WO2006054779A1 - Charge storing rubber and electric double-layer capacitor, and lithium battery employing it - Google Patents

Charge storing rubber and electric double-layer capacitor, and lithium battery employing it Download PDF

Info

Publication number
WO2006054779A1
WO2006054779A1 PCT/JP2005/021493 JP2005021493W WO2006054779A1 WO 2006054779 A1 WO2006054779 A1 WO 2006054779A1 JP 2005021493 W JP2005021493 W JP 2005021493W WO 2006054779 A1 WO2006054779 A1 WO 2006054779A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
electrode
active material
battery
storage rubber
Prior art date
Application number
PCT/JP2005/021493
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Tachibana
Tatuo Nishina
Takashi Endo
Tateaki Ogata
Shinsuke Ohki
Yoshiki Tanaka
Takushi Matsushita
Yasuyuki Okamoto
Mami Endo
Tsuyoshi Watanabe
Original Assignee
Fukoku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukoku Co., Ltd. filed Critical Fukoku Co., Ltd.
Publication of WO2006054779A1 publication Critical patent/WO2006054779A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a power storage rubber and an electric double layer capacitor and a lithium battery using the same as an electrode, and more particularly to a technique for making a rubber a power storage rubber that functions as an electrode. Background technology.
  • Secondary batteries and capacitors are devices that store electricity.
  • secondary batteries are lead-acid batteries (SLI, power, stationary, and portable), nickel-powered Dome battery (open-type pocket type, open-type)
  • SLI lead-acid batteries
  • Dome battery open-type pocket type, open-type
  • capacitors electric double layer capacitors, redox capacitors, etc. have been put into practical use.
  • This lithium ion battery has a configuration in which a positive electrode and a negative electrode are disposed in a non-aqueous electrolyte solution, and a positive electrode active material or a negative electrode active material is bound to a current collector surface on each electrode plate. is there.
  • the positive and negative electrode plates used in this battery are generally kneaded in a solvent with an active material (positive electrode active material or negative electrode active material), conductive material (electroconductive dispersion material), binder (binder), etc. Dispersed into a mixture, applied to one or both sides of the current collector, dried, and then pressed as necessary, and then slit into a predetermined shape.
  • PVDF polyvinylidene fluoride
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-133275
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-2 28 1 9 7
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-1 1 0 1 45
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-55493
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-288 782
  • the elastomer binder for the electrode is non-rigid and highly malleable, so it deteriorates.
  • the active material from detaching it is possible to maintain the contact between the active material particles ”(paragraph [0036] of Patent Document 1),
  • the binder (rubber) is the It can contain only about 10% by mass (Patent Document 1, Claim 23, Patent Document 2, Paragraph [0 0 3 0], Patent Document 3, Claims 1 to 4, Patent Document 4 Claims 1 and 9, and paragraph [0 0 2 9]) of Patent Document 5.
  • “collecting powdered or granular electrode active materials” An electrode bound to a body, comprising a non-aqueous electrolyte and conductive powder, and an isocyanate compound comprising a polyol compound having two or more hydroxyl groups per molecule having an average molecular weight of 60 to 600
  • Patent Document 6 Japanese Patent Application Laid-Open No. 11-9 7 0 26
  • Patent Document 6 states that “Because the binder has almost no electron conductivity and ionic conductivity, the binder inhibits the oxidation-reduction reaction of the electrode active material.
  • a polymer with a three-dimensional network structure hereinafter referred to as cross-linked A composition comprising an adhesive rubber-like compound containing a non-aqueous electrolyte solution (hereinafter referred to as a binder electrolyte solution) comprising an organic solvent in which conductive powder and electrolyte are dispersed and dissolved in a polymer).
  • the binder is characterized in that the electrode active materials and the electrode active material and the current collector are bound to each other.
  • the binder electrolyte is an ion. Conductivity, conductive powder is responsible for electronic conductivity " , “It has a binding function similar to that of a material used as a conventional binder, and has ionic conductivity and electronic conductivity not found in conventional materials” (paragraph [0 0 0 7]).
  • the adhesive rubber-like compound is not a support, but an electrolyte (ion-conductive dispersion material), conductive powder (electronic Conductive dispersion material), electrode active material is not dispersed on the support.
  • Patent Document 6 states that “the mixing ratio of the electrode active material and the binder composition varies depending on the type of the electrode active material used and the required mechanical strength, It is preferable that the binder is about 10 to 50 wt% with respect to the total amount of the electrode active material ”(paragraph [0 0 1 6]). More than conventional Although it is shown that the electrode active material is applied to the current collector and dried, the binder solution is applied onto the film (paragraph [0 0 2 2]) alone does not show that an electrode active material is kneaded with rubber to obtain a molded body mainly composed of a rubber-like binder.
  • the above-mentioned conventional lithium battery and electric double layer capacitor employ a coating process in close contact with the current collector, so that the drying process is costly, and the current collector and compound (mixture) It was not possible to sufficiently solve the problems of adhesion to the substrate and separation due to expansion and contraction of the active material accompanying the reaction.
  • the current collector since the current collector was responsible for maintaining the mechanical strength, there was a problem that the amount of active material in the battery could not be increased.
  • a flammable organic solvent organic solvent
  • the present invention is intended to solve the above problems, and by utilizing the adhesion and flexibility of rubber, it is mainly rubber and does not rely on a current collector to maintain mechanical strength.
  • the problem is to obtain a storage rubber (electrode) and to obtain an electrode without using a coating process for the current collector.
  • An electricity storage rubber characterized in that an ion conductive dispersion material and an electron conductive dispersion material are dispersed in a rubber support.
  • a power storage rubber characterized in that pores through which an ion conductive liquid permeates are dispersed in a rubber support and an electron conductive dispersing material is dispersed.
  • Ion conductive dispersion material Ion conductive dispersion material, electron conductive dispersion material and battery active material on rubber support It is an electricity storage rubber for electrodes characterized by being dispersed.
  • An electricity storage rubber for an electrode characterized in that an electron conductive dispersion material and a battery active material are dispersed in a rubber support that does not contain a ionic conductive dispersion material.
  • the rubber support is swelled by an organic solvent, so that the ionic conductive liquid penetrates and an ion path becomes possible.
  • the electron conductive dispersion material is one or more carbon powders selected from acetylene black, ketjen black, and graphite powder.
  • the electrode storage rubber according to any one of the above.
  • Two or more kinds of electronically conductive dispersing material, ionic conductive dispersing material and battery active material are kneaded and dispersed in rubber, so the rubber has good adhesion and flexibility, so that it can adhere to the current collector. In addition, it has the effect of following the volume change of the active material accompanying charge / discharge. Thereby, rate characteristics and cycle characteristics can be improved.
  • FIG. 1 is a diagram schematically showing a conventional battery structure and a battery structure of the rubber main role of the present invention.
  • FIG. 2 is a diagram showing charge / discharge of the storage rubber 5 A / cm 2 (1 cyc 1 eg).
  • FIG. 3 is a diagram showing charge / discharge of the storage rubber at 5 ⁇ A / cm 2 (2 cyc 1 eg).
  • FIG. 4 is a diagram showing charge / discharge 1 ⁇ AZcm 2 (3 cyc 1 eg) of the storage rubber.
  • FIG. 5 is a diagram (Example 2) showing a cyclic voltammogram (sweep speed 0.1 mV / sec) of the electricity storage rubber (without active material).
  • FIG. 1 is a diagram (Example 1) showing lm V / sec).
  • Figure 7 shows the crosscut test
  • FIG. 8 is a diagram showing a triode cell fabricated for CV measurement using a storage rubber electrode as a sample electrode.
  • FIG. 9 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 4.
  • FIG. 10 is a view showing the results of CV measurement of the electricity storage rubber electrode of Example 5.
  • FIG. 11 shows the results of CV measurement of the electricity storage rubber electrode of Example 6.
  • FIG. 12 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 7.
  • FIG. 13 shows the results of CV measurement of the electricity storage rubber electrode of Example 8.
  • FIG. 14 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 9.
  • FIG. 15 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 10.
  • FIG. 16 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 11;
  • FIG. 17 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 12;
  • FIG. 18 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 13;
  • FIG. 19 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 14;
  • FIG. 20 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 15.
  • FIG. 21 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 16;
  • FIG. 22 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 17;
  • FIG. 23 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 18;
  • FIG. 24 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 19; (Explanation of symbols)
  • the present inventors have discovered that it is possible to construct a battery having excellent rate characteristics and cycle characteristics by utilizing the adhesion and flexibility of rubber. .
  • the electrode layer with a rubber support can be expected to increase the capacity of the battery in order to maintain mechanical strength. is there.
  • ion conductive dispersion solid electrolyte
  • electronic conductivity Dispersant conducting aid
  • battery active material battery active material
  • the rubber since the rubber is not a solid solvent but used as a support, it functions not as a solid electrolyte but as a battery electrode (positive electrode or negative electrode) mixture.
  • a battery conductive material in which an ion conductive dispersion material and an electron conductive dispersion material are dispersed in a rubber support without dispersing the battery active material, or ion conductivity in the rubber support.
  • the electricity storage rubber which is a dispersion of the pores through which the liquid penetrates and an electron conductive dispersion material, functions as an electrode of the electric double layer capacitor.
  • the type of rubber is not limited, and conventionally used rubbers such as synthetic rubbers such as SBR and CR, heat resistant rubbers and elastomers can be used.
  • synthetic rubbers such as SBR and CR
  • heat resistant rubbers and elastomers can be used.
  • EPDM ethylene propylene diene rubber
  • H—NBR attalinoletri ⁇ butadiene rubber
  • ACM acrylic rubber
  • a lithium salt that dissolves in an organic solvent of an electrolyte solution of a non-aqueous electrolyte battery (lithium ion battery) and dissociates into an anion can be used.
  • L i C 10 4 and L i PF 6 are preferred.
  • the well dispersed ionic conductivity of the dispersed material is immersed in the electrolytic solution for lithium ion batteries, L i by organic solvent of the electrolyte solution C
  • oxide ion conductor oxide ion conductor, halide ion conductor, proton conductor, lithium ion conductor, sodium ion conductor, silver ion conductor ON conductor, copper ion conductor, a— 60 L i S '4 0 S i S 2 amorphous material, L i 2 S— S i S 2 system melt quenched glass, L i 4 T i 2 ( P 0 4 ) 3 ⁇ A 1 P 0 4 ⁇ Tio 2 , P EO (polyethylene oxide), PAN (polyacrylonitrile), PMMA (polymethyl methacrylate), P PO (polypropylene oxide) and other solid electrolytes By using it, a fully solid lithium ion secondary battery that does not use organic electrolyte can be expected.
  • This ion conductive dispersion material can also be used for electric double layer capacitors.
  • an ionic conductive dispersion material such as Li C 1 O 4 or Li PF 6 dispersed in a rubber support in advance with an organic solvent, the pores into which the ionic conductive liquid permeates are dispersed. Can be obtained. It is preferable that the pores through which the ionic conductive liquid permeates are uniformly dispersed.
  • a mixture of an electron-conductive dispersant and a battery active material kneaded with a water-extractable compound that does not function as an ion-conductive dispersant is placed in hot water, and the compound is added. Also by boiling extraction, it is possible to obtain a power storage rubber in which pores through which ionic conductive liquid permeates are dispersed. In this case, it is not necessary for the rubber to contain an ion conductive dispersing material that dissolves in an organic solvent.
  • the rubber is made of a material that swells with an organic solvent, the ion conductive liquid penetrates by swelling and the ion conductive liquid penetrates, so that the ion conductive liquid penetrates. It is not necessary to disperse the pores.
  • Examples of the ion conductive liquid that can permeate the electricity storage rubber include an electrolytic solution containing an organic solvent and a lithium salt (electrolyte) conventionally used as a nonaqueous electrolytic solution in a lithium battery.
  • an electrolytic solution containing an organic solvent and a lithium salt (electrolyte) conventionally used as a nonaqueous electrolytic solution in a lithium battery.
  • ionic conductive liquids examples include Li BFC (propylene carbonate), Li BF 4 / GBL ( ⁇ -butyrolacton), Li BF 4 / PC + DME (1,2-dimethoxetane), L i BF 4 / GB L + DME, L i BF ./PC + EMC (ethyl methyl carbonate), L i BF 4 / PC + MP (propionic acid meso Chill), L i C 1 O / PC, L i C l O 4 / GBL, L i C 1 O 4 / PC + DME, L i C 10 4 / PC + DME, L i C 1 O-ZG BL + DME, L i C 1 O 4 / PC + EMC, L i C 1 O 4 / PC + MP, L i PF 6 / PC, L i PF 6 / GBL, L i P Fe / GBL + DME, L i P Fe / PC + PC
  • the electron conductive dispersing material carbon, metal (iron and steel, etc.), alloys, ceramics, glass powder or particles conventionally used as conductive aids for batteries can be used.
  • carbon powder selected from acetylene black, ketjen black, and graphite powder is preferable. More preferred is a mixture of acetylene black and ketjen black, a mixture of graphite powder and ketjen black.
  • the electron conductive dispersing material can be dispersed in an amount of 60 to 100 mass% with respect to 100 mass% of the rubber support. If the amount of the electron conductive dispersing material is small, it will not function as a battery, and if it is too large, kneading into rubber becomes difficult, so the above range is preferable.
  • the battery active material is a positive electrode active material when the storage rubber according to the present invention is used as the positive electrode of the battery, but Li C o 0 2 and Li C r O 2 conventionally used for lithium batteries.
  • L i N i O 2 , L i Mn O2, L i Mn 2 O 4 , L i V 2 0 4 , L i F e O 2 , L i VO 2 , L i T i 0 2 , L i S c Lithium transition metal composite oxides such as O 2 and Li Y0 2 can be used.
  • Li Mn 2 O 4 is preferable.
  • the battery active material (positive electrode active material) can be dispersed in an amount of 10 to 50% by mass with respect to 100% by mass of the rubber support. If the battery active material is small, it will not function as a battery, and if it is too much, the behavior as a battery will not be seen, so the above range is preferable.
  • the positive electrode active material one having an average particle diameter of 10 to 30 m can be used.
  • the battery active material becomes a negative electrode active material when the power storage rubber of the present invention is used as the negative electrode of the battery.
  • synthetic graphite graphite
  • natural graphite natural graphite
  • non-graphite that have been conventionally used for lithium batteries.
  • Carbonized, Amorphous cobalt-substituted lithium nitride, Amorphous tin composite oxide, SnO— B 2 O 3 — P 2 0 5 melt-quenched glass, Amorphous S i O 2 — S n O Lithium insertion materials or compounds such as amorphous amorphous materials can be used.
  • the electric storage rubber according to any one of (1) to (3) of the present invention (one that does not disperse the battery active material) or the electric storage for electrode according to any one of (4) to (16)
  • the conductive rubber (in which the battery active material is dispersed) can be made into an electric double layer capacitor or battery by adhering to the current collector.
  • the current collector aluminum foil, stainless steel foil or the like can be used, and it can be bonded to the storage rubber by thermocompression bonding and using Z or rubber paste. In that case, it is preferable to use the same kind of rubber paste as that of the rubber support (power storage rubber).
  • a coupling agent can be added to the rubber support and vulcanized and bonded to the current collector.
  • vulcanization adhesion a method is adopted in which a current collector is placed on an unvulcanized electricity storage rubber, and primary vulcanization is performed by hot pressing, and the rubber is vulcanized and bonded to the current collector at the same time. it can.
  • the hot pressing is preferably performed at 165-175 ° C for 8-12 minutes.
  • rubber glue may or may not be used.
  • the coupling agent a silane force coupling agent is preferable.
  • the weight of the current collector can be reduced because the rubber bears the mechanical strength, and the electricity storage rubber (ionic conductive dispersion material,
  • the mass ratio of the current collector to the electron conductive dispersion material can be 1 or less.
  • Acrylic-tolyl butadiene rubber (H—NBR) is used as the raw rubber, and 40 wt% ionic conductive dispersion (L i C 10 4 ), 90 wt% compared to 100 wt% rubber.
  • 40 wt% positive electrode active material (L i Mn 2 O 4 ), knead in an open gate, and vulcanize at 180 ° C for 10 minutes A power storage rubber sheet was obtained.
  • the electricity storage rubber sheet was cut out into a 1 cm ⁇ 1 cm test tube, 1 Om 1 of PC (manufactured by Kishida Chemical Co., Ltd.) was added, and the test tube was covered with a silicon rubber cap. Thereafter, it was treated for 6.0 hours with an ultrasonic cleaner (10:00 W4 2 KHz, yamato 2 5 1 0).
  • This stainless steel foil S US 3 0 4, two Rako
  • This stainless steel foil (S US 3 0 4, two Rako) 1 cm 2 area entrapment has the electrolyte and (L i C 1 0 4 / PC + DME) immersed as set by the sample electrode in.
  • a charge / discharge test was performed using the sample electrodes obtained in Example 1 and Example 2.
  • the reference electrode was Li / Li +
  • the counter electrode was metallic lithium.
  • the current density was 5 A / cm 2 and 1 ⁇ A / cm 2
  • the cut-off potential was 2.8 to 4.4 V (vs L i no L i + ).
  • Figure 2 shows the charge / discharge of the storage rubber at 5 ⁇ A / cm 2 (1 cyc 1 e).
  • Example 1 X-axis time (s), Y-axis potential (V), and charge / discharge of sample electrode (with active material) in Example 1 0 seconds 3.2 2.3 V, 10 seconds 4.2 V, 20 seconds 4. 2 8 V, 30 seconds 4. 3 3 V, 40 seconds 4. 3 7 V, 50 seconds 4. 4 V, 60 seconds 3. 2 2 V, 70 seconds 2. 8 2 V, 7 2 seconds 2.8 V. 0 second for charge / discharge of sample electrode (no active material) in Example 2. 3. 16 V, 10 seconds 4. 25 V, 20 seconds 4. 34 V, 30 seconds 4.4 V, 40 Sec 3.1 2 V, 4 8 sec 2.8 V.
  • Figure 3 shows the charge / discharge of the storage rubber at 5 ⁇ A / cm 2 (2 cyc 1 eg).
  • charge / discharge of the sample electrode (with active material) in Example 1 is 0 seconds 3. 15 V, 10 seconds 4. 1 7 V, 20 seconds 4. 35 V, 30 seconds 3. 8 V, 4 8 seconds 2.8 V.
  • Charge / discharge of the sample electrode of Example 2 (without active material) 0 seconds 3. 1 3, 1 0 seconds 4. 2 2 V, 2 0 seconds 3. 8 5 V, 3 0 seconds 3.3 2 V, 4 It was 0 seconds 2. 8 2 V, 4 2 seconds 2.8 V.
  • Figure 4 shows the charge and discharge of the storage rubber 1 ⁇ ⁇ cm 2 (3 cyc 1 eg).
  • charge / discharge of the sample electrode (with active material) of Example 1 is 0 second 3. 12 V, 20 seconds 3. 6 6 V, 60 seconds 3. 8 9 V, 24 0 seconds 4.2 3 V, 5 20 seconds 4.3 V, 1 2 60 seconds 4.4 V, 1 2 70 seconds 3.93 V, 1 2 80 seconds 3.66 8 V, 1 300 seconds 3. 4 2 V, 1 3 2 0 seconds 3. 2 8 V, 1 3 5 0 seconds 3. 1 0 V, 1 4 8 0 seconds 2.8 V.
  • charge and discharge of the sample electrode (without active material) in Example 2 0 seconds 3. 1 2 V, .5 seconds 3. 4 2 V, 1 0 seconds 3. 6 V, 3 0 seconds 3. 8 8 V, 7 0 sec 4. IV, 24 0 sec 4.
  • FIG. 5 shows the cyclic voltammogram (sweep speed 0. l mVZ sec) of the electricity storage rubber (without active material) of Example 2.
  • the potential is 3 V
  • the current is 1 from 0 ⁇ A.
  • FIG. 6 shows the cyclic voltammogram (sweep speed 0. l mVZ sec) of the electricity storage rubber (with active material) of Example 1. 3. From 1 I V to 4.0 4 V, the current was 0 ⁇ A, for 4.4 ⁇ 4 V, 0 ⁇ ⁇ ⁇ and 0.5 ⁇ , and for 4.6 V, 0.8 ⁇ . From these results, it is considered that the electricity storage rubber of the present invention has battery characteristics and operates as a battery electrode.
  • a cross force test was conducted to examine the adhesion between the sample and the aluminum foil.
  • a 1 cm square was cut into 1 mm width and 1 mm width, and a cellophane tape (N I CH I BAN: trade name, manufactured by Nichiban) was applied and tested (see Fig. 7).
  • Example 4 As a result of performing a cross-cut test on the sample of Example 3, the rubber remaining amount after the test was 100%. Therefore, in general, it was confirmed that it has sufficient adhesion to an aluminum material that is preferable as a current collector because of its characteristics. That is, in the present invention, it is possible to follow the deformation of the current collector, so that sufficient adhesion can be ensured, a peeling problem hardly occurs, and a flexible electrode can be obtained.
  • H—NBR H—NBR is used as the raw rubber, and the active material (L i Mn 2 0 4 ) and electron-conducting dispersive material (acetylene black and ketjen black) force rubber 1 00 wt%, L i ⁇ : 40 wt%, AB and K :: 90 wt% (AB 80 ⁇ KB 10 ratio)
  • Add silane coupling agent and knead with open roll to make unvulcanized rubber sheet 1 Primary vulcanization was carried out by hot pressing at 70 ° for 1 minute. This electrical storage rubber sheet was baked on aluminum foil that had been subjected to alkaline degreasing and coated with rubber paste in an oven at 1 80 ° C. After that, the samples were bonded by thermocompression bonding, followed by secondary vulcanization in an oven at 150 ° C. for 1 hour to obtain a sample.
  • G Graphite powder
  • AB electron conductive dispersion material
  • G and KB 75 wt% (ratio of G 55 ⁇ KB 20)
  • a sample was obtained in the same manner as Example 4 except for kneading.
  • Example 8 A sample was obtained in the same manner as in Example 6 except that EPDM was used as the raw rubber.
  • Example 8 A sample was obtained in the same manner as in Example 6 except that EPDM was used as the raw rubber.
  • a method of vulcanization and adhesion without thermocompression bonding as an adhesion method that is, by placing an aluminum foil that has been subjected to alkali degreasing on an unvulcanized rubber sheet and hot pressing at 170 ° C for 10 minutes
  • a sample was obtained in the same manner as in Example 7 except that the primary vulcanization was performed and the method of adhering to the aluminum foil at the same time as vulcanizing the rubber was adopted.
  • Example 1 For using H- NBR as a raw material rubber, by pulverizing i Mn 2 ⁇ 4 as an active material that was used was the average particle diameter 2 m, when the wearing vulcanization, the rubber cement in aluminum foil A sample was obtained in the same manner as in Example 8 except that it was applied.
  • Example 1 0 For using H- NBR as a raw material rubber, by pulverizing i Mn 2 ⁇ 4 as an active material that was used was the average particle diameter 2 m, when the wearing vulcanization, the rubber cement in aluminum foil A sample was obtained in the same manner as in Example 8 except that it was applied.
  • Example 1 0 For using H- NBR as a raw material rubber, by pulverizing i Mn 2 ⁇ 4 as an active material that was used was the average particle diameter 2 m, when the wearing vulcanization, the rubber cement in aluminum foil A sample was obtained in the same manner as in Example 8 except that it was applied.
  • Example 1 0 For using H- NBR as a raw material rubber
  • Example 1 1 A sample was obtained in the same manner as in Example 9 except that EPDM was used as the raw rubber.
  • Example 1 1 A sample was obtained in the same manner as in Example 9 except that EPDM was used as the raw rubber.
  • Example 1 2 Adhesion method is vulcanization adhesion without thermocompression bonding, that is, primary vulcanization is carried out by placing alkali degreased aluminum foil on unvulcanized rubber sheet and heat pressing at 70 ° C for 10 minutes.
  • a sample was obtained in the same manner as in Example 5 except that a method was employed in which the rubber was vulcanized and the method of adhering to the aluminum foil at the same time was adopted.
  • Example 14 A sample was obtained in the same manner as in Example 12 except that a rubber paste was applied to the aluminum foil during vulcanization adhesion.
  • Example 15 A sample was obtained in the same manner as in Example 12 except that Li Mn 20 4 was pulverized to an average particle size of 2 ⁇ m as the active material.
  • Example 15
  • Example 16 A sample was obtained in the same manner as in Example 13 except that i Mn 2 0 was pulverized to an average particle size of 2 ⁇ m as the active material.
  • i Mn 2 0 was pulverized to an average particle size of 2 ⁇ m as the active material.
  • Adhesion method is vulcanization adhesion without thermocompression bonding, that is, primary vulcanization is carried out by placing alkali degreased aluminum foil on unvulcanized rubber sheet and heat pressing at 70 ° C for 10 minutes.
  • a sample was obtained in the same manner as in Example 4 except that a method was used in which the rubber was vulcanized and the method of adhering to the aluminum foil at the same time was adopted.
  • Example 18 A sample was obtained in the same manner as in Example 16 except that 100% by weight of rubber was added so that Li Mn 2 O 4 : 50 wt%.
  • Example 18 A sample was obtained in the same manner as in Example 16 except that 100% by weight of rubber was added so that Li Mn 2 O 4 : 50 wt%.
  • a sample was obtained in the same manner as in Example 16 except that it was added so that AB and KB were 70 wt% (ratio of AB 60 ⁇ KB 10) with respect to 100 wt% of rubber.
  • Example 16 A sample was obtained in the same manner as in Example 16 except that 100 wt% of rubber was added so that AB and KB were 50 wt% (ratio of AB 45 ⁇ KB 5).
  • Table 1 summarizes the materials and manufacturing methods of the samples prepared in Examples 1 to 19 and Comparative Example 1.
  • Examples 4 to 19 and samples prepared in Comparative Example 1 were used as sample electrodes, and a tripolar cell as shown in FIG. 8 was prepared and CV measurement was performed.
  • Sweep range 2.8 V or 3.0 V to 4.4 V (changed according to natural potential)
  • Figures 9 to 24 show the results of CV measurements performed on samples prepared in Examples 4 to 19 as described above.
  • the electricity storage rubber of the present invention has battery characteristics and is operating as a battery electrode.
  • the content of the electrode active material is 50 mass. / 0 and even if many, were found to function as an electrode even if 1 0 wt% and less, 40 wt
  • the content of the electron conductive dispersant (conducting aid) is 70 mass as shown in Figure 24 (using the sample of Example 19). Even when the amount was reduced to 0 , the manganese peak could be confirmed, indicating that it functions as a battery. When the content of the conductive additive was 50% by mass (Comparative Example 1), no behavior as a battery was observed.
  • the electricity storage rubber of the present invention functions as a capacitor and a battery electrode, it can be used for electric double layer capacitors, lithium batteries and the like.

Abstract

A charge storing rubber (electrode) principally comprising rubber and not relying upon a current collector for holding the mechanical strength by utilizing the adhesiveness and flexibility of the rubber. Furthermore, an electrode is obtained without using a process for coating on the current collector. (1) The charge storing rubber is produced by dispersing an ion conductive dispersant and an electron conductive dispersant into a rubber support, and (2) the charge storing rubber is produced by distributing pores permeable by an ion conductive liquid uniformly in a rubber support and dispersing an electron conductive dispersant. (3) The charge storing rubber for electrodes is produced by further dispersing a battery active material into the charge storing rubber of (1), and (4) the charge storing rubber for electrodes is produced by dispersing an electron conductive dispersant and a battery active material into a rubber support not containing an ion conductive dispersant. The charge storing rubber is joined to the current collector and used in an electric double-layer capacitor or a lithium battery.

Description

明細書 蓄電性ゴム並びにそれを用いた電気二重層キャパシタ及びリチウム電池  Power storage rubber, electric double layer capacitor and lithium battery using the same
技術分野 Technical field
本発明は、 蓄電性ゴム並びにそれを電極に用いた電気二重層キャパシタ及びリチ ゥム電池に関し、 特に、 ゴムを、 電極と'して機能する蓄電性ゴムとするための技術 に関する。 背景技術 .  The present invention relates to a power storage rubber and an electric double layer capacitor and a lithium battery using the same as an electrode, and more particularly to a technique for making a rubber a power storage rubber that functions as an electrode. Background technology.
電気を蓄えるデバイスとして二次電池とキャパシタがあり、 従来、 二次電池は、 鉛蓄電池 (S L I、 動力用、 据置用、 携帯用)、 ニッケル ·力ドミゥム蓄電池 (開 放型ポケッ ト式、 開放型焼結式、 密閉式) 等が、 キャパシタは、 電気二重層キャパ シタ、 レドックスキャパシタ等が実用化されていた。  Secondary batteries and capacitors are devices that store electricity. Conventionally, secondary batteries are lead-acid batteries (SLI, power, stationary, and portable), nickel-powered Dome battery (open-type pocket type, open-type) As for capacitors, electric double layer capacitors, redox capacitors, etc. have been put into practical use.
近年、 携帯電話、 携帯情報端末等の携帯電子機器の性能は、 充放電可能な二次電 池の性能に大きく依存しており、 搭載される二次電池の容量アップと共に、 軽量 ' コンパク ト化をも同時に実現することが望まれている。  In recent years, the performance of mobile electronic devices such as mobile phones and personal digital assistants has largely depended on the performance of chargeable / dischargeable secondary batteries. It is hoped that this will be realized at the same time.
これらの要望に答える二次電池として、 ニッケル ·力ドミゥム蓄電池の約 2倍の エネルギー密度を有する、 ニッケル水素蓄電池が開発され、 次いで、 これを上回る リチウム電池 (リチウムイオン電池) が開発され、 脚光を浴びてきている。  As a secondary battery that meets these demands, a nickel-metal hydride storage battery with an energy density approximately twice that of a nickel-powered domum storage battery was developed. I'm bathing.
このリチウムイオン電池は、 非水系電解液中に、 正極及ぴ負極を配設し、 各々の 極板には、集電体表面に正極活物質又は負極活物質が結着された構成のものである。 この電池に用いられる正 ·負極板は、 一般的に、 活物質 (正極活物質又は負極活物 質)、 導電材 (電子伝導性の分散材)、 結着剤 (バインダー) 等を溶剤に混練分散 して合剤とし、 集電体の片面もしくは両面に塗布、 乾燥した後に、 必要に応じてプ レスしたものを、 所定の形状にスリ ッ トすることにより製造されている。  This lithium ion battery has a configuration in which a positive electrode and a negative electrode are disposed in a non-aqueous electrolyte solution, and a positive electrode active material or a negative electrode active material is bound to a current collector surface on each electrode plate. is there. The positive and negative electrode plates used in this battery are generally kneaded in a solvent with an active material (positive electrode active material or negative electrode active material), conductive material (electroconductive dispersion material), binder (binder), etc. Dispersed into a mixture, applied to one or both sides of the current collector, dried, and then pressed as necessary, and then slit into a predetermined shape.
そして、 この電池には、 従来よりバインダーとしてポリフッ化ビニリデン (P V D F ) が主に用いられてきたが、 これは非導電性重合体であるので、 増量すると電 極における活物質量の割合が低下し、 充放電容量が低下するだけでなく、 電子の移 動を妨げ、 電極の内部抵抗が増大し、 電池の充放電サイクル寿命、 電池の高負荷充 放電の能力を劣化させるという問題があった。 さらに、 電極が硬く脆くなり、 電極 剥離, ヒビ割れを生じるという問題があった。 Conventionally, polyvinylidene fluoride (PVDF) has been mainly used in this battery as a binder. However, since this is a non-conductive polymer, an increase in the amount of the battery The ratio of the amount of active material at the electrode decreases, and not only the charge / discharge capacity decreases, but also prevents the movement of electrons, increases the internal resistance of the electrode, increases the charge / discharge cycle life of the battery, and the high-load charge / discharge of the battery. There was a problem of deteriorating ability. In addition, the electrodes became hard and brittle, causing electrode peeling and cracking.
これらの問題を解決するために、 ゴムの持っている柔軟性、密着性、耐熱老化性、 耐候性、 耐寒性等の特性を利用し、 ゴムを電池の電極のバインダーとする技術が開 発され、 これらの技術 (発明) は周知である (例えば、 特許文献 1〜4参照)。 また、 電気二重キャパシタについても、 同様にゴムを電極のバインダーとして用 いる発明がある (例えば、 特許文献 5参照)。  In order to solve these problems, a technology has been developed in which rubber is used as a binder for battery electrodes, utilizing the properties of rubber, such as flexibility, adhesion, heat aging resistance, weather resistance, and cold resistance. These techniques (inventions) are well known (for example, see Patent Documents 1 to 4). Similarly, there is an invention that uses rubber as an electrode binder for electric double capacitors (see, for example, Patent Document 5).
特許文献 1 :特開 2000— 1 332 75号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2000-133275
特許文献 2 :特開 2000- 2 28 1 9 7号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-2 28 1 9 7
特許文献 3 :特開 2002— 1 1 0 1 45号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2002-1 1 0 1 45
特許文献 4 :特開 2004— 5 549 3号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004-55493
特許文献 5 :特開 2004— 288 78 2号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 2004-288 782
これらの発明は、 バインダーとしてゴム (エラストマ一、 フッ素ゴム、 変性ァク リルゴム、 合成ゴムラテックス) を用いることにより、 「電極用エラス トマ一バイ ンダ一は非剛性で展性に富むために劣化しにく く、 活物質の脱離を防ぐため、 活物 質粒子の粒子間接触を保持することができる。」 (特許文献 1の段落 [0036])、 In these inventions, by using rubber (elastomer, fluororubber, modified acrylic rubber, synthetic rubber latex) as a binder, “the elastomer binder for the electrode is non-rigid and highly malleable, so it deteriorates. In addition, in order to prevent the active material from detaching, it is possible to maintain the contact between the active material particles ”(paragraph [0036] of Patent Document 1),
「結着剤の主成分として柔軟性に富むフッ素ゴムを用いているので、 正極合剤塗膜 の柔軟性が向上し、 亀裂の発生や導電性基体からの剥離の発生が抑制されるように なる。」 (特許文献 2の段落 [00 1 1])、 「結着剤として、 合成ゴム系ラテックス 型接着剤および増粘剤を所定量含むようにしたので、 柔軟性および平滑性を向上さ せることができ、 電極剥離および割れを防ぐことができる。」 (特許文献 4の段落 “Because flexible fluorine rubber is used as the main component of the binder, the flexibility of the positive electrode mixture coating is improved, so that cracking and peeling from the conductive substrate are suppressed. (Patent Document 2, paragraph [00 1 1]), “Because a predetermined amount of a synthetic rubber-based latex adhesive and a thickener is included as a binder, flexibility and smoothness are improved. Can prevent electrode peeling and cracking. ”(Patent Document 4 paragraph)
[0 1 1 2]) といった効果を奏するものであるが、 バインダーの活物質に対する 重量比が大きいと、電池反応に寄与しなレ、材料が極板中に多く存在することにより、 電池容量を低下させてしまうこと (特許文献 3の段落 [0 0 1 6])、 正極合剤層 を形成する際に粘度が著しく上昇して、 正極集電体層に塗布することが難しくなる こと (特許文献 4の段落 [00 2 3])、 電極の内部抵抗が増大しやすいこと (特 許文献 5の段落 [00 29]) 等の理由から.、 バインダー (ゴム) は、 合剤中に最 大で 1 0質量%程度しか含有させることができない (特許文献 1の請求項 2 3、 特 許文献 2の段落 [ 0 0 3 0 ]、 特許文献 3の請求項 1〜4、 特許文献 4の請求項 1 及び 9、 特許文献 5の段落 [ 0 0 2 9 ] ) ものであった。 [0 1 1 2]) However, if the weight ratio of the binder to the active material is large, the battery capacity is not increased due to the presence of a large amount of material in the electrode plate that does not contribute to the battery reaction. (Patent Document 3, paragraph [0 0 1 6]), when forming the positive electrode mixture layer, the viscosity increases significantly, making it difficult to apply to the positive electrode current collector layer (patent (Paragraph [00 2 3] in Reference 4) and the internal resistance of the electrode is likely to increase (paragraph [00 29] in Patent Reference 5). The binder (rubber) is the It can contain only about 10% by mass (Patent Document 1, Claim 23, Patent Document 2, Paragraph [0 0 3 0], Patent Document 3, Claims 1 to 4, Patent Document 4 Claims 1 and 9, and paragraph [0 0 2 9]) of Patent Document 5.
また、 電極活物質の有効利用率を向上させ、 L i電池 (一次電池及び二次電池) に適用した際の充放電性能の改善を目的として、 「粉末状又は粒状の電極活物質を 集電体に結着させた電極であって、 非水電解液及び導電性粉末を含み、 平均分子量 6 0〜6 0 0の 1分子当たり 2個以上の水酸基を有するポリオ一ル化合物をイソシ ァネート化合物により架橋反応させたゴム状結着剤により、 前記電極活物質どうし 及び該電極活物質と集電体とを結着させてなることを特徴とする L i電池用電極。 J の発明がなされている (特許文献 6参照)。  In addition, with the aim of improving the effective utilization rate of electrode active materials and improving the charge / discharge performance when applied to Li batteries (primary batteries and secondary batteries), “collecting powdered or granular electrode active materials An electrode bound to a body, comprising a non-aqueous electrolyte and conductive powder, and an isocyanate compound comprising a polyol compound having two or more hydroxyl groups per molecule having an average molecular weight of 60 to 600 An electrode for a Li battery, wherein the electrode active materials and the electrode active materials and a current collector are bound together by a rubber-like binder subjected to a cross-linking reaction. (See Patent Document 6).
特許文献 6 :特開平 1 1— 9 7 0 2 6号公報  Patent Document 6: Japanese Patent Application Laid-Open No. 11-9 7 0 26
特許文献 6の発明は、 「結着剤に電子伝導性及びイオン伝導性がほとんど無いた め、 結着剤が電極活物質の酸化還元反応を阻害する。 そのため、 電極の本来有する 充放電性能を引き出しにくレ、。」 (段落 [ 0 0 0 3 ] ) 等の従来技術における問題点 を解決するために、 「分子レベルで混合した状態で、 三次元網目構造を持つ高分子 (以下、 架橋高分子と称する) 中に導電性粉末と電解質を分散 ·溶解させた有機溶 媒からなる非水電解液 (以下、 結着剤電解液と称する) を含む粘着性ゴム状化合物 からなる組成物を結着剤として、 電極活物質どうし及び該電極活物質と集電体とを 結着させてなることを特徴としている」 ものであり、 「結着剤組成物において、 結 着剤電解液はイオン伝導性を担い、 導電性粉末は電子伝導性を担」 い、 「従来結着 剤として使用されている材料と同様の結着機能を有するほか、 従来の材料にはない イオン伝導性及び電子伝導性を有する」 (段落 [ 0 0 0 7 ] ) ものであるが、 電極 を製造する工程で有機溶媒を使用し集電体に塗布しているから、 粘着性ゴム状化合 物は支持体ではなく、 電解質 (イオン伝導性の分散材)、 導電性粉末 (電子電導性 の分散材)、 電極活物質を支持体に分散させるものではない。  The invention of Patent Document 6 states that “Because the binder has almost no electron conductivity and ionic conductivity, the binder inhibits the oxidation-reduction reaction of the electrode active material. In order to solve the problems in the prior art, such as “Drawing is difficult” (paragraph [0 0 0 3]), “a polymer with a three-dimensional network structure (hereinafter referred to as cross-linked A composition comprising an adhesive rubber-like compound containing a non-aqueous electrolyte solution (hereinafter referred to as a binder electrolyte solution) comprising an organic solvent in which conductive powder and electrolyte are dispersed and dissolved in a polymer). The binder is characterized in that the electrode active materials and the electrode active material and the current collector are bound to each other. "In the binder composition, the binder electrolyte is an ion. Conductivity, conductive powder is responsible for electronic conductivity " , “It has a binding function similar to that of a material used as a conventional binder, and has ionic conductivity and electronic conductivity not found in conventional materials” (paragraph [0 0 0 7]). However, since the organic solvent is applied to the current collector in the process of manufacturing the electrode, the adhesive rubber-like compound is not a support, but an electrolyte (ion-conductive dispersion material), conductive powder (electronic Conductive dispersion material), electrode active material is not dispersed on the support.
さらに、 特許文献 6には、 「電極活物質と結着剤組成物との配合割合は、 用いる 電極活物質材料の種類と必要とされる力学的強度によって異なるが、 通常は、 結着 剤と電極活物質との合計量に対して結着剤が 1 0〜 5 0 w t %程度とするのが好ま しい。」 (段落 [ 0 0 1 6 ] ) と記載されており、 ゴム状結着剤を従来よりも多く含 有させることが示されているが、 電極活物質を集電体に塗布し、 乾燥させた後、 そ の膜上に結着剤溶液を塗布することが示されている (段落 [ 0 0 2 2 ] ) だけで、 電極活物質をゴムと混練してゴム状結着剤を主体とする成形体を得ることは示され ていない。 Further, Patent Document 6 states that “the mixing ratio of the electrode active material and the binder composition varies depending on the type of the electrode active material used and the required mechanical strength, It is preferable that the binder is about 10 to 50 wt% with respect to the total amount of the electrode active material ”(paragraph [0 0 1 6]). More than conventional Although it is shown that the electrode active material is applied to the current collector and dried, the binder solution is applied onto the film (paragraph [0 0 2 2]) alone does not show that an electrode active material is kneaded with rubber to obtain a molded body mainly composed of a rubber-like binder.
いずれにしても、 上記従来のリチウム電池や電気二重層キャパシタは、 集電体と の密着に塗布プロセスを採用しているため、 乾燥工程にコストがかかり、 集電体と 合材 (合剤) との密着性、 及び反応に伴う活物質の膨張収縮による剥離という問題 を十分に解決することができなかった。 そして、 集電体が機械的強度の保持を担つ ていたために、 電池における活物質の量を増やチことができないという問題があつ た。 また、集電体への塗布のために可燃性の有機溶剤 (有機溶媒) を使用するので、 安全性、 環境汚染の問題があった。 発明の開示  In any case, the above-mentioned conventional lithium battery and electric double layer capacitor employ a coating process in close contact with the current collector, so that the drying process is costly, and the current collector and compound (mixture) It was not possible to sufficiently solve the problems of adhesion to the substrate and separation due to expansion and contraction of the active material accompanying the reaction. In addition, since the current collector was responsible for maintaining the mechanical strength, there was a problem that the amount of active material in the battery could not be increased. In addition, since a flammable organic solvent (organic solvent) is used for application to the current collector, there were problems of safety and environmental pollution. Disclosure of the invention
発明が解決しようとする課題  Problems to be solved by the invention
本発明は、 上記の問題を解決しょうとするものであり、 ゴムの有する密着性およ び柔軟性を利用することで、 ゴムを主体とし、 機械的強度の保持を集電体に頼らな い蓄電性ゴム (電極) を得ること、 また、 集電体への塗布プロセスを使わないで電 極を得ることを課題とする。 課題を解決するための手段  The present invention is intended to solve the above problems, and by utilizing the adhesion and flexibility of rubber, it is mainly rubber and does not rely on a current collector to maintain mechanical strength. The problem is to obtain a storage rubber (electrode) and to obtain an electrode without using a coating process for the current collector. Means for solving the problem
本発明においては、 上記の課題を解決するために、 以下の手段を採用する。  In the present invention, the following means are adopted in order to solve the above problems.
( 1 ) ゴム支持体にイオン導電性の分散材及び電子伝導性の分散材が分散している ことを特徴とする蓄電性ゴムである。  (1) An electricity storage rubber characterized in that an ion conductive dispersion material and an electron conductive dispersion material are dispersed in a rubber support.
( 2 ) 前記イオン導電性の分散材が、 固体電解質であることを特徴とする前記 (1 ) の蓄電性ゴムである。  (2) The electricity storage rubber according to (1), wherein the ion conductive dispersion is a solid electrolyte.
( 3 ) ゴム支持体にイオン導電性の液体が浸透する細孔が分散し、かつ、 電子伝導 性の分散材が分散していることを特徴とする蓄電性ゴムである。  (3) A power storage rubber characterized in that pores through which an ion conductive liquid permeates are dispersed in a rubber support and an electron conductive dispersing material is dispersed.
( 4 ) ゴム支持体にイオン導電性の分散材、 電子伝導性の分散材及び電池活物質が 分散していることを特徴とする電極用蓄電性ゴムである。 (4) Ion conductive dispersion material, electron conductive dispersion material and battery active material on rubber support It is an electricity storage rubber for electrodes characterized by being dispersed.
(5) 前記イオン導電性の分散材が、 電解液の有機溶媒に溶解して、 ァニオンに解 離するリチウム塩であることを特徴とする前記 (4) の電極用蓄電性ゴムである。  (5) The electricity storage rubber for an electrode according to (4), wherein the ion conductive dispersion is a lithium salt which dissolves in an organic solvent of an electrolytic solution and is released into an anion.
( 6 ) ィオン導電性の分散材を含まないゴム支持体に電子伝導性の分散材及び電池 活物質が分散していることを特徴とする電極用蓄電性ゴムである。  (6) An electricity storage rubber for an electrode, characterized in that an electron conductive dispersion material and a battery active material are dispersed in a rubber support that does not contain a ionic conductive dispersion material.
(7) 前記電子伝導性の分散材が、 ゴム支持体 1 00質量%に対し 60〜1 00質 量0 /0分散していることを特徴とする前記 (6) の電極用蓄電性ゴムである。 (7) the electronically conductive dispersed material, rubber supports 1 00% by mass relative to 60 to 1 00 mass 0/0 dispersed that has an electrode for a power storage rubber of the (6), wherein the is there.
(8) 前記電池活物質が、 ゴム支持体 1 00質畺%に対し 1 0〜50質量%分散し ていることを特徴とする前記 (6) 又は (7).の電極用蓄電性: ^'Λである。  (8) The battery active material according to (6) or (7), wherein the battery active material is dispersed in an amount of 10 to 50% by mass with respect to 100% by mass of a rubber support: ^ 'Λ.
( 9 ) 前記ゴム支持体にイオン導電性の液体が浸透する細孔が分散していることを 特徴とする前記 (6) 〜 (8) のいずれか一項の電極用蓄電性ゴムである。  (9) The electricity storage rubber for an electrode according to any one of (6) to (8), wherein pores through which the ion conductive liquid permeates are dispersed in the rubber support.
(1 0) 前記ゴム支持体が有機溶媒によつて膨潤することによりィオン導電性の液 体が浸透し、 イオンパスが可能となるものであることを特徴とする前記 (6) 〜 (10) The rubber support is swelled by an organic solvent, so that the ionic conductive liquid penetrates and an ion path becomes possible.
(8) のいずれか一項の電極用蓄電性ゴムである。 (8) The electricity storage rubber for an electrode according to any one of (8).
(1 1) 前記イオン導電性の液体が、 有機溶媒とリチウム塩を含む電解液であるこ とを特徴とする前記 (9) 又は (1 0) の電極用蓄電性ゴムである。  (11) The electrode storage rubber according to (9) or (10), wherein the ion conductive liquid is an electrolytic solution containing an organic solvent and a lithium salt.
(1 2) 前記電子伝導性の分散材が、 アセチレンブラック、 ケッチェンブラック、 及びグラフアイ ト粉末から選ばれた一種以上の炭素粉末であることを特徴とする前 記 (4) 〜 (1 1) のいずれか一項の電極用蓄電性ゴムである。  (1 2) The above (4) to (11), wherein the electron conductive dispersion material is one or more carbon powders selected from acetylene black, ketjen black, and graphite powder. The electrode storage rubber according to any one of the above.
(1 3) 前記電池活物質が、 正極活物質であり、 前記電極が正極であることを特徴 とする前記 (4) 〜 (1 2) のいずれか一項の電極用蓄電性ゴムである。  (1 3) The electricity storage rubber for an electrode according to any one of (4) to (12), wherein the battery active material is a positive electrode active material, and the electrode is a positive electrode.
(14) 前記正極活物質が、 リチウム遷移金属複合酸化物であることを特徴とする 前記 (1 3) の電極用蓄電性ゴムである。  (14) The electrode storage rubber according to (13), wherein the positive electrode active material is a lithium transition metal composite oxide.
(1 5) 前記電池活物質が、 負極活物質であり.、 前記電極が負極であることを特徴 とする前記 (4) 〜 (1 2) のいずれか一項の電極用蓄電性ゴムである。  (15) The battery active material for an electrode according to any one of (4) to (12), wherein the battery active material is a negative electrode active material, and the electrode is a negative electrode. .
(1 6) 前記負極活物質が、 リチウムインサーシヨン化合物であることを特徴とす る前記 (1 5) の電極用蓄電性ゴムである。  (16) The electrode storage rubber according to (15) above, wherein the negative electrode active material is a lithium insertion compound.
(1 7) 前記 (1) 〜 (3) のいずれか一項の蓄電性ゴムを集電体と接着して使用 することを特徴とする電気二重層キャパシタである。 (1 8) 前記蓄電性ゴムに対する前記集電体の質量比が 1以下であることを特徴と する前記 (1 7) の電気二重層キャパシタである。 (17) An electric double layer capacitor, wherein the electric storage rubber according to any one of (1) to (3) is used while being bonded to a current collector. (18) The electric double layer capacitor according to (17), wherein a mass ratio of the current collector to the electricity storage rubber is 1 or less.
(1 9) 前記 (4) 〜 ( 1 6) のいずれか一項の電極用蓄電性ゴムを集電体と接着 して使用することを特徴とするリチウム電池である。  (19) A lithium battery characterized by using the electrode storage rubber according to any one of (4) to (16) adhered to a current collector.
(20) 前記電極用蓄電性ゴムに対する前記集電体の質量比が 1以下であることを 特徴とする前記 (1 9) のリチウム電池である。  (20) The lithium battery according to (19), wherein a mass ratio of the current collector to the electrode storage rubber is 1 or less.
(2 1) 前記電極用蓄電性ゴムを集電体と加硫接着することを特徴とする前記 (1 9) 又は (20) のリチウム電池である。 発明の効果  (2 1) The lithium battery according to (19) or (20), wherein the electricity storage rubber for electrodes is vulcanized and bonded to a current collector. The invention's effect
ゴムに、 電子伝導性の分散材、 イオン伝導性の分散材及び電池活物質の 2種以上 を組み合わせて混練して分散させるので、 ゴムの持つ密着性および柔軟性により、 集電体との密着性が向上し、 かつ充放電にともなう活物質の体積変化にも追従でき る効果がある。 それによりレート特性やサイクル特性の向上ができる。  Two or more kinds of electronically conductive dispersing material, ionic conductive dispersing material and battery active material are kneaded and dispersed in rubber, so the rubber has good adhesion and flexibility, so that it can adhere to the current collector. In addition, it has the effect of following the volume change of the active material accompanying charge / discharge. Thereby, rate characteristics and cycle characteristics can be improved.
また、 機械的強度をゴムが担うために電池活物質の割合を増やし集電体重量を低 減することで電池容量の増加を期待できる。 電気二重層キャパシタについても、 同 様に集電体重量を低減することで容量の増加を期待できる。  In addition, since rubber is responsible for mechanical strength, an increase in battery capacity can be expected by increasing the percentage of battery active material and reducing the current collector weight. Similarly, an increase in capacity can be expected for electric double layer capacitors by reducing the current collector weight.
さらに、 電解液などによる劣化などがないため蓄電性ゴム自体をリサイクルでき る可能性がある。 図面の簡単な説明  Furthermore, since there is no deterioration due to electrolytes, etc., the electricity storage rubber itself may be recycled. Brief Description of Drawings
図 1は、従来の電池構造と本発明のゴム主役の電池構造を模式的に示す図である。 図 2は、 蓄電性ゴムの充放電 5 A/ c m2 (1 c y c 1 e g) を示す図である。 図 3は、 蓄電性ゴムの充放電 5 μ A/ c m2 (2 c y c 1 e g) を示す図である。 図 4は、 蓄電性ゴムの充放電 1 μ AZcm2 (3 c y c 1 e g) を示す図である。 図 5は、 蓄電性ゴム (活物質なし) のサイクリックボルタモグラム (掃引速度 0. 1 mV/ s e c ) を示す図 (実施例 2 ) である。 FIG. 1 is a diagram schematically showing a conventional battery structure and a battery structure of the rubber main role of the present invention. FIG. 2 is a diagram showing charge / discharge of the storage rubber 5 A / cm 2 (1 cyc 1 eg). FIG. 3 is a diagram showing charge / discharge of the storage rubber at 5 μA / cm 2 (2 cyc 1 eg). FIG. 4 is a diagram showing charge / discharge 1 μAZcm 2 (3 cyc 1 eg) of the storage rubber. FIG. 5 is a diagram (Example 2) showing a cyclic voltammogram (sweep speed 0.1 mV / sec) of the electricity storage rubber (without active material).
図 6は、 蓄電性ゴム (活物質あり) のサイクリックボルタモグラム (掃引速度 0. l m V/ s e c ) を示す図 (実施例 1 ) である。 Figure 6 shows the cyclic voltammogram (sweep speed 0. FIG. 1 is a diagram (Example 1) showing lm V / sec).
図 7は、 クロスカット試験を示す図である。  Figure 7 shows the crosscut test.
図 8は、 蓄電性ゴム電極を試料極とし、 C V測定を行うために作製した三極式セ ルを示す図である。  FIG. 8 is a diagram showing a triode cell fabricated for CV measurement using a storage rubber electrode as a sample electrode.
図 9は実施例 4の蓄電性ゴム電極の C V測定を行った結果を示す図である。  FIG. 9 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 4.
図 1 0は、 実施例 5の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 1 1は、 実施例 6の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 1 2は、 実施例 7の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 1 3は、 実施例 8の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 1 4は、 実施例 9の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 1 5は、実施例 1 0の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 1 6は、実施例 1 1の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 1 7は、実施例 1 2の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 1 8は、実施例 1 3の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 1 9は、実施例 1 4の蓄電性ゴム電極の C V測定を行った結果を示す図である。 . 図 2 0は、実施例 1 5の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 2 1は、実施例 1 6の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 2 2は、実施例 1 7の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 2 3は、実施例 1 8の蓄電性ゴム電極の C V測定を行った結果を示す図である。 図 2 4は、実施例 1 9の蓄電性ゴム電極の C V測定を行った結果を示す図である。 (符号の説明)  FIG. 10 is a view showing the results of CV measurement of the electricity storage rubber electrode of Example 5. FIG. 11 shows the results of CV measurement of the electricity storage rubber electrode of Example 6. FIG. 12 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 7. FIG. 13 shows the results of CV measurement of the electricity storage rubber electrode of Example 8. FIG. 14 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 9. FIG. 15 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 10. FIG. 16 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 11; FIG. 17 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 12; FIG. 18 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 13; FIG. 19 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 14; FIG. 20 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 15. FIG. 21 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 16; FIG. 22 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 17; FIG. 23 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 18; FIG. 24 is a diagram showing the results of CV measurement of the electricity storage rubber electrode of Example 19; (Explanation of symbols)
1 試料極 2 参照極 '3 対極 4 電解液 発明を実施するための最良の形態  1 Sample electrode 2 Reference electrode '3 Counter electrode 4 Electrolyte Best mode for carrying out the invention
本発明者等は、 種々の研究の結果、 ゴムの有する密着性及び柔軟性を利用するこ とによりレート特性やサイクル特性に優れた電池を構成することが可能であること を発見したものである。 また、 従来の電池と異なり、 ゴムを支持体とした電極層が 機械的強度を保持するために電池の容量の増大を期待できることを発見したもので ある。 As a result of various studies, the present inventors have discovered that it is possible to construct a battery having excellent rate characteristics and cycle characteristics by utilizing the adhesion and flexibility of rubber. . In addition, unlike conventional batteries, it was discovered that the electrode layer with a rubber support can be expected to increase the capacity of the battery in order to maintain mechanical strength. is there.
すなわち、 従来のようにゴムを単にバインダー (結着剤) として使用し、 電池活 物質、導電助剤を結着するのではなく、ゴムにイオン導電性の分散材(固体電解質)、 電子伝導性の分散材 (導電助剤) 及び電池活物質を均一に混練して蓄電性ゴムとす るか、 ゴムにイオン導電性の分散材を加えずに、 電子伝導性の分散材及び電池活物 質を均一に混練して蓄電性ゴムとすることにより、 ゴム支持体に、 これらの成分が 均一に分散している電極用蓄電性ゴムを得るものである (図 1参照)。  In other words, instead of simply using rubber as a binder (binder) and binding battery active materials and conductive assistants as in the past, ion conductive dispersion (solid electrolyte), electronic conductivity Dispersant (conducting aid) and battery active material are uniformly kneaded to form a power storage rubber, or without adding an ion conductive dispersant to the rubber, the electron conductive dispersant and battery active material By uniformly kneading to obtain a power storage rubber, a power storage rubber for an electrode in which these components are uniformly dispersed in a rubber support is obtained (see FIG. 1).
この場合に、 ゴムは固体溶媒ではなく、 支持体として用いているため、 固体電解 質ではなく、 電池の電極 (正極又は負極) 合材として機能するものである。  In this case, since the rubber is not a solid solvent but used as a support, it functions not as a solid electrolyte but as a battery electrode (positive electrode or negative electrode) mixture.
また、 電池活物質を分散させないで、 ゴム支持体にイオン導電性の分散材及び電 子伝導性の分散材を分散させたものである蓄電性ゴム、 または、 ゴム支持体にィォ ン導電性の液体が浸透する細孔を分散させ、電子伝導性の分散材を分散させたもの である蓄電性ゴムは、 電気二重層キャパシタの電極として機能する。  In addition, a battery conductive material in which an ion conductive dispersion material and an electron conductive dispersion material are dispersed in a rubber support without dispersing the battery active material, or ion conductivity in the rubber support. The electricity storage rubber, which is a dispersion of the pores through which the liquid penetrates and an electron conductive dispersion material, functions as an electrode of the electric double layer capacitor.
ゴムの種類は、 限定されるものではなく、 S BR、 CR等の合成ゴム、 耐熱性ゴ ム、エラス トマ一等の従来から使用されているゴムを使用することができる。特に、 エチレンプロピレンジェンゴム (E P DM)、 アタリノレ二ト リ ^^ブタジェンゴム (H — NBR)、 アク リルゴム (ACM) が好ましい。  The type of rubber is not limited, and conventionally used rubbers such as synthetic rubbers such as SBR and CR, heat resistant rubbers and elastomers can be used. In particular, ethylene propylene diene rubber (EPDM), attalinoletri ^^ butadiene rubber (H—NBR), and acrylic rubber (ACM) are preferable.
イオン導電性の分散材としては、 非水系電解液電池 (リチウムイオン電池) の電 解液の有機溶媒に溶解して、ァニオンに解離するリチウム塩が使用できる。例えば、 C 10 、 B ioC 1 .0O2", B 12C 1 12 2", B F 4—、 P F 6—、 A s F 6—、 S b F 6_、 BR4—、 B (A r ) 4—、 A 1 C4—、 C F3SO 、 (C F 3 S 02) 2N -、 (C F 3 S 02) 3C—のァニオンを含む 1又は 2以上のリチウム塩が挙げられる。 特に、 L i C 104や L i P F 6が好ましい。 As the ion conductive dispersion material, a lithium salt that dissolves in an organic solvent of an electrolyte solution of a non-aqueous electrolyte battery (lithium ion battery) and dissociates into an anion can be used. For example, C 10, B ioC 1 .0O2 ", B 12C 1 12 2 ", BF 4 —, PF 6 —, A s F 6 —, S b F 6 _, BR 4 —, B (A r) 4 — , A 1 C 4 —, CF 3 SO, (CF 3 S 0 2 ) 2 N —, and (CF 3 S 0 2 ) 3 C— containing one or more lithium salts. In particular, L i C 10 4 and L i PF 6 are preferred.
ゴム支持体に L i C 1 04や L i P Fe等のイオン導電性の分散材を分散させたも のを、 リチウムイオン電池の電解液に浸漬すれば、 電解液の有機溶媒により L i CThe rubber support L i C 1 0 4 and L i PF e, etc. The well dispersed ionic conductivity of the dispersed material, is immersed in the electrolytic solution for lithium ion batteries, L i by organic solvent of the electrolyte solution C
104や L i P F 6等が溶解し、 ゴム支持体が多孔質化されるから、 電解液がゴム支 持体中にしみ込みやすくなり、 イオン導電性を良くする。 10 4 and L i PF 6 or the like is dissolved, because the rubber support is porous, the electrolyte is easily permeates into the rubber supporting bearing member, to improve the ionic conductivity.
また、 イオン導電性の分散材として、 酸化物イオン導電体、 ハロゲン化物イオン 導電体、 プロ トン導電体、 リチウムイオン導電体、 ナトリゥムイオン導電体、 銀ィ オン導電体、 銅イオン導電体、 a— 6 0 L i S ' 4 0 S i S 2非晶質体、 L i 2S— S i S 2系融液急冷ガラス、 L i 4T i 2 (P 04) 3 · A 1 P 04 · T i O2、 P EO (ポリエチレンォキシド)、 PAN (ポリアクリロニトリル)、 PMMA (ポリメ チルメタアタリ レート)、 P PO (ポリプロピレンォキシド) 等の固体電解質を使 用することで、 有機電解液を使用しない完全固体リチウムイオン二次電池が期待で きる。 このイオン導電性の分散材は、 電気二重層キャパシタにも使用できる。 ゴム支持体に分散させた L i C 1 O4や L i P F6等のイオン導電性の分散材を、 予め有機溶媒により溶解させることにより、 イオン導電性の液体が浸透する細孔が 分散している蓄電性ゴムを得ることができる。 ィオン導電性の液体が浸透する細孔 は均一に分散していることが好ましい。 In addition, as an ion conductive dispersing material, oxide ion conductor, halide ion conductor, proton conductor, lithium ion conductor, sodium ion conductor, silver ion conductor ON conductor, copper ion conductor, a— 60 L i S '4 0 S i S 2 amorphous material, L i 2 S— S i S 2 system melt quenched glass, L i 4 T i 2 ( P 0 4 ) 3 · A 1 P 0 4 · Tio 2 , P EO (polyethylene oxide), PAN (polyacrylonitrile), PMMA (polymethyl methacrylate), P PO (polypropylene oxide) and other solid electrolytes By using it, a fully solid lithium ion secondary battery that does not use organic electrolyte can be expected. This ion conductive dispersion material can also be used for electric double layer capacitors. By dissolving an ionic conductive dispersion material such as Li C 1 O 4 or Li PF 6 dispersed in a rubber support in advance with an organic solvent, the pores into which the ionic conductive liquid permeates are dispersed. Can be obtained. It is preferable that the pores through which the ionic conductive liquid permeates are uniformly dispersed.
また、 イオン導電性の分散材としては機能しない水で抽出可能な化合物を練り込 んだゴムに、 電子伝導性の分散材と電池活物質を混練したものを熱湯に入れて、 そ の化合物を煮沸抽出することによつても、 ィオン導電性の液体が浸透する細孔が分 散した蓄電性ゴムを得ることができる。 この場合には、 ゴムに、 有機溶媒により溶 解するイオン導電性の分散材を含有させる必要はない。  In addition, a mixture of an electron-conductive dispersant and a battery active material kneaded with a water-extractable compound that does not function as an ion-conductive dispersant, is placed in hot water, and the compound is added. Also by boiling extraction, it is possible to obtain a power storage rubber in which pores through which ionic conductive liquid permeates are dispersed. In this case, it is not necessary for the rubber to contain an ion conductive dispersing material that dissolves in an organic solvent.
さらに、 ゴムが有機溶媒によって膨潤するような材質のものである場合には、 膨 潤することによりイオン導電性の液体が浸透し、 イオンパスが可能となるから、 ィ オン導電性の液体が浸透する細孔を分散させなくてもよい。  Furthermore, if the rubber is made of a material that swells with an organic solvent, the ion conductive liquid penetrates by swelling and the ion conductive liquid penetrates, so that the ion conductive liquid penetrates. It is not necessary to disperse the pores.
この場合には、 上記のような煮沸処理を行う必要がないため、 電極を作製するェ 程が簡略化できるという利点がある。 また、 ゴム支持体にカップリング剤を添加剤 として加え、 集電体と加硫接着によって電極を作製することができ、 ゴムのりを使 用しなくても充分な接着力が得られる。  In this case, since it is not necessary to perform the boiling treatment as described above, there is an advantage that the process of manufacturing the electrode can be simplified. Also, a coupling agent can be added to the rubber support as an additive, and an electrode can be produced by vulcanization adhesion to the current collector, and sufficient adhesion can be obtained without using rubber glue.
蓄電性ゴムに浸透させることができるイオン導電性の液体としては、 リチウム電 池に従来から非水系電解液として使用されている有機溶媒とリチウム塩 (電解質) を含む電解液が挙げられる。  Examples of the ion conductive liquid that can permeate the electricity storage rubber include an electrolytic solution containing an organic solvent and a lithium salt (electrolyte) conventionally used as a nonaqueous electrolytic solution in a lithium battery.
このようなィオン導電性の液体としては、 L i B F C (プロピレンカーボ ネート)、 L i B F 4/G B L (γ—ブチロラタ トン)、 L i B F 4/P C + DME ( 1 , 2—ジメ トキシェタン)、 L i B F 4/GB L + DME, L i B F ./P C + EMC (ェチルメチルカーボネート)、 L i B F4/P C +MP (プロピオン酸メ チル)、 L i C 1 O /P C, L i C l O4/G B L、 L i C 1 O 4/ P C + DME、 L i C 104/P C + DME、 L i C 1 O-ZG B L + DME、 L i C 1 O4/P C + EMC, L i C 1 O 4/P C +MP, L i P F 6/P C、 L i P F 6/G B L、 L i P Fe/G B L +DME, L i P Fe/P C + EMC, L i P F 6/P C +MP、 L i P F 6/P C + DME、 L i A s F 6/P C、 L i A s F 6/G B L、 L i A s F e/P C + DME, L i A s F 6/G B L + DME、 L i A s Fe/P C + EMC, L i A s F 6/P C +MP、 L i C F 3 S Os/P C, L i C F 3 S O 3/G B L、 L i C F 3 S Os/P C +DME, L i C F 3 S〇3/G B L + DME、 L i C F 3 S O3 /P C + EMC、 L i C F 3 S Os/P C +MP, L に (— C F 3 S O 2) 2 N/ P C、 L i (C F 3 S O2) 2N/G B L、 L i (C F 3 S O2) 2N/P C + DME、 L i (C F 3 S O2) 2N/G B L + DME, L i (C F 3 S O2) 2 N/P C + EMC, L i (C F 3 S 02) 2NZP C +MP等がある。 Examples of such ionic conductive liquids include Li BFC (propylene carbonate), Li BF 4 / GBL (γ-butyrolacton), Li BF 4 / PC + DME (1,2-dimethoxetane), L i BF 4 / GB L + DME, L i BF ./PC + EMC (ethyl methyl carbonate), L i BF 4 / PC + MP (propionic acid meso Chill), L i C 1 O / PC, L i C l O 4 / GBL, L i C 1 O 4 / PC + DME, L i C 10 4 / PC + DME, L i C 1 O-ZG BL + DME, L i C 1 O 4 / PC + EMC, L i C 1 O 4 / PC + MP, L i PF 6 / PC, L i PF 6 / GBL, L i P Fe / GBL + DME, L i P Fe / PC + EMC, L i PF 6 / PC + MP, L i PF 6 / PC + DME, L i A s F 6 / PC, L i A s F 6 / GBL, L i A s F e / PC + DME, L i A s F 6 / GBL + DME, L i A s Fe / PC + EMC, L i A s F 6 / PC + MP, L i CF 3 S Os / PC, L i CF 3 SO 3 / GBL, L i CF 3 S Os / PC + DME, L i CF 3 S 0 3 / GBL + DME, L i CF 3 SO 3 / PC + EMC, L i CF 3 S Os / PC + MP, L (— CF 3 SO 2 ) 2 N / PC, L i (CF 3 S O2) 2N / GBL, L i (CF 3 S O2) 2 N / PC + DME, L i (CF 3 S O2) 2N / GBL + DME, L i (CF 3 S O2) 2 N / PC + EMC, L i (CF 3 S 0 2 ) 2 NZP C + MP, etc.
電子伝導性の分散材としては、 電池に導電助剤として従来から使用されている炭 素、金属 (鉄鋼等) 、合金、セラミ ックス、ガラスの粉末又は粒子を使用することがで きる。 特に、 アセチレンブラック、 ケッチェンブラック、 及びグラフアイ ト粉末か ら選ばれた一種以上の炭素粉末が好ましい。 アセチレンブラックとケッチェンブラ ックとの混合物、 グラフアイ ト粉末とケッチェンブラックとの混合物がより好まし レ、。  As the electron conductive dispersing material, carbon, metal (iron and steel, etc.), alloys, ceramics, glass powder or particles conventionally used as conductive aids for batteries can be used. In particular, at least one carbon powder selected from acetylene black, ketjen black, and graphite powder is preferable. More preferred is a mixture of acetylene black and ketjen black, a mixture of graphite powder and ketjen black.
電子伝導性の分散材は、 ゴム支持体 1 0 0質量%に対し 6 0〜 1 0 0質量%分散 させることができる。電子伝導性の分散材が少ないと、電池として機能しなくなり、 また、 多すぎるとゴムへの混練が困難になるので、 上記の範囲が好ましい。  The electron conductive dispersing material can be dispersed in an amount of 60 to 100 mass% with respect to 100 mass% of the rubber support. If the amount of the electron conductive dispersing material is small, it will not function as a battery, and if it is too large, kneading into rubber becomes difficult, so the above range is preferable.
電池活物質は、 本発明の蓄電性ゴムを電池の正極とする場合には、 正極活物質に なるが、 リチウム電池に従来から使用されている L i C o 02、 L i C r O2、 L i N i O2、 L i Mn O2, L i Mn 2O4、 L i V24、 L i F e O2、 L i VO2、 L i T i〇2、 L i S c O2、 L i Y02等のリチウム遷移金属複合酸化物を使用する ことができる。 特に、 L i Mn 2O4が好ましい。 The battery active material is a positive electrode active material when the storage rubber according to the present invention is used as the positive electrode of the battery, but Li C o 0 2 and Li C r O 2 conventionally used for lithium batteries. , L i N i O 2 , L i Mn O2, L i Mn 2 O 4 , L i V 2 0 4 , L i F e O 2 , L i VO 2 , L i T i 0 2 , L i S c Lithium transition metal composite oxides such as O 2 and Li Y0 2 can be used. In particular, Li Mn 2 O 4 is preferable.
電池活物質 (正極活物質) は、 ゴム支持体 1 0 0質量%に対し 1 0〜5 0質量% 分散させることができる。 電池活物質が少ないと電池として機能しなくなり、 多す ぎても電池としての挙動が見られなくなるので、 上記の範囲が好ましい。 正極活物質としては、平均粒径 1 0〜 3 0 mのものを使用することができる力 粉砕して、 平均粒径 2 程度としたものを使用してもよい。 The battery active material (positive electrode active material) can be dispersed in an amount of 10 to 50% by mass with respect to 100% by mass of the rubber support. If the battery active material is small, it will not function as a battery, and if it is too much, the behavior as a battery will not be seen, so the above range is preferable. As the positive electrode active material, one having an average particle diameter of 10 to 30 m can be used.
電池活物質は、 本発明の蓄電性ゴムを電池の負極とする場合には、 負極活物質に なるが、 リチウム電池に従来から使用されている合成黒鉛 (グラフアイ ト)、 天然 黒鉛、 難黒鉛化炭素、 非晶質コバルト置換窒化リチウム、 非晶質スズ複合酸化物、 S n O— B 2 O 3— P 25系の融液急冷ガラス、 非晶質 S i O 2— S n O系非晶質材 料等のリチウムインサーシヨン物質又は化合物を使用することができる。 The battery active material becomes a negative electrode active material when the power storage rubber of the present invention is used as the negative electrode of the battery. However, synthetic graphite (graphite), natural graphite, and non-graphite that have been conventionally used for lithium batteries. Carbonized, Amorphous cobalt-substituted lithium nitride, Amorphous tin composite oxide, SnO— B 2 O 3 — P 2 0 5 melt-quenched glass, Amorphous S i O 2 — S n O Lithium insertion materials or compounds such as amorphous amorphous materials can be used.
本発明の前記 (1 ) 〜 (3 ) のいずれか一項の蓄電性ゴム (電池活物質を分散さ せないもの) 又は前記 (4 ) 〜 ( 1 6 ) のいずれか一項の電極用蓄電性ゴム (電池 活物質を分散させたもの) は、 集電体と接着することにより、 電気二重層キャパシ タ又は電池とすることができる。  The electric storage rubber according to any one of (1) to (3) of the present invention (one that does not disperse the battery active material) or the electric storage for electrode according to any one of (4) to (16) The conductive rubber (in which the battery active material is dispersed) can be made into an electric double layer capacitor or battery by adhering to the current collector.
集電体としては、 アルミ箔、 ステンレス箔等を使用することができ、 蓄電性ゴム と加熱圧着により及び Z又はゴムのりを使用して接着することができる。その場合、 ゴム支持体 (蓄電性ゴム) と同種のゴムのりを使用することが好ましい。  As the current collector, aluminum foil, stainless steel foil or the like can be used, and it can be bonded to the storage rubber by thermocompression bonding and using Z or rubber paste. In that case, it is preferable to use the same kind of rubber paste as that of the rubber support (power storage rubber).
また、 ゴム支持体にカップリング剤を添加して、 集電体と加硫接着することもで きる。 加硫接着としては、 未加硫の蓄電性ゴムの上に集電体をのせ、 熱プレスする ことにより一次加硫を行い、 ゴムを加硫させると同時に集電体と接着する方法が採 用できる。 熱プレスは、 1 6 5〜 1 7 5 °Cで、 8〜 1 2分行うことが好ましい。 加 硫接着の場合、 ゴムのりは使用してもよいし、 使用しなくてもよい。 カップリング 剤としてはシラン力ップリング剤が好ましい。  In addition, a coupling agent can be added to the rubber support and vulcanized and bonded to the current collector. For vulcanization adhesion, a method is adopted in which a current collector is placed on an unvulcanized electricity storage rubber, and primary vulcanization is performed by hot pressing, and the rubber is vulcanized and bonded to the current collector at the same time. it can. The hot pressing is preferably performed at 165-175 ° C for 8-12 minutes. In the case of vulcanization bonding, rubber glue may or may not be used. As the coupling agent, a silane force coupling agent is preferable.
本発明の蓄電性ゴムを電気二重層キャパシタ又は電池に適用する場合、 機械的強 度をゴムが担うために集電体重量を低減することができ、 蓄電性ゴム (イオン導電 性の分散材、 電子伝導性の分散材、 電池活物質の質量を含めたもの) に対する集電 体の質量比を 1以下とすることができる。 実施例 1  When the electricity storage rubber of the present invention is applied to an electric double layer capacitor or a battery, the weight of the current collector can be reduced because the rubber bears the mechanical strength, and the electricity storage rubber (ionic conductive dispersion material, The mass ratio of the current collector to the electron conductive dispersion material (including the mass of the battery active material) can be 1 or less. Example 1
原料ゴムとしてアクリル-トリルブタジエンゴム (H— N B R ) を使用し、 ゴム 1 0 0 w t %に対し、 4 0 w t %のイオン導電性の分散材 (L i C 1 0 4 )、 9 0 w t %の電子伝導性の分散材 (アセチレンブラック 8 0 w t %及びケッチェンブラ ック 1 0 w t %)、 4 0 w t %の正極活物質 (L i Mn 2O4) を加え、 オープン口 ールにて混練し、 1 8 0°Cで 1 0分、 加硫を行い、 蓄電性ゴムシートを得た。 この 蓄電性ゴムシートを 1 cmX 1 cm切り出し試験管にいれ P C (キシダ化学製) を 1 Om 1入れシリコンゴムキャップで試験管にふたをした。 その後、 超音波洗浄機 ( 1 0 0 W4 2 KH z , y a m a t o 2 5 1 0) にて 6. 0時間処理をした。 これ をステンレス箔 (S US 3 0 4、 二ラコ) で挟み込み 1 c m2面積が電解液に (L i C 1 04/P C + DME) つかるようにセッ トし試料極とした。 実施例 2 — - . Acrylic-tolyl butadiene rubber (H—NBR) is used as the raw rubber, and 40 wt% ionic conductive dispersion (L i C 10 4 ), 90 wt% compared to 100 wt% rubber. Of electron conductive dispersion (acetylene black 80 wt% and ketjen bra 10 wt%), 40 wt% positive electrode active material (L i Mn 2 O 4 ), knead in an open gate, and vulcanize at 180 ° C for 10 minutes A power storage rubber sheet was obtained. The electricity storage rubber sheet was cut out into a 1 cm × 1 cm test tube, 1 Om 1 of PC (manufactured by Kishida Chemical Co., Ltd.) was added, and the test tube was covered with a silicon rubber cap. Thereafter, it was treated for 6.0 hours with an ultrasonic cleaner (10:00 W4 2 KHz, yamato 2 5 1 0). This stainless steel foil (S US 3 0 4, two Rako) 1 cm 2 area entrapment has the electrolyte and (L i C 1 0 4 / PC + DME) immersed as set by the sample electrode in. Example 2 — —.
正極活物質 (L i Mn 24) を加えずに、 ゴム (H— NBR) 1 00w t %に対 し、 4 0 w t %の L i C 1 04、 アセチレンブラック 8 0 w t %及びケッチェンブ ラック 1 0 w t %の混合材を加え、オープンロールにて混練し、 1 8 0°Cで 1 0分、 加硫を行い、 蓄電性ゴムシートを得た。 この蓄電性ゴムシートを 1 c mX 1 c m切 り出し、 実施例 1 と同様に処理をした。 これをステンレス箔 (SU S 3 04、 ニラ コ) で挟み込み 1 c m2面積が電解液に (L i C 1 04 P C + DME) つかるよう にセットし試料極とした。 実施例 1と実施例 2で得た試料極を用いて充放電試験を行った。 参照極は L i / L i +、 対極は金属リチウムとした。 電流密度は 5 A/ c m2, 1 μ A/c m2で 行いカッ トオフ電位は 2. 8〜4. 4 V (v s L iノ L i +) とした。 Without adding positive electrode active material (L i Mn 2 0 4 ), rubber (H—NBR) 100 wt%, 40 wt% Li C 10 4 , acetylene black 80 wt%, and ket A mixed material of 10 wt% rack was added, kneaded with an open roll, and vulcanized at 180 ° C. for 10 minutes to obtain a power storage rubber sheet. This electricity storage rubber sheet was cut out by 1 cm × 1 cm and treated in the same manner as in Example 1. This stainless steel foil (SU S 3 04, leek co) is 1 cm 2 area sandwiched between and the electrolyte solution and (L i C 1 0 4 PC + DME) immersed as set by the sample electrode. A charge / discharge test was performed using the sample electrodes obtained in Example 1 and Example 2. The reference electrode was Li / Li + , and the counter electrode was metallic lithium. The current density was 5 A / cm 2 and 1 μA / cm 2 , and the cut-off potential was 2.8 to 4.4 V (vs L i no L i + ).
図 2に蓄電性ゴムの充放電 5 μ A/c m2 ( 1 c y c 1 e目) を示した。 Figure 2 shows the charge / discharge of the storage rubber at 5 μA / cm 2 (1 cyc 1 e).
X軸時間 ( s )、 Y軸電位 (V) とし、 実施例 1の試料極 (活物質あり) の充放 電では 0秒 3. 2 3 V、 1 0秒 4. 2V、 2 0秒、 4. 2 8 V、 3 0秒 4. 3 3 V、 4 0秒 4. 3 7 V、 5 0秒 4. 4 V、 6 0秒 3. 2 2 V、 7 0秒 2. 8 2 V、 7 2 秒 2. 8 Vであった。 実施例 2の試料極 (活物質なし) の充放電では 0秒 3. 1 6 V、 1 0秒 4. 2 5 V、 2 0秒 4. 34 V、 3 0秒 4. 4 V、 4 0秒 3. 1 2 V、 4 8秒 2. 8 Vであった。  X-axis time (s), Y-axis potential (V), and charge / discharge of sample electrode (with active material) in Example 1 0 seconds 3.2 2.3 V, 10 seconds 4.2 V, 20 seconds 4. 2 8 V, 30 seconds 4. 3 3 V, 40 seconds 4. 3 7 V, 50 seconds 4. 4 V, 60 seconds 3. 2 2 V, 70 seconds 2. 8 2 V, 7 2 seconds 2.8 V. 0 second for charge / discharge of sample electrode (no active material) in Example 2. 3. 16 V, 10 seconds 4. 25 V, 20 seconds 4. 34 V, 30 seconds 4.4 V, 40 Sec 3.1 2 V, 4 8 sec 2.8 V.
図 3に蓄電性ゴムの充放電 5 μ A/c m2 (2 c y c 1 e g) を示した。 Figure 3 shows the charge / discharge of the storage rubber at 5 μA / cm 2 (2 cyc 1 eg).
同じく実施例 1の試料極(活物質あり) の充放電では 0秒 3. 1 5 V、 1 0秒 4. 1 7 V、 2 0秒 4. 3 5 V、 3 0秒 3. 8 V、 4 8秒 2. 8 Vであった。 実施例 2 の試料極 (活物質なし) の充放電では 0秒 3. 1 3、 1 0秒 4. 2 2 V、 2 0秒 3. 8 5 V、 3 0秒 3. 3 2 V、 4 0秒 2. 8 2 V、 4 2秒 2. 8 Vであった。 Similarly, charge / discharge of the sample electrode (with active material) in Example 1 is 0 seconds 3. 15 V, 10 seconds 4. 1 7 V, 20 seconds 4. 35 V, 30 seconds 3. 8 V, 4 8 seconds 2.8 V. Charge / discharge of the sample electrode of Example 2 (without active material) 0 seconds 3. 1 3, 1 0 seconds 4. 2 2 V, 2 0 seconds 3. 8 5 V, 3 0 seconds 3.3 2 V, 4 It was 0 seconds 2. 8 2 V, 4 2 seconds 2.8 V.
図 4に蓄電性ゴムの充放電 1 μ Α c m2 (3 c y c 1 e g) を示した。 Figure 4 shows the charge and discharge of the storage rubber 1 μ μcm 2 (3 cyc 1 eg).
同様に実施例 1の試料極 (活物質あり) の充放電では 0秒 3. 1 2 V、 2 0秒 3. 6 6 V、 6 0秒 3. 8 9 V、 24 0秒 4. 2 3 V、 5 2 0秒 4. 3 V、 1 2 6 0秒 4. 4 V、 1 2 7 0秒 3. 9 3 V、 1 2 8 0秒 3. 6 8 V、 1 3 0 0秒 3. 4 2 V、 1 3 2 0秒 3. 2 8 V、 1 3 5 0秒 3. 1 0 V、 1 4 8 0秒 2. 8 Vであった。 実 施例 2の試料極 (活物質なし) の充放電では 0秒 3. 1 2 V、. 5秒 3. 4 2 V、 1 0秒 3. 6 V、 3 0秒 3. 8 8 V、 7 0秒 4. I V、 24 0秒 4. 2 7 V、 7 8 0 秒 4. 3 9、 8 8 2秒 4. 4 V , 8 9 2 3. 9 V、 9 0 2秒 3. 74 V、 94 2 秒 3. 4 V、 9 8 2秒 3. 2 V、 1 1 1 2秒 2. 9 1 V、 1 2 7 2秒 2. 8 Vであ つた。  Similarly, charge / discharge of the sample electrode (with active material) of Example 1 is 0 second 3. 12 V, 20 seconds 3. 6 6 V, 60 seconds 3. 8 9 V, 24 0 seconds 4.2 3 V, 5 20 seconds 4.3 V, 1 2 60 seconds 4.4 V, 1 2 70 seconds 3.93 V, 1 2 80 seconds 3.66 8 V, 1 300 seconds 3. 4 2 V, 1 3 2 0 seconds 3. 2 8 V, 1 3 5 0 seconds 3. 1 0 V, 1 4 8 0 seconds 2.8 V. In charge and discharge of the sample electrode (without active material) in Example 2 0 seconds 3. 1 2 V, .5 seconds 3. 4 2 V, 1 0 seconds 3. 6 V, 3 0 seconds 3. 8 8 V, 7 0 sec 4. IV, 24 0 sec 4. 2 7 V, 7 80 sec 4. 3 9, 8 8 2 sec 4. 4 V, 8 9 2 3. 9 V, 9 0 2 sec 3. 74 V 94 2 seconds 3.4 V, 9 8 2 seconds 3. 2 V, 1 1 1 2 seconds 2. 9 1 V, 1 2 7 2 seconds 2.8 V.
図 5に実施例 2の蓄電性ゴム (活物質なし) のサイクリックボルタモグラム (掃 引速度 0. l mVZ s e c ) を示した。 電位 3 Vの時カレントは 0 ^ Aから一 0. FIG. 5 shows the cyclic voltammogram (sweep speed 0. l mVZ sec) of the electricity storage rubber (without active material) of Example 2. When the potential is 3 V, the current is 1 from 0 ^ A.
4 μ A、 3. 5 ではー0. 1 八と 0 、 4 では0 八と 0. 1 μ Α、 4 -4 μA, 3.5 is -0.1 8 and 0, 4 is 0 and 0.1 μΑ, 4-
5 Vでは 0 · 3 μ Αと 1 μ Α、 4. 6 では1. 4 Αであった。 At 5 V, they were 0 · 3 μΑ and 1 μΑ, and at 4.6 V, they were 1.4 Α.
図 6に実施例 1の蓄電性ゴム (活物質あり) のサイクリックボルタモグラム (掃 引速度 0. l mVZ s e c ) を示した。 3. 1 I Vから 4. 0 4 Vではカレント 0 μ A、 4 · 4 Vでは、 0. Ι μ Αと 0. 5 Α、 4. 6 Vでは 0. 8 Αであった。 これらの結果から、 本発明の蓄電性ゴムは電池特性があり、 電池用電極として作 動していると考えられる。 実施例 3  FIG. 6 shows the cyclic voltammogram (sweep speed 0. l mVZ sec) of the electricity storage rubber (with active material) of Example 1. 3. From 1 I V to 4.0 4 V, the current was 0 μA, for 4.4 · 4 V, 0 Ι μ Α and 0.5 Α, and for 4.6 V, 0.8 Α. From these results, it is considered that the electricity storage rubber of the present invention has battery characteristics and operates as a battery electrode. Example 3
N a C 1を練り込んだゴム (H— NB R) を使用し、 活物質 (L i Mn 204) と 電子伝導性の分散材 (アセチレンブラック及びケッチェンブラック) 力 ゴム 1 0 0 w t %に対し、 L i Mn 2 O 4 : 4 0 w t %、 アセチレンブラック (以下、 ABと 略す) 及びケッチェンブラック (以下、 K Bと略す) : 9 0 w t % (AB 8 0 · K B I Oの割合) となるように加え、 シランカップリング剤を添加して、 オープン口 ールにて混練し、 1 80°Cで 5分、 一次加硫を行った。 その後、 1 00°Cで Na C 1を煮沸抽出した。 この処理により、 ゴム支持体にイオン導電性の液体が浸透する 細孔が均一に分散し、アセチレンブラック及び L i Mn 2O4が分散してなる蓄電性 ゴムシートが得られた。 この蓄電性ゴムシートを、 アルカリ脱脂を行いゴムのりを 塗布したアルミ箔に 1 80°Cで 30分、 圧着することにより接着した。 その後、 1 50°Cで 1時間オーブンにて二次加硫を行い試料を得た。 Using rubber (H—NB R) kneaded with N a C 1, active material (L i Mn 2 0 4 ) and electron conductive dispersion (acetylene black and ketjen black) force rubber 1 0 0 wt %, Li Mn 2 O 4: 40 wt%, acetylene black (hereinafter abbreviated as AB) and ketjen black (hereinafter abbreviated as KB): 9 0 wt% (ratio of AB 8 0 · KBIO) In addition to adding a silane coupling agent, The mixture was kneaded in a roll and subjected to primary vulcanization at 180 ° C for 5 minutes. Then, NaC1 was boiled and extracted at 100 ° C. By this treatment, a power storage rubber sheet was obtained in which the pores through which the ion conductive liquid permeated the rubber support were uniformly dispersed, and acetylene black and Li Mn 2 O 4 were dispersed. This electricity storage rubber sheet was bonded by crimping at 80 ° C. for 30 minutes to an aluminum foil that had been subjected to alkaline degreasing and coated with rubber paste. Thereafter, secondary vulcanization was performed in an oven at 150 ° C for 1 hour to obtain a sample.
試料とアルミ箔の密着性を調べるためにクロス力ッ ト試験を行った。 1 c m四方 に、 縦、 横 1 mm幅に切りつけ、 セロハンテープ (N I CH I B AN :商品名、 二 チバン製) を貼り付け、 試験を行った (図 7参照)。  A cross force test was conducted to examine the adhesion between the sample and the aluminum foil. A 1 cm square was cut into 1 mm width and 1 mm width, and a cellophane tape (N I CH I BAN: trade name, manufactured by Nichiban) was applied and tested (see Fig. 7).
実施例 3の試料にクロスカツ ト試験を行った結果、 試験後にゴムの残存量は 1 0 0%であった。 したがって、 一般にその特性上、 集電体として好ましいアルミ材に 対して、 十分な密着性を有していることが確認された。 すなわち、 本発明において は、 集電体の変形に対しても追従可能であるから十分な密着性を確保でき、 剥離問 題が生じ難く、 また、 フレキシブルな電極とすることができる。 実施例 4  As a result of performing a cross-cut test on the sample of Example 3, the rubber remaining amount after the test was 100%. Therefore, in general, it was confirmed that it has sufficient adhesion to an aluminum material that is preferable as a current collector because of its characteristics. That is, in the present invention, it is possible to follow the deformation of the current collector, so that sufficient adhesion can be ensured, a peeling problem hardly occurs, and a flexible electrode can be obtained. Example 4
原料ゴムとして H— NBRを使用し、 活物質 (L i Mn 204) と電子伝導性の分 散材(アセチレンブラック及びケッチェンブラック) 力 ゴム 1 00 w t %に対し、 L i Μη : 40 w t %, AB及び K Β : 90 w t % (AB 80 · KB 10の割 合) となるように加え、 シランカップリング剤を添加して、 オープンロールにて混 練し、 未加硫ゴムシートとし、 1 70°( で1分、 熱プレスすることにより一次加硫 を行った。 この蓄電性ゴムシートを、 オーブン中で、 アルカリ脱脂を行いゴムのり を塗布したアルミ箔に 1 80°Cで 30分、 加熱圧着することにより接着した。 その 後、 1 5 0°Cで 1時間オーブンにて二次加硫を行い試料を得た。 実施例 5 H—NBR is used as the raw rubber, and the active material (L i Mn 2 0 4 ) and electron-conducting dispersive material (acetylene black and ketjen black) force rubber 1 00 wt%, L i Μη: 40 wt%, AB and K :: 90 wt% (AB 80 · KB 10 ratio) Add silane coupling agent and knead with open roll to make unvulcanized rubber sheet 1 Primary vulcanization was carried out by hot pressing at 70 ° for 1 minute. This electrical storage rubber sheet was baked on aluminum foil that had been subjected to alkaline degreasing and coated with rubber paste in an oven at 1 80 ° C. After that, the samples were bonded by thermocompression bonding, followed by secondary vulcanization in an oven at 150 ° C. for 1 hour to obtain a sample.
原料ゴムとして E PDMを使用したこと以外は、 実施例 4と同様にして試料を得 た。 実施例 6 A sample was obtained in the same manner as in Example 4 except that EPDM was used as the raw rubber. Example 6
電子伝導性の分散材として、 ABの代わりにグラフアイ ト粉末(以下、 Gと略す) を使用し、 G及び KB : 7 5 w t % (G 5 5 · KB 2 0の割合) となるように混練 した以外は、 実施例 4と同様にして試料を得た。 実施例 7  Graphite powder (hereinafter abbreviated as G) is used instead of AB as the electron conductive dispersion material, so that G and KB: 75 wt% (ratio of G 55 · KB 20) A sample was obtained in the same manner as Example 4 except for kneading. Example 7
原料ゴムとして E PDMを使用したこと以外は、 実施例 6と同様にして試料を得 た。 実施例 8  A sample was obtained in the same manner as in Example 6 except that EPDM was used as the raw rubber. Example 8
接着方法として加熱圧着せずに加硫接着する方法、 すなわち、 未加硫ゴムシート の上に、 アルカリ脱脂を行ったアルミ箔をのせ、 1 7 0°Cで 1 0分、 熱プレスする ことにより一次加硫を行い、 ゴムを加硫させると同時にアルミ箔と接着する方法を 採用したこと以外は、 実施例 7と同様にして試料を得た。 実施例 9  A method of vulcanization and adhesion without thermocompression bonding as an adhesion method, that is, by placing an aluminum foil that has been subjected to alkali degreasing on an unvulcanized rubber sheet and hot pressing at 170 ° C for 10 minutes A sample was obtained in the same manner as in Example 7 except that the primary vulcanization was performed and the method of adhering to the aluminum foil at the same time as vulcanizing the rubber was adopted. Example 9
原料ゴムとして H— NBRを使用したこと、 活物質としてし i Mn 24を粉砕し て平均粒径 2 mとしたものを使用したこと、 加硫接着する際に、 アルミ箔にゴム のりを塗布したこと以外は、 実施例 8と同様にして試料を得た。 実施例 1 0 For using H- NBR as a raw material rubber, by pulverizing i Mn 24 as an active material that was used was the average particle diameter 2 m, when the wearing vulcanization, the rubber cement in aluminum foil A sample was obtained in the same manner as in Example 8 except that it was applied. Example 1 0
原料ゴムとして E PDMを使用したこと以外は、 実施例 9と同様にして試料を得 た。 実施例 1 1  A sample was obtained in the same manner as in Example 9 except that EPDM was used as the raw rubber. Example 1 1
活物質として L i Mn 2O 4を粉砕して平均粒径 2 /i mとしたものを使用したこと こと以外は、 実施例 8と同様にして試料を得た。 実施例 1 2 接着方法として加熱圧着せずに加硫接着する方法、 すなわち、 未加硫ゴムシート の上に、 アルカリ脱脂を行ったアルミ箔をのせ、 1 70°Cで 10分、 熱プレスする ことにより一次加硫を行い、 ゴムを加硫させると同時にアルミ箔と接着する方法を 採用したこと以外は、 実施例 5と同様にして試料を得た。 実施例 1 3 A sample was obtained in the same manner as in Example 8 except that Li Mn 2 O 4 was used as the active material and the average particle size was 2 / im. Example 1 2 Adhesion method is vulcanization adhesion without thermocompression bonding, that is, primary vulcanization is carried out by placing alkali degreased aluminum foil on unvulcanized rubber sheet and heat pressing at 70 ° C for 10 minutes. A sample was obtained in the same manner as in Example 5 except that a method was employed in which the rubber was vulcanized and the method of adhering to the aluminum foil at the same time was adopted. Example 1 3
加硫接着する際に、 アルミ箔にゴムのりを塗布したこと以外は、 実施例 12と同 様にして試料を得た。 実施例 14  A sample was obtained in the same manner as in Example 12 except that a rubber paste was applied to the aluminum foil during vulcanization adhesion. Example 14
活物質として L i Mn 204を粉砕して平均粒径 2 μ mとしたものを使用したこと 以外は、 実施例 1 2と同様にして試料を得た。 実施例 15 A sample was obtained in the same manner as in Example 12 except that Li Mn 20 4 was pulverized to an average particle size of 2 μm as the active material. Example 15
活物質として i Mn 2〇 を粉砕して平均粒径 2 μ mとしたものを使用したこと 以外は、 実施例 1 3と同様にして試料を得た。 実施例 16 A sample was obtained in the same manner as in Example 13 except that i Mn 2 0 was pulverized to an average particle size of 2 μm as the active material. Example 16
接着方法として加熱圧着せずに加硫接着する方法、 すなわち、 未加硫ゴムシート の上に、 アルカリ脱脂を行ったアルミ箔をのせ、 1 70°Cで 10分、 熱プレスする ことにより一次加硫を行い、 ゴムを加硫させると同時にアルミ箔と接着する方法を 採用したこと以外は、 実施例 4と同様にして試料を得た。 実施例 1 7  Adhesion method is vulcanization adhesion without thermocompression bonding, that is, primary vulcanization is carried out by placing alkali degreased aluminum foil on unvulcanized rubber sheet and heat pressing at 70 ° C for 10 minutes. A sample was obtained in the same manner as in Example 4 except that a method was used in which the rubber was vulcanized and the method of adhering to the aluminum foil at the same time was adopted. Example 1 7
ゴム 100 w t %に対し、 L i Mn2O4 : 50w t%ととなるように加えたこと 以外は、 実施例 16と同様にして試料を得た。 実施例 18 A sample was obtained in the same manner as in Example 16 except that 100% by weight of rubber was added so that Li Mn 2 O 4 : 50 wt%. Example 18
ゴム 100 w t %に対し、 L i Mn24 : 10w t%ととなるように加えたこと 以外は、 実施例 1 6と同様にして試料を得た。 実施例 1 9 Added to 100 wt% of rubber so that L i Mn 2 0 4 : 10 wt% A sample was obtained in the same manner as in Example 16 except that. Example 1 9
ゴム 1 00 w t %に対し、 A B及び KB : 70 w t % (AB 60 · KB 1 0の割 合) となるように加えたこと以外は、 実施例 1 6と同様にして試料を得た。  A sample was obtained in the same manner as in Example 16 except that it was added so that AB and KB were 70 wt% (ratio of AB 60 · KB 10) with respect to 100 wt% of rubber.
(比較例 1 ) (Comparative Example 1)
ゴム 1 00 w t %に対し、 A B及び KB : 50 w t % (AB 45 · KB 5の割合) となるように加えたこと以外は、 実施例 1 6と同様にして試料を得た。 実施例 1〜 1 9、 比較例 1で作製した試料の材料、 製法を表 1にまとめて示す。 表 1  A sample was obtained in the same manner as in Example 16 except that 100 wt% of rubber was added so that AB and KB were 50 wt% (ratio of AB 45 · KB 5). Table 1 summarizes the materials and manufacturing methods of the samples prepared in Examples 1 to 19 and Comparative Example 1. table 1
Figure imgf000019_0001
実施例 4〜 1 9、 比較例 1で作製した試料 (蓄電性ゴム電極) を試料極とし、 図 8のような三極式セルを作製して CV測定を行った。
Figure imgf000019_0001
Examples 4 to 19 and samples prepared in Comparative Example 1 (electric storage rubber electrode) were used as sample electrodes, and a tripolar cell as shown in FIG. 8 was prepared and CV measurement was performed.
試料極 ( 1 ) は、 電解液に 1. 5 c m2浸かるようにセッ トし、 参照極 (2)、 対極 (3) としては金属リチウムを使用し、 電解液 (4) としては、 1M L i B F«、 PC + DME (1 : 1) を使用した。 Set the sample electrode (1) so that it is immersed in an electrolyte solution of 1.5 cm 2 , use metallic lithium as the reference electrode (2) and the counter electrode (3), and 1 mL as the electrolyte solution (4). i BF «, PC + DME (1: 1) was used.
(測定条件)  (Measurement condition)
掃引速度: 0. 1 mV/ s e c Sweep speed: 0.1 mV / s e c
掃引範囲 : 2. 8V又は 3. 0V〜4. 4 V (自然電位によって変更) Sweep range: 2.8 V or 3.0 V to 4.4 V (changed according to natural potential)
実例 4〜1 9で作製した試料について、 上記のようにして CV測定を行った結果 を図 9〜図 24に示す。  Figures 9 to 24 show the results of CV measurements performed on samples prepared in Examples 4 to 19 as described above.
図 9〜図 2 1に示すデータからみて、 本発明の蓄電性ゴムは電池特性があり、 電 池用電極として作動していると考えられる。  From the data shown in FIGS. 9 to 21, it is considered that the electricity storage rubber of the present invention has battery characteristics and is operating as a battery electrode.
また、 図 22 (実施例 1 7の試料を使用) 及び図 23 (実施例 1 8の試料を使用) に示すデータからみて、 電極活物質の含有量については、 50質量。 /0と多い場合で も、 1 0質量%と少ない場合でも電極として機能することが分かったが、 40質量In addition, from the data shown in FIG. 22 (using the sample of Example 17) and FIG. 23 (using the sample of Example 18), the content of the electrode active material is 50 mass. / 0 and even if many, were found to function as an electrode even if 1 0 wt% and less, 40 wt
%程度が、 図 2 1 (実施例 1 6の試料を使用) に示すように電極の容量が大きくな るから好ましい。 % Is preferable because the electrode capacity increases as shown in FIG. 21 (using the sample of Example 16).
電子伝導性の分散剤 (導電助剤) の含有量については、 図 24 (実施例 1 9の試 料を使用) に示すように 70質量。 /0まで減量した場合でも、 マンガンピークが確認 でき、 電池として機能することが分かった。 導電助剤の含有量が 50質量% (比較 例 1) では電池としての挙動が見られなかった。 産業上の利用可能性 The content of the electron conductive dispersant (conducting aid) is 70 mass as shown in Figure 24 (using the sample of Example 19). Even when the amount was reduced to 0 , the manganese peak could be confirmed, indicating that it functions as a battery. When the content of the conductive additive was 50% by mass (Comparative Example 1), no behavior as a battery was observed. Industrial applicability
本発明の蓄電性ゴムは、キャパシタ、電池用電極として機能するものであるから、 電気二重層キャパシタ、 リチウム電池等に使用することができる。  Since the electricity storage rubber of the present invention functions as a capacitor and a battery electrode, it can be used for electric double layer capacitors, lithium batteries and the like.

Claims

請求の範囲 The scope of the claims
1 . ゴム支持体にイオン導電性の分散材及び電子伝導性の分散材が分散しているこ とを特徴とする蓄電性ゴム。 1. An electricity storage rubber characterized in that an ion conductive dispersion material and an electron conductive dispersion material are dispersed in a rubber support.
2 . 前記イオン導電性の分散材が、 固体電解質であることを特徴とする請求の範囲 第 1項に記載の蓄電性ゴム。  2. The electricity storage rubber according to claim 1, wherein the ion conductive dispersion is a solid electrolyte.
3 . ゴム支持体にイオン導電性の液体が浸透する細孔が分散し、かつ、 電子伝導性 の分散材が分散していることを特徴とする蓄電性ゴム。  3. A power storage rubber characterized in that pores through which an ion conductive liquid permeates into a rubber support are dispersed and an electron conductive dispersion material is dispersed.
4 . ゴム支持体にイオン導電性の分散材、 電子伝導性の分散材及び電池活物質が分 散していることを特徴とする電極用蓄電性ゴム。  4. An electricity storage rubber for an electrode, characterized in that an ion conductive dispersion material, an electron conductive dispersion material and a battery active material are dispersed on a rubber support.
5 . 前記イオン導電性の分散材が、 電解液の有機溶媒に溶解して、 ァニオンに解離 するリチウム塩であることを特徴とする請求の範囲第 4項に記載の電極用蓄電性ゴ ム。  5. The electrode storage rubber according to claim 4, wherein the ion conductive dispersion is a lithium salt that dissolves in an organic solvent of an electrolytic solution and dissociates into an anion.
6 . イオン導電性の分散材を含まないゴム支持体に電子伝導性の分散材及び電池活 物質が分散していることを特徴とする電極用蓄電性ゴム。  6. An electricity storage rubber for an electrode, wherein an electron conductive dispersion material and a battery active material are dispersed in a rubber support that does not contain an ion conductive dispersion material.
7 . 前記電子伝導性の分散材が、 ゴム支持体 1 0 0質量%に対し 6 0〜 1 0 0質量 %分散していることを特徴とする請求の範囲 6項に記載の電極用蓄電性ゴム。 7. The electrical storage capacity for an electrode according to claim 6, wherein the electronically conductive dispersion material is dispersed in an amount of 60 to 100 mass% with respect to 100 mass% of the rubber support. Rubber.
8 . 前記電池活物質が、 ゴム支持体 1 0 0質量%に対し 1 0〜5 0質量%分散して いることを特徴とする請求の範囲第 6項に記載の電極用蓄電性ゴム。 8. The battery power storage rubber according to claim 6, wherein the battery active material is dispersed in an amount of 10 to 50% by mass with respect to 100% by mass of the rubber support.
9 . 前記ゴム支持体にイオン導電性の液体が浸透する細孔が分散していることを特 徴とする請求の範囲第 6項〜第 8項のいずれか一項に記載の電極用蓄電性ゴム。 9. The electricity storage property for an electrode according to any one of claims 6 to 8, wherein pores through which the ion conductive liquid permeates are dispersed in the rubber support. Rubber.
1 0 . 前記イオン導電性の液体が、 有機溶媒とリチウム塩を含む電解液であること を特徴とする請求の範囲第 9項に記載の電極用蓄電性ゴム。 10. The electricity storage rubber for an electrode according to claim 9, wherein the ion conductive liquid is an electrolytic solution containing an organic solvent and a lithium salt.
1 1 . 前記ゴム支持体が有機溶媒によって膨潤することによりイオン導電性の液体 が浸透し、 イオンパスが可能となるものであることを特徴とする請求の範囲第 6項 〜第 8項のいずれか一項に記載の電極用蓄電性ゴム。  11. The rubber support according to any one of claims 6 to 8, wherein the rubber support is swollen by an organic solvent so that an ion conductive liquid can permeate and an ion path is possible. The electricity storage rubber for electrodes according to one item.
1 2 . 前記イオン導電性の液体が、 有機溶媒とリチウム塩を含む電解液であること を特徴とする請求の範囲第 1 1項に記載の電極用蓄電性ゴム。 12. The electrode conductive liquid according to claim 11, wherein the ion conductive liquid is an electrolytic solution containing an organic solvent and a lithium salt.
1 3 . 前記電子伝導性の分散材が、 アセチレンブラック、 ケッチェンブラック、 及 びグラフアイ ト粉末から選ばれた一種以上の炭素粉末であることを特徴とする請求 の範囲第 4項〜第 8項のいずれか一項に記載の電極用蓄電性ゴム。 13. The electron conductive dispersion material is one or more carbon powders selected from acetylene black, ketjen black, and graphite powder. The electrical storage rubber | gum for electrodes as described in any one of term.
1 4 . 前記電子伝導性の分散材が、 アセチレンブラック、 ケッチェンブラック、 及 びグラフアイ ト粉末から選ばれた一種以上の炭素粉末であることを特徴とする請求 の範囲第 9項に記載の電極用蓄電性ゴム。  14. The electron conductive dispersion material is one or more carbon powders selected from acetylene black, ketjen black, and graphite powder. Electric storage rubber for electrodes.
1 5 . 前記電子伝導性の分散材が、 アセチレンブラック、 ケッチェンブラック、 及 びグラフアイ ト粉末から選ばれた一種以上の炭素粉末であることを特徴とする請求 の範囲第 1 1項に記載の電極用蓄電性ゴム。  15. The electron conductive dispersion material is one or more carbon powders selected from acetylene black, ketjen black, and graphite powder. Power storage rubber for electrodes.
1 6 . 前記電池活物質が、 正極活物質であり、 前記電極が正極であることを特徴と する請求の範囲第 4項〜第 8項のいずれか一項に記載の電極用蓄電性ゴム。  16. The electric storage rubber for an electrode according to any one of claims 4 to 8, wherein the battery active material is a positive electrode active material, and the electrode is a positive electrode.
1 7 . 前記正極活物質が、 リチウム遷移金属複合酸化物であることを特徴とする請 求の範囲第 1 6項に記載の電極用蓄電性ゴム。  17. The electrode storage rubber according to claim 16, wherein the positive electrode active material is a lithium transition metal composite oxide.
1 8 . 前記電池活物質が、 正極活物質であり、 前記電極が正極であることを特徴と する請求の範囲第 9項に記載の電極用蓄電性ゴム。  18. The electric storage rubber for an electrode according to claim 9, wherein the battery active material is a positive electrode active material, and the electrode is a positive electrode.
1 9 . 前記電池活物質が、 正極活物質であり、 前記電極が正極であることを特徴と する請求の範囲第 1 1項に記載の電極用蓄電性ゴム。  19. The battery rubber according to claim 11, wherein the battery active material is a positive electrode active material and the electrode is a positive electrode.
2 0 . 前記電池活物質が、 負極活物質であり、 前記電極が負極であることを特徴と する請求の範囲第 4項〜第 8項のいずれか一項に記載の電極用蓄電性ゴム。  20. The electrode storage rubber according to any one of claims 4 to 8, wherein the battery active material is a negative electrode active material, and the electrode is a negative electrode.
2 1 . 前記負極活物質が、 リチウムインサーシヨン化合物であることを特徴とする 請求の範囲第 2 0項に記載の電極用蓄電性ゴム。 21. The electricity storage rubber for an electrode according to claim 20, wherein the negative electrode active material is a lithium insertion compound.
2 2 . 請求の範囲第 1項〜第 3項のいずれか一項に記載の蓄電性ゴムを集電体と接 着して使用することを特徴とする電気二重層キャパシタ。  2 2. An electric double layer capacitor using the electricity storing rubber according to any one of claims 1 to 3 in contact with a current collector.
2 3 . 前記蓄電性ゴムに対する前記集電体の質量比が 1以下であることを特徴とす る請求の範囲第 2 2項に記載の電気二重層キャパシタ。  23. The electric double layer capacitor according to claim 22, wherein a mass ratio of the current collector to the electricity storage rubber is 1 or less.
2 4 . 請求の範囲第 4項〜第 8項のいずれか一項に記載の電極用蓄電性ゴムを集電 体と接着して使用することを特徴とするリチウム電池。  24. A lithium battery comprising the electrode storage rubber according to any one of claims 4 to 8 adhered to a current collector.
2 5 . 前記電極用蓄電性ゴムに対する前記集電体の質量比が 1以下であることを特 徴とする請求の範囲第 2 4項に記載のリチウム電池。 25. The lithium battery according to claim 24, wherein a mass ratio of the current collector to the electrode storage rubber is 1 or less.
2 6 . 請求の範囲第 9項に記載の電極用蓄電性ゴムを集電体と接着して使用するこ とを特徴とするリチウム電池。 2 6. A lithium battery comprising the electrode storage rubber according to claim 9 adhered to a current collector.
2 7 . 請求の範囲第 1 1項に記載の電極用蓄電性ゴムを集電体と接着して使用する ことを特徴とするリチゥム電池。  27. A lithium battery comprising the electrode storage rubber according to claim 11 adhered to a current collector.
2 8 . 前記電極用蓄電性ゴムを集電体と加硫接着することを特徴とする請求の範囲 第 2 7項に記載のリチウム電池。  28. The lithium battery according to claim 27, wherein the electrode storage rubber is vulcanized and bonded to a current collector.
PCT/JP2005/021493 2004-11-19 2005-11-17 Charge storing rubber and electric double-layer capacitor, and lithium battery employing it WO2006054779A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004336442 2004-11-19
JP2004-336442 2004-11-19
JP2005-330465 2005-11-15
JP2005330465A JP4901189B2 (en) 2004-11-19 2005-11-15 Storage rubber and lithium battery using the same

Publications (1)

Publication Number Publication Date
WO2006054779A1 true WO2006054779A1 (en) 2006-05-26

Family

ID=36407309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021493 WO2006054779A1 (en) 2004-11-19 2005-11-17 Charge storing rubber and electric double-layer capacitor, and lithium battery employing it

Country Status (2)

Country Link
JP (1) JP4901189B2 (en)
WO (1) WO2006054779A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9401525B2 (en) 2009-03-20 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147177A (en) * 2006-11-16 2008-06-26 Yamagata Univ Lithium ion secondary battery
JP2008285658A (en) * 2007-04-16 2008-11-27 Shinano Kenshi Co Ltd Rubber composition blended with carbon powder and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154124A (en) * 1997-08-07 1999-02-26 Jsr Corp Binder composition for lithium secondary battery
JPH1197026A (en) * 1997-09-19 1999-04-09 Mitsubishi Heavy Ind Ltd Electrode for li cell
JPH11213753A (en) * 1997-11-21 1999-08-06 Jsr Corp Polymer solid electrolyte and nonaqueous battery using the same
JP2000133275A (en) * 1998-10-26 2000-05-12 Mitsubishi Chemicals Corp Elastomer binder-containing electrode and battery using this electrode, and its manufacture
JP2004288782A (en) * 2003-03-20 2004-10-14 Nippon Zeon Co Ltd Binder composition for electrochemical capacitor electrode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067496B2 (en) * 1987-03-27 1994-01-26 日本合成ゴム株式会社 Solid electrochemical device
JP2000223373A (en) * 1999-02-03 2000-08-11 Nec Corp Polarizing electrode, manufacture thereof, electric double layer capacitor using the same and manufacture thereof
JP3436189B2 (en) * 1999-06-21 2003-08-11 日本電気株式会社 Electric double layer capacitor and method of manufacturing the same
JP2001332456A (en) * 2000-05-24 2001-11-30 Lion Corp Electric double-layer capacitor
JP2001351611A (en) * 2000-06-02 2001-12-21 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2002157998A (en) * 2000-11-17 2002-05-31 Yuasa Corp Method of manufacturing composite positive electrode for solid lithium secondary battery and solid lithium secondary battery using same
JP2002270174A (en) * 2001-03-09 2002-09-20 Hitachi Maxell Ltd Electrochemical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154124A (en) * 1997-08-07 1999-02-26 Jsr Corp Binder composition for lithium secondary battery
JPH1197026A (en) * 1997-09-19 1999-04-09 Mitsubishi Heavy Ind Ltd Electrode for li cell
JPH11213753A (en) * 1997-11-21 1999-08-06 Jsr Corp Polymer solid electrolyte and nonaqueous battery using the same
JP2000133275A (en) * 1998-10-26 2000-05-12 Mitsubishi Chemicals Corp Elastomer binder-containing electrode and battery using this electrode, and its manufacture
JP2004288782A (en) * 2003-03-20 2004-10-14 Nippon Zeon Co Ltd Binder composition for electrochemical capacitor electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9401525B2 (en) 2009-03-20 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
US9590277B2 (en) 2009-03-20 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11005123B2 (en) 2013-04-19 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11594752B2 (en) 2013-04-19 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11923499B2 (en) 2013-04-19 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same

Also Published As

Publication number Publication date
JP4901189B2 (en) 2012-03-21
JP2006173583A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
Xu et al. High capacity silicon electrodes with nafion as binders for lithium-ion batteries
KR101917745B1 (en) Electrodes for solid state batteries and preparing methods thereof, solid state batteries containing the same, and bonding films used for preparing the same
CN103078076B (en) Composite isolated film and use the lithium ion battery of this barrier film
JP5418860B2 (en) Method for manufacturing battery electrode
TW201842700A (en) Electrode sheet, all-solid battery, manufacturing method for electrode sheet, and manufacturing method for all-solid battery
CN106159197A (en) A kind of integrated flexible membrane electrode and preparation method thereof
CN101630728A (en) High energy density lithium secondary battery electrode and preparation method thereof
CN111740100A (en) Positive electrode slurry and lithium ion battery
WO2023109400A1 (en) Electrode sheet, battery cell and battery
JP6115786B2 (en) Method for producing negative electrode for secondary battery
JP6989265B2 (en) Battery manufacturing method
Liu et al. Influence of binder on impedance of lithium batteries: a mini-review
JP3508514B2 (en) Organic electrolyte battery
WO2006054779A1 (en) Charge storing rubber and electric double-layer capacitor, and lithium battery employing it
WO2017217079A1 (en) All-solid battery
JP2002151057A (en) Manufacturing method of paste for positive electrode of lithium secondary battery
CN107482223B (en) Lithium ion battery electrode material composition, lithium ion battery and preparation method of electrode slurry of lithium ion battery
JP2017027944A (en) Lithium ion battery
JP5553169B2 (en) Lithium ion secondary battery
JP4161437B2 (en) Lithium battery
CN103515610A (en) Lithium-ion electrode material and lithium-ion power battery
CN104078703B (en) Carbon nano tube/quinone anode and secondary aluminium cell with same as anode material
Kaneko et al. Lithium-ion conduction in elastomeric binder in Li-ion batteries
CN205159419U (en) Positive plate and battery
JP4054925B2 (en) Lithium battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580039813.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809723

Country of ref document: EP

Kind code of ref document: A1