (en) Manufacturing method of lithium ion battery
US8420247B2 (en) Crosslinking polymer-supported porous film for battery separator and use thereof
Jalbert et al. A 3D network based on poly (ε-caprolactone) macromonomers as polymer electrolyte for solid state lithium metal batteries
JP5184004B2 (en) Lithium ion secondary battery
JP2007157569A (en) Manufacturing method of reactant polymer carrying porous film for battery separator and battery using the same
JP2002100404A (en) Resin composition for gel high polymer solid electrolyte, composition for the gel high polymer solid electrolyte, the gel high polymer solid electrolyte using them, composite electrode and electrochemical device
JP6971105B2 (en) Gel electrolytes, hard gel electrolytes, and electrochemical devices
KR20200110740A (en) A composition for a lithium ion secondary battery separator, a two-component composition for a lithium ion secondary battery separator, and a method for manufacturing a separator for a lithium ion secondary battery, and a method for manufacturing a lithium ion secondary battery
JP2006219561A (en) Polymer electrolyte, electrolyte film using the same and electrochemical element
JP4985959B2 (en) Organic solid electrolyte and secondary battery using the same
Nguyen et al. Enhanced Performance of Lithium Polymer Batteries Based on the Nickel-Rich LiNi0. 8Mn0. 1Co0. 1O2 Cathode Material and Dual Salts
JP2004335210A (en) Manufacturing method of reactive polymer-carrying porous film for separator for battery and battery using it
JP4767644B2 (en) POLYMER ELECTROLYTE, ELECTROLYTE FILM AND ELECTROCHEMICAL DEVICE USING SAME