JP2017027944A - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP2017027944A
JP2017027944A JP2016144932A JP2016144932A JP2017027944A JP 2017027944 A JP2017027944 A JP 2017027944A JP 2016144932 A JP2016144932 A JP 2016144932A JP 2016144932 A JP2016144932 A JP 2016144932A JP 2017027944 A JP2017027944 A JP 2017027944A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
current collector
manufactured
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016144932A
Other languages
Japanese (ja)
Inventor
春山 泰三
Taizo Haruyama
泰三 春山
立花 和宏
Kazuhiro Tachibana
和宏 立花
伊藤 智博
Tomohiro Ito
智博 伊藤
伸也 小野寺
Shinya Onodera
伸也 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Color Ltd
Original Assignee
Mikuni Color Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Color Ltd filed Critical Mikuni Color Ltd
Publication of JP2017027944A publication Critical patent/JP2017027944A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an aqueous lithium ion battery excellent in safety and having a high electromotive force.SOLUTION: (a). At least a positive electrode, a negative electrode, and an electrolyte are included, (b). the positive electrode is composed of at least a positive electrode collector and a positive electrode collector coating, (c). the positive electrode collector is composed of one kind or more of aluminum, titanium, stainless steel, nickel and carbon, (d). the negative electrode is composed of one kind or more of zinc, tin, cadmium, lead, mercury, and a hydrogen storage alloy, and (e). the electrolyte is a lithium nitrate solution, in (f). an aqueous lithium ion battery.SELECTED DRAWING: Figure 1

Description

本発明は、水系電解液でも2V級の放電が可能なリチウムイオン電池に関する。   The present invention relates to a lithium ion battery capable of 2V class discharge even with an aqueous electrolyte.

リチウムイオン電池は、利点として、高電圧で高エネルギー密度を達成できるため、小型化が可能である。そのことから、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器、電動工具、電動アシスト自転車などの電源として広く用いられている。また最近では、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池へも応用されつつある。   Since the lithium ion battery can achieve a high energy density at a high voltage as an advantage, it can be miniaturized. Therefore, it is widely used as a power source for home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones, power tools, and power-assisted bicycles. Recently, it is also being applied to large batteries mounted on electric vehicles (EV) and hybrid electric vehicles (HEV).

しかし、これら実用化されているリチウムイオン電池は、エチレンカーボネート、ジエチレンカーボネートやプロピレンカーボネートと言った引火性のある溶媒を含有する非水系電解液を使用した非水系リチウムイオン電池である。このため、引火や爆発の危険があり、安全性の問題を潜在的に抱えている。事実、非水系のリチウムイオン電池の発火事故は後を絶たず、その対策のための費用は増大し続けている。
そのような状況の中で、人命に直結するような重大な事故に発展する可能性が高い、電気自動車やハイブリッド電気自動車などは高い安全性を求められるため、自動車業界への非水系電解液リチウムイオン電池の普及は遅れている。
However, these lithium ion batteries in practical use are nonaqueous lithium ion batteries using a nonaqueous electrolytic solution containing a flammable solvent such as ethylene carbonate, diethylene carbonate, and propylene carbonate. For this reason, there is a danger of ignition and explosion, and there is a potential safety problem. In fact, non-aqueous lithium-ion batteries have been ignited continually, and the cost of countermeasures continues to increase.
Under such circumstances, non-aqueous electrolyte lithium for the automobile industry is highly demanded for electric vehicles and hybrid electric vehicles, which are likely to develop into serious accidents that directly affect human life. The spread of ion batteries is delayed.

このため、引火性や爆発の危険性がない水系の電解液電池が提案されている。
例えば、特許文献1では、電極物質として、遷移金属酸化物等のリチウムが可逆的に挿入抽出可能な挿入化合物にリチウムを挿入した化合物、例えばスピネルLixMn2O4を使用することが提案されている。より具体的な電極構成として、チタン棒にLi-Mn-O系の電極ペーストを塗布して得たTi-(Li-Mn-O)-Ti積層体を作成したことが記載されている。
正極を形成する電極ペーストは、リチウムを挿入種とするリチウム遷移金属化合物と、ポリフッ化ビニリデンと、カーボンブラックで構成されている。電解液は溶媒として水、電解質として水酸化リチウムと塩化リチウムの混合物で構成されている。
For this reason, a water-based electrolyte battery without flammability or explosion risk has been proposed.
For example, Patent Document 1 proposes to use, as an electrode material, a compound in which lithium is inserted into an insertion compound capable of reversibly inserting and extracting lithium, such as a transition metal oxide, such as spinel LixMn 2 O 4 . . As a more specific electrode configuration, it is described that a Ti— (Li—Mn—O) —Ti laminated body obtained by applying a Li—Mn—O based electrode paste to a titanium rod is described.
The electrode paste that forms the positive electrode is composed of a lithium transition metal compound using lithium as an insertion species, polyvinylidene fluoride, and carbon black. The electrolytic solution is composed of water as a solvent and a mixture of lithium hydroxide and lithium chloride as an electrolyte.

特許文献2では、正極、負極ともに集電体として、アルミニウム、ステンレス、銅、白金等の金属やカーボンなどの導電性の高い固体の箔等を用い、その上に各々、正極物質及び負極物質を固定する。
正極物質は、リチウムイオンを挿脱する物質、ポリフッ化ビニリデンやポリテトラフルオロエチレンなどの結着剤、及び黒鉛粉末、カーボンブラックなどの導電性付与剤で構成されている。負極物質も、リチウムイオンを挿脱する物質、結着剤、導電性付与剤とからなる。リチウムイオンを挿脱する物質としては、遷移金属とリチウムとの複合酸化物やジスルフィド等の有機物が挙げられている。電解液は、中性リチウム塩の水溶液が使用されている。
In Patent Document 2, both a positive electrode and a negative electrode are made of a highly conductive solid foil such as carbon, such as aluminum, stainless steel, copper, or platinum, and a positive electrode material and a negative electrode material are respectively formed thereon. Fix it.
The positive electrode material is composed of a material that inserts and removes lithium ions, a binder such as polyvinylidene fluoride and polytetrafluoroethylene, and a conductivity imparting agent such as graphite powder and carbon black. The negative electrode material also includes a material that inserts and removes lithium ions, a binder, and a conductivity-imparting agent. Examples of the substance that inserts and removes lithium ions include complex oxides of transition metals and lithium, and organic substances such as disulfides. As the electrolytic solution, an aqueous solution of a neutral lithium salt is used.

非特許文献1は、正極集電体としてニッケルメッシュを用い、ここにマンガン酸リチウム、結着剤のポリテトラフルオロエチレン、及び導電助剤のアセチレンブラックを混合したものをプレスして正極としている。負極は亜鉛、電解液は硫酸亜鉛と硫酸リチウムの水溶液を用いている。   Non-Patent Literature 1 uses a nickel mesh as a positive electrode current collector, and presses a mixture of lithium manganate, a binder polytetrafluoroethylene, and a conductive auxiliary agent acetylene black to form a positive electrode. The negative electrode uses zinc and the electrolyte uses an aqueous solution of zinc sulfate and lithium sulfate.

特表平9-508490号公報Japanese National Publication No. 9-508490 特開2001-102086号公報Japanese Patent Laid-Open No. 2001-102086

電気化学および工業物理化学 : denki kagaku 74(10), 825-827, 2006-10-05Electrochemistry and industrial physics: denki kagaku 74 (10), 825-827, 2006-10-05

しかし、これらの水系電解液リチウムイオン電池は、安全性は高いものの、水の電気分解により気泡が発生して電圧が上がらないという問題があった。また、気泡の発生は、セルの密封の妨げになるという問題もあった。そこで、高い電圧の水系電解液リチウムイオン電池の実用化には、これらの問題を解決する必要があった。   However, although these aqueous electrolyte lithium ion batteries have high safety, there is a problem that bubbles are generated due to electrolysis of water and the voltage does not increase. In addition, there is a problem that the generation of bubbles hinders cell sealing. Therefore, it was necessary to solve these problems for practical application of a high voltage aqueous electrolyte lithium ion battery.

本発明者らは、今回鋭意工夫の末、リチウムイオンを含む電解液を使用した、起電力が2V級のリチウム電池を発明した。すなわち、正極、負極及び電解液として特定の材料を組み合わせることにより、電解液が水溶液を主体とした水系電解液で構成されていながら、起電力が2V級のリチウム電池を得ることができたのである。   The inventors of the present invention have invented a lithium battery having an electromotive force of 2 V class using an electrolyte containing lithium ions as a result of diligent efforts. That is, by combining specific materials as the positive electrode, the negative electrode, and the electrolytic solution, a lithium battery having an electromotive force of 2 V can be obtained while the electrolytic solution is composed of an aqueous electrolytic solution mainly composed of an aqueous solution. .

すなわち、本発明は、
(1)(a)少なくとも正極、負極、及び電解液を有し、
(b)正極が、少なくとも正極集電体及び正極集電体被覆物から成り、
(c)正極集電体が、アルミニウム、チタン、ステンレス、ニッケル及び炭素のうち一種以上から成り、
(d)負極が、亜鉛、スズ、カドミウム、鉛、水銀、水素吸収蔵合金のうち一種以上から成り、且つ、
(e)電解液が、硝酸リチウムの水溶液である、
(f)リチウムイオン電池、
(2)(a)少なくとも正極、負極、及び電解液を有し、
(b)正極が、少なくとも正極集電体及び正極集電体被覆物から成り、
(c)正極集電体が、アルミニウム、チタン、ステンレス、ニッケル及び炭素のうち一種以上から成り、
(d)負極が、亜鉛、スズ、カドミウム、鉛、水銀、水素吸収蔵合金のうち一種以上から成り、且つ、
(e)電解液が、硝酸リチウム及び硫酸リチウムの水溶液である、
(f)リチウムイオン電池、
(3)(a)少なくとも正極、負極、及び電解液を有し、
(b)正極が、少なくとも正極集電体及び正極集電体被覆物から成り、
(c)正極集電体が、アルミニウム、チタン、ステンレス、ニッケル及び炭素のうち一種以上から成り、
(d)負極が、亜鉛、スズ、カドミウム、鉛、水銀、水素吸収蔵合金のうち一種以上から成り、且つ、
(e)電解液が、硝酸イオン、硫酸イオン及びリチウムイオンを含有する、
(f)リチウムイオン電池、
(4)負極が亜鉛及びスズのうち一種以上であることを特徴とする上記(1)〜(3)のいずれかに記載のリチウムイオン電池、
(5)起電力が2.0V以上である上記(1)〜(4)のいずれかに記載のリチウムイオン電池、
(6)正極活物質がリチウム金属酸化物である上記(1)〜(5)のいずれかに記載のリチウムイオン電池、に存する。
That is, the present invention
(1) (a) having at least a positive electrode, a negative electrode, and an electrolyte solution;
(b) the positive electrode comprises at least a positive electrode current collector and a positive electrode current collector coating;
(c) the positive electrode current collector is composed of one or more of aluminum, titanium, stainless steel, nickel and carbon;
(d) the negative electrode is composed of one or more of zinc, tin, cadmium, lead, mercury, hydrogen absorbing alloy, and
(e) the electrolyte is an aqueous solution of lithium nitrate;
(f) lithium ion battery,
(2) (a) having at least a positive electrode, a negative electrode, and an electrolyte,
(b) the positive electrode comprises at least a positive electrode current collector and a positive electrode current collector coating;
(c) the positive electrode current collector is composed of one or more of aluminum, titanium, stainless steel, nickel and carbon;
(d) the negative electrode is composed of one or more of zinc, tin, cadmium, lead, mercury, hydrogen absorbing alloy, and
(e) the electrolyte is an aqueous solution of lithium nitrate and lithium sulfate,
(f) lithium ion battery,
(3) (a) having at least a positive electrode, a negative electrode, and an electrolyte,
(b) the positive electrode comprises at least a positive electrode current collector and a positive electrode current collector coating;
(c) the positive electrode current collector is composed of one or more of aluminum, titanium, stainless steel, nickel and carbon;
(d) the negative electrode is composed of one or more of zinc, tin, cadmium, lead, mercury, hydrogen absorbing alloy, and
(e) the electrolytic solution contains nitrate ion, sulfate ion and lithium ion,
(f) lithium ion battery,
(4) The lithium ion battery according to any one of (1) to (3), wherein the negative electrode is at least one of zinc and tin.
(5) The lithium ion battery according to any one of (1) to (4), wherein the electromotive force is 2.0 V or more,
(6) The lithium ion battery according to any one of (1) to (5), wherein the positive electrode active material is a lithium metal oxide.

本発明により、安全性に優れ、かつ高い起電力を有するリチウムイオン電池を得ることができる。   According to the present invention, a lithium ion battery having excellent safety and high electromotive force can be obtained.

図1は、本発明のリチウムイオン電池の構成の一例を示す概念図である。FIG. 1 is a conceptual diagram showing an example of the configuration of the lithium ion battery of the present invention. 図2は本発明のリチウムイオン電池の構成の一例であって、実施例で作成し電池性能測定に用いた電池の構成を示す概念図である。FIG. 2 is an example of the configuration of the lithium ion battery of the present invention, and is a conceptual diagram showing the configuration of the battery created in the example and used for the battery performance measurement. 図3は、実施例における充放電テストの態様を示す概念図である。FIG. 3 is a conceptual diagram showing an aspect of a charge / discharge test in the example.

本発明におけるリチウムイオン電池とは、リチウムイオンを含む電解液を使用した電池であって、少なくとも、正極、負極及び電解液を有するものをいう。本発明では、これらの各構成部分が、特定の材料から成ることを特徴とする。
また、水系リチウムイオン電池とは、水系電解液、すなわち電解液が溶媒として水を主成分とするものを用いたリチウムイオン電池をいう。
電池の構造は、正極と負極とを物理的に絶縁し、正極と負極の間を電解液で満たしたものとすればよく、従来知られている各種の構造を採用することができる。
本発明のリチウムイオン電池の構成の一例を、図1に示すが、この形態に限られることはない。図中、1は正極、2は正極集電体、3は正極集電体被覆物、4は負極、5は電解液である。6は活物質、7は導電性付与材、8はバインダーである。9は外部回路である。
The lithium ion battery in the present invention is a battery using an electrolytic solution containing lithium ions, and has at least a positive electrode, a negative electrode, and an electrolytic solution. In the present invention, each of these components is made of a specific material.
The aqueous lithium ion battery refers to an aqueous electrolytic solution, that is, a lithium ion battery using an electrolytic solution containing water as a main component as a solvent.
The structure of the battery may be such that the positive electrode and the negative electrode are physically insulated, and the space between the positive electrode and the negative electrode is filled with an electrolytic solution, and various known structures can be employed.
An example of the configuration of the lithium ion battery of the present invention is shown in FIG. 1, but is not limited to this form. In the figure, 1 is a positive electrode, 2 is a positive electrode current collector, 3 is a positive electrode current collector coating, 4 is a negative electrode, and 5 is an electrolyte. 6 is an active material, 7 is a conductivity imparting material, and 8 is a binder. Reference numeral 9 denotes an external circuit.

〔正極〕
本発明では、正極は、図1の様に、少なくとも正極集電体と正極集電体被覆物とで構成されたものである。
[Positive electrode]
In the present invention, as shown in FIG. 1, the positive electrode is composed of at least a positive electrode current collector and a positive electrode current collector coating.

〔正極集電体〕
集電体とは、電池において電気を取り出す端子のことをいい、本発明では、アルミニウム、チタン、ステンレス、ニッケル及び炭素のうちの一種以上を用いる。これらの材料は、陽極酸化に対して耐性のある導電性の高い物質である。もっとも優れているのは、ニッケルであり、次にチタン、アルミニウム、ステンレス、炭素の順番である。
[Positive electrode current collector]
The current collector refers to a terminal for taking out electricity in the battery. In the present invention, one or more of aluminum, titanium, stainless steel, nickel, and carbon are used. These materials are highly conductive substances that are resistant to anodization. The most excellent is nickel, followed by titanium, aluminum, stainless steel, and carbon.

〔正極集電体被覆物〕
正極集電体被覆物は、集電体の少なくとも一部を被覆するものであり、少なくとも(i)正極活物質、(ii)バインダー、(iii)導電性付与材とから構成され、通常は、これらの成分のみで十分である。
正極活物質としては、リチウム金属酸化物(例えば、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、ニッケルマンガンコバルト酸リチウム等、リチウムイオンが挿入、脱離する物質)等、従来よりリウチムイオン電池に用いられてきた各種の材料から選択することができる。より好ましくは、コバルト酸リチウム、ニッケル酸リチウム及びニッケルマンガンコバルト酸リチウムである。最も好ましくはコバルト酸リチウム及びニッケルマンガンコバルト酸リチウムである。
バインダーは、正極活物質と導電性付与材とを一体化し成形し集電体に付着させる機能を有するものであれば足り、例えば、ポリフッ化ビニリデン(PVDF)、ブチラール、スチレン・ブタジエンゴム(SBR)等の、正極集電体に密着しかつ耐水性のある物質を用いることができる。
導電性付与材としては、例えば、カーボンブラック、カーボンナノチューブのような炭素材などで、導電性が得られれば特に制限はない。
[Positive electrode current collector coating]
The positive electrode current collector coating covers at least a part of the current collector, and is composed of at least (i) a positive electrode active material, (ii) a binder, and (iii) a conductivity imparting material. Only these components are sufficient.
As the positive electrode active material, lithium metal oxides (for example, lithium cobalt oxide, lithium manganate, lithium nickelate, lithium nickel manganese cobaltate, etc., a material from which lithium ions are inserted and desorbed), etc., have been conventionally used for lithium ion batteries. It can be selected from various materials that have been used. More preferred are lithium cobaltate, lithium nickelate, and nickel manganese lithium cobaltate. Most preferred are lithium cobaltate and nickel manganese lithium cobaltate.
It is sufficient that the binder has a function of integrating the positive electrode active material and the conductivity-imparting material, and forming and adhering it to the current collector. For example, polyvinylidene fluoride (PVDF), butyral, styrene-butadiene rubber (SBR) A substance that adheres to the positive electrode current collector and has water resistance, such as, can be used.
As the conductivity imparting material, for example, a carbon material such as carbon black or carbon nanotube is used, and there is no particular limitation as long as conductivity is obtained.

〔正極集電体被覆物の混合物の作製方法〕
一般に、(1)正極集電体被覆物を構成する物質を乳鉢やミキサーのような混合器で混合する方法、(2)正極集電体被覆物を構成する物質をN−メチル−2−ピロリドンや水のような液体中で混練し、混合する方法、及び(3)導電性付与材をN−メチル−2−ピロリドンや水のような液体中に分散剤等を使用し事前に分散させた導電性付与材の分散体と正極活物質とバインダーを混錬し、混合する方法がある。
これらの方法のうち、(1)の方法は、連続生産できないため量産化には不向きであり、また均一な混合が難しいため、性能にも限界がある。(2)及び(3)の方法は、そのような問題がないため、より優れている。特に(3)の方法が、分散が困難な導電性付与材を予め均一に分散することにより性能を向上させることができるため、好ましい。
(3)における事前に導電性付与材の分散体の作製方法としては、特開2011−70908号公報、特開2014−107191号公報に記載されているような方法も適用できる。また、正極活物質、バインダー、導電性付与材の種類の選定も、これらの特許文献に記載の材料から選択することも可能である。
[Method for producing mixture of cathode current collector coating]
In general, (1) a method of mixing the material constituting the positive electrode current collector coating with a mixer such as a mortar or a mixer, and (2) the material constituting the positive electrode current collector coating is N-methyl-2-pyrrolidone. A method of kneading and mixing in a liquid such as water or water, and (3) the conductivity imparting material is dispersed in advance in a liquid such as N-methyl-2-pyrrolidone or water using a dispersant or the like. There is a method in which a dispersion of a conductivity imparting material, a positive electrode active material, and a binder are kneaded and mixed.
Among these methods, the method (1) is not suitable for mass production because it cannot be continuously produced, and it is difficult to perform uniform mixing, so that the performance is limited. The methods (2) and (3) are more excellent because there are no such problems. In particular, the method (3) is preferred because the performance can be improved by uniformly dispersing in advance a conductivity imparting material that is difficult to disperse.
As a method for preparing a dispersion of a conductivity imparting material in advance in (3), methods described in JP 2011-70908 A and JP 2014-107191 A can also be applied. In addition, the types of the positive electrode active material, the binder, and the conductivity imparting material can also be selected from the materials described in these patent documents.

〔正極の作製方法〕
正極集電体被覆物の混合方法が上記の(1)の時は、正極集電体とともに圧縮成形する。正極集電体被覆物の混合方法が上記(2)又は(3)の時は、正極集電体上にアプリケーターやダイコーターやコンマコーターのような塗布機で塗布し、乾燥機で溶媒を乾燥させる。後者の方が、各成分が均一に混合でき、性能がより優れるため望ましい。
[Method for producing positive electrode]
When the method of mixing the positive electrode current collector coating is (1) above, compression molding is performed together with the positive electrode current collector. When the method of mixing the positive electrode current collector coating is (2) or (3) above, apply it on the positive electrode current collector with an applicator such as an applicator, die coater or comma coater, and dry the solvent with a dryer. Let The latter is desirable because the components can be mixed uniformly and the performance is better.

〔負極〕
本発明では、亜鉛、スズ、カドミウム、鉛、水銀及び水素吸収蔵合金のうち一種以上から選択する。これらは水素過電圧が高く優れている。特に好ましいのは、亜鉛及びスズである。
本発明では、これらの物質が集電体として機能すると同時に電子の授受を行うので、さらに活物質層を設ける必要がない。しかし、さらに集電体として機能する部材を付加しても構わない。例えば、図2に示す構造では、ステンレス製の押さえ部材10は、正極集電体被覆物と、亜鉛等から成る負極とを、電解液と接触させるための固定手段として機能すると同時に、電気を取り出す端子である集電体としても機能している。
[Negative electrode]
In this invention, it selects from 1 or more types among zinc, tin, cadmium, lead, mercury, and a hydrogen absorbing alloy. These are excellent in hydrogen overvoltage. Particularly preferred are zinc and tin.
In the present invention, since these substances function as a current collector and exchange electrons at the same time, there is no need to provide an active material layer. However, a member that functions as a current collector may be added. For example, in the structure shown in FIG. 2, the pressing member 10 made of stainless steel functions as a fixing means for bringing the positive electrode current collector covering and the negative electrode made of zinc or the like into contact with the electrolytic solution, and at the same time takes out electricity. It also functions as a current collector as a terminal.

〔電解液〕
溶媒はリチウムイオン電池において使用されている溶媒を使用することができる。特に本発明では溶媒を水として水系のリチウムイオン電池とした場合でも高い電圧を得ることができることが特徴である。必要に応じて界面活性剤のような添加剤や陽極酸化を抑制する添加剤を加えても問題ない。
電解質は硝酸リチウム、又は硝酸リチウムと硫酸リチウムとの混合物を使用する。すなわち、これらの物質を水溶液とし、硝酸イオンとリチウムイオンとを存在させるか、又は硝酸イオン、硫酸イオン及びリチウムイオンを存在させる。これにより、気泡の発生を抑えることができ、高い電圧を得ることができる上に密封したパッケージングが可能である。
硝酸リチウムを使用する場合、すなわち硝酸イオンとリチウムイオンを存在させる場合には、硝酸リチウムの濃度は高い方が、放電時間が長くなるので好ましい。具体的には2mol/リットル以上、飽和濃度未満が適切である。
また、硫酸イオン、硝酸イオン及びリチウムイオンを存在させる場合には、硝酸イオン濃度は0.05mol/リットル以上であれば足り、かつ飽和濃度未満が適切である。硫酸イオン濃度は高いほうが好ましいが、1mol/リットル以上であれば足り、かつ飽和濃度未満が適切である。リチウムイオンの濃度は2.05mol/リットル以上、かつ飽和濃度未満が適切である。
[Electrolyte]
As the solvent, a solvent used in a lithium ion battery can be used. In particular, the present invention is characterized in that a high voltage can be obtained even when an aqueous lithium ion battery is used with a solvent as water. There is no problem even if an additive such as a surfactant or an additive for suppressing anodization is added as necessary.
As the electrolyte, lithium nitrate or a mixture of lithium nitrate and lithium sulfate is used. That is, these substances are made into aqueous solutions and nitrate ions and lithium ions are present, or nitrate ions, sulfate ions and lithium ions are present. Thereby, generation | occurrence | production of a bubble can be suppressed, a high voltage can be obtained, and the sealed packaging is possible.
When lithium nitrate is used, that is, when nitrate ions and lithium ions are present, a higher concentration of lithium nitrate is preferable because the discharge time becomes longer. Specifically, 2 mol / liter or more and less than the saturation concentration are appropriate.
When sulfate ions, nitrate ions, and lithium ions are present, the nitrate ion concentration need only be 0.05 mol / liter or more, and less than the saturation concentration is appropriate. A higher sulfate ion concentration is preferred, but 1 mol / liter or more is sufficient, and less than a saturated concentration is appropriate. The lithium ion concentration is suitably 2.05 mol / liter or more and less than the saturation concentration.

本発明では正極集電体と負極と電解液を以上のように、特定の物質で構成し、それらを組み合わせることによって意外にも非常に優れた効果が表れることが分かった。すなわち、水系のリチウムイオン電池において、従来達成できなかった2V以上という高い起電力を得ることができる。   In the present invention, it has been found that the positive current collector, the negative electrode, and the electrolytic solution are composed of specific substances as described above, and a surprisingly excellent effect appears by combining them. In other words, in an aqueous lithium ion battery, a high electromotive force of 2 V or more, which has not been achieved in the past, can be obtained.

次に、この発明の具体的な実施例について説明する。   Next, specific examples of the present invention will be described.

<実施例1>
〔導電性付与材の分散体の作製〕
溶媒(NMP:三菱化学(株)製)78.5gと分散剤(「メトローズSM−4」(商品名):信越化学(株)製)1.5gと導電性付与材(「デンカブラック粒状」(商品名):電気化学工業(株)製のアセチレンブラック)20gを直径1mmのジルコニアビーズ(「YTZボール」(商品名):(株)ニッカトー製)300gとともに、S−ボトル広口丸形250ccに仕込み、ペイントコンディショナー(「ペイントシェーカー」(商品名):浅田鉄工(株)製)で2時間分散を行い、導電性付与材の分散体として、「分散体1」を得た。
<Example 1>
[Preparation of dispersion of conductivity imparting material]
78.5 g of solvent (NMP: manufactured by Mitsubishi Chemical Corporation), 1.5 g of dispersant (“Metroze SM-4” (trade name): manufactured by Shin-Etsu Chemical Co., Ltd.) and conductivity imparting material (“Denka Black Granular”) (Product Name): 20 g of acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd. and 300 g of zirconia beads having a diameter of 1 mm (“YTZ ball” (product name): manufactured by Nikkato Co., Ltd.) into 250-cc S-bottle Hiroguchi round shape The dispersion was performed for 2 hours using a paint conditioner (“Paint Shaker” (trade name) manufactured by Asada Tekko Co., Ltd.), and “Dispersion 1” was obtained as a dispersion of the conductivity-imparting material.

〔正極集電体被覆物の混合物の作製〕
正極活物質として、コバルト酸リチウム(「セルシードC10N」(商品名):日本化学工業(株)製)19.1gとバインダー(「KFポリマーL#7208」(商品名):クレハ化学(株)製PVDF。PVDFを8wt%含有)3.75g(樹脂固形分:0.3g)と分散体1を3.0g(アセチレンブラック含有量:0.6g)仕込み、スパチュラで予備撹拌したのち、遊星攪拌機(「ARE−310」(商品名):(株)シンキー製)で自転2000rpm、公転800rpmで1分間混錬し、混合した。
[Preparation of mixture of cathode current collector coating]
As a positive electrode active material, 19.1 g of lithium cobaltate (“Cell Seed C10N” (trade name): manufactured by Nippon Chemical Industry Co., Ltd.) and a binder (“KF Polymer L # 7208” (trade name): manufactured by Kureha Chemical Co., Ltd.) PVDF (containing 8 wt% of PVDF) 3.75 g (resin solid content: 0.3 g) and 3.0 g of dispersion 1 (acetylene black content: 0.6 g) were charged, pre-stirred with a spatula, and then a planetary stirrer ( “ARE-310” (trade name): manufactured by Shinky Co., Ltd., kneaded at 2000 rpm for rotation and 800 rpm for 1 minute, and mixed.

〔正極の作製〕
正極集電体被覆物の混合物をアルミニウム箔(アルミニウム箔、厚さ20μm:宝泉(株)製)にアプリケーター(「SA−204 マイクロメーター付フィルムアプリケーター」(商品名):テスター産業(株)製)で塗布した。その後、100℃の温風乾燥機(「DN600」(商品名):ヤマト科学(株)製)で30分間乾燥させた。その後、正極と電解液の接液用開口部分より大きく切り取り正極とした。
[Production of positive electrode]
The mixture of the positive electrode current collector coating is applied to an aluminum foil (aluminum foil, thickness 20 μm: manufactured by Hosen Co., Ltd.) and an applicator (“film applicator with SA-204 micrometer” (trade name): manufactured by Tester Sangyo Co., Ltd. ). Then, it was dried for 30 minutes with a 100 ° C. hot air dryer (“DN600” (trade name): manufactured by Yamato Scientific Co., Ltd.). Then, it cut out larger than the opening part for liquid-contacting of a positive electrode and electrolyte solution, and was set as the positive electrode.

〔負極〕
亜鉛箔(厚さ0.1mm:(株)ニラコ製)を負極と電解液の接液用開口部分より大きく切り取り負極とした。
[Negative electrode]
A zinc foil (thickness 0.1 mm: manufactured by Nilaco Co., Ltd.) was cut out larger than the opening for contact with the negative electrode and the electrolyte solution to obtain a negative electrode.

〔電解液の作製〕
1000ccメスフラスコに硝酸リチウム(硝酸リチウム特級:ナカライテスク(株)製)413.7gを仕込み、イオン交換水で1000ccにメスアップし、6mol/リットルの硝酸リチウム水溶液を作製した。
(Preparation of electrolyte)
413.7 g of lithium nitrate (lithium nitrate special grade: manufactured by Nacalai Tesque Co., Ltd.) was charged into a 1000 cc volumetric flask and made up to 1000 cc with ion-exchanged water to prepare a 6 mol / liter lithium nitrate aqueous solution.

〔電池の作製〕
以上により作成した正極、負極及び電解液を用い、図2に示すリチウムイオン電池を組み立て、以下の試験に使用した。図中、10はキャップ、11は電解液充填セル、12は正極押さえ、13は負極押さえ、14はバンドである。セルの形状は直方体で、向かい合った一組の側面の下部には開口部分15が設けられ、正極及び負極が、電解液と接触するようになっている。正極及び負極は各々、正極押さえ及び負極押さえによりセルの開口部分に押さえつけられた状態で、ゴム製のバンドで締め付けられることにより固定されている。正極押さえ及び負極押さえは、導線を介して外部回路に接続し、通電可能となっている。
セルは、上部から電解液を注入した後、キャップで封入する構造になっている。
開口部分の設けられた一組の側面の間の距離、すなわち電極間距離は18mm、開口部分の面積は0.785cm、セルの素材はPEEK(ポリエーテルエーテルケトン)製、正極押さえ及び負極押さえはステンレス製である。
[Production of battery]
The lithium ion battery shown in FIG. 2 was assembled using the positive electrode, the negative electrode, and the electrolyte prepared as described above, and used for the following tests. In the figure, 10 is a cap, 11 is an electrolyte-filled cell, 12 is a positive electrode holder, 13 is a negative electrode holder, and 14 is a band. The shape of the cell is a rectangular parallelepiped, and an opening portion 15 is provided in the lower part of the pair of side surfaces facing each other so that the positive electrode and the negative electrode are in contact with the electrolyte. Each of the positive electrode and the negative electrode is fixed by being clamped with a rubber band while being pressed against the opening of the cell by the positive electrode press and the negative electrode press. The positive electrode retainer and the negative electrode retainer are connected to an external circuit via a conducting wire and can be energized.
The cell has a structure in which an electrolytic solution is injected from above and sealed with a cap.
The distance between a pair of side surfaces provided with the opening, that is, the distance between the electrodes is 18 mm, the area of the opening is 0.785 cm 2 , and the material of the cell is made of PEEK (polyether ether ketone). Is made of stainless steel.

〔充電方法〕
ポテンショスタット(「PS−04」(商品名):(株)東邦技研製)で開回路電位から2.5Vまで10mV/sで掃引し、2.5Vで1200秒間保持して充電完了とした。
[Charging method]
A potentiostat (“PS-04” (trade name): manufactured by Toho Giken Co., Ltd.) was swept from the open circuit potential to 2.5 V at 10 mV / s and held at 2.5 V for 1200 seconds to complete charging.

〔放電、確認方法〕
充電後起電力をテスター(「カードハイテスタ3244」(商品名):日置電機(株)製)で測定し、その後モーター(「A125」(商品名):日精電機(株)製)に接続し、モーターが回転することを確認した。
その時、モーターの回転時間を測定した。
〔気泡発生の確認方法〕
気泡発生の確認方法は、図2の電池においてキャップ10を開け、目視で電解液表面に気泡が浮かび上がってきていないかを確認した。
[Discharge, confirmation method]
After charging, the electromotive force was measured with a tester (“Card Hi Tester 3244” (trade name) manufactured by Hioki Electric Co., Ltd.), and then connected to a motor (“A125” (trade name) manufactured by Nissei Electric Co., Ltd.). Confirmed that the motor rotates.
At that time, the rotation time of the motor was measured.
[Confirmation method of bubble generation]
As for the method for confirming the generation of bubbles, the cap 10 was opened in the battery shown in FIG. 2, and it was visually confirmed whether bubbles had emerged on the surface of the electrolyte.

以上の充放電テストの態様の概念図を、図3に示す。図中、16はスイッチ、17はポテンショスタット、18はモーター、19は導線、20はリチウムイオン電池、21はテスタである。   FIG. 3 shows a conceptual diagram of the above charge / discharge test mode. In the figure, 16 is a switch, 17 is a potentiostat, 18 is a motor, 19 is a conductor, 20 is a lithium ion battery, and 21 is a tester.

<実施例2>
正極集電体としてチタン箔(厚さ0.1mm:(株)ニラコ製)を使用した他は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 2>
A battery was prepared in the same manner as in Example 1 except that titanium foil (thickness 0.1 mm: manufactured by Nilaco Co., Ltd.) was used as the positive electrode current collector, and charging and discharging were performed in the same manner.

<実施例3>
正極集電体としてSUS304板(JIS G 4305 厚さ1.0mm:日本テストパネル(株)製)を使用した他は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 3>
A battery was prepared in the same manner as in Example 1 except that a SUS304 plate (JIS G 4305 thickness 1.0 mm: manufactured by Nippon Test Panel Co., Ltd.) was used as the positive electrode current collector, and charging and discharging were performed in the same manner. .

<実施例4>
正極集電体としてニッケル板(厚さ0.1mm:(株)ニラコ製)を使用した他は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 4>
A battery was prepared in the same manner as in Example 1 except that a nickel plate (thickness 0.1 mm: manufactured by Nilaco Co., Ltd.) was used as the positive electrode current collector, and charging and discharging were performed in the same manner.

<実施例5>
正極集電体としてグラッシーカーボン(厚さ1.0mm:(株)ニラコ製)炭素板を使用した他は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 5>
A battery was prepared in the same manner as in Example 1 except that a glassy carbon (thickness 1.0 mm: manufactured by Nilaco Corporation) carbon plate was used as the positive electrode current collector, and charging and discharging were performed in the same manner.

<実施例6>
負極としてスズ箔(厚さ0.1mm:(株)ニラコ製)を使用した他は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 6>
A battery was prepared in the same manner as in Example 1 except that tin foil (thickness 0.1 mm: manufactured by Nilaco Co., Ltd.) was used as the negative electrode, and charging and discharging were performed in the same manner.

<実施例7>
〔電解液の作製〕
100ccメスフラスコに硝酸リチウム(硝酸リチウム:ナカライテスク(株)製)41.4gを仕込み、イオン交換水で100ccにメスアップし、2mol/リットルの硝酸リチウム水溶液を作製した。
電解液として、この2mol/リットルの硝酸リチウム溶液を使用した以外は、実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 7>
(Preparation of electrolyte)
41.4 g of lithium nitrate (lithium nitrate: manufactured by Nacalai Tesque Co., Ltd.) was charged into a 100 cc volumetric flask and made up to 100 cc with ion-exchanged water to prepare a 2 mol / liter lithium nitrate aqueous solution.
A battery was prepared in the same manner as in Example 1 except that this 2 mol / liter lithium nitrate solution was used as the electrolytic solution, and charged and discharged in the same manner.

<実施例8>
〔導電性付与材の分散体の作製〕
溶媒(NMP:三菱化学(株)製)93.5gと分散剤(「エスレックB BL−10」(商品名):積水化学工業(株)製)1.5gと導電性付与材(「FLOTUBE9110」(商品名):Cnano Technology Limited製の粉状カーボンナノチューブ)5gを直径1mmのジルコニアビーズ(「YTZボール」(商品名):(株)ニッカトー製)300gとともに、S−ボトル広口丸形250ccに仕込み、ペイントコンディショナー(「ペイントシェーカー」(商品名):浅田鉄工(株)製)で5時間分散を行い、導電性付与材の分散体として、「分散体2」を得た。
導電性付与剤の分散体として、分散体2を使用した以外は、実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 8>
[Preparation of dispersion of conductivity imparting material]
93.5 g of solvent (NMP: manufactured by Mitsubishi Chemical Co., Ltd.) and a dispersant (“ESREC B BL-10” (trade name): manufactured by Sekisui Chemical Co., Ltd.) and a conductivity imparting material (“FLOTUBE 9110”) (Product Name): 5 g of Cano Technology Limited powdered carbon nanotubes together with 300 g of 1 mm diameter zirconia beads (“YTZ ball” (trade name): manufactured by Nikkato Co., Ltd.) into 250 cc S-bottle wide-mouth round 250 cc Then, dispersion was performed for 5 hours with a paint conditioner (“Paint Shaker” (trade name): manufactured by Asada Tekko Co., Ltd.), and “Dispersion 2” was obtained as a dispersion of a conductivity imparting material.
A battery was prepared in the same manner as in Example 1 except that Dispersion 2 was used as the dispersion of the conductivity-imparting agent, and was similarly charged and discharged.

<実施例9>
正極活物質として、ニッケルマンガンコバルト酸リチウム(「NME−1100」(商品名):戸田工業(株)製)を使用した以外は、実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 9>
A battery was prepared in the same manner as in Example 1 except that lithium nickel manganese cobaltate (“NME-1100” (trade name): manufactured by Toda Kogyo Co., Ltd.) was used as the positive electrode active material. Discharge was performed.

<実施例10>
導電性付与材の分散体として、分散体2を使用し、正極活物質として、マンガン酸リチウム(「HPM7051」(商品名):戸田工業(株)製)を使用した以外は、実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 10>
Example 1 with the exception that Dispersion 2 was used as the dispersion of the conductivity imparting material, and lithium manganate ("HPM7051" (trade name): manufactured by Toda Kogyo Co., Ltd.) was used as the positive electrode active material. A battery was prepared in the same manner, and charged and discharged in the same manner.

<実施例11>
〔導電性付与材の分散体の作製〕
溶媒(NMP:三菱化学(株)製)79.0gと分散剤(「PVP K−15」(商品名):アイエスピー・ジャパン(株)製)1.0gと導電性付与材(「トーカブラック#5500」(商品名):東海カーボン(株)製のカーボンブラック)20gを直径1mmのジルコニアビーズ(「YTZボール」(商品名):(株)ニッカトー製)300gとともに、S−ボトル広口丸形250ccに仕込み、ペイントコンディショナー(「ペイントシェーカー」(商品名):浅田鉄工(株)製)で2時間分散を行い、導電性付与材の分散体として、「分散体3」を得た。
<Example 11>
[Preparation of dispersion of conductivity imparting material]
79.0 g of solvent (NMP: manufactured by Mitsubishi Chemical Corporation), 1.0 g of dispersant (“PVP K-15” (trade name): manufactured by IPS Japan Co., Ltd.) and conductivity imparting material (“Toka Black”) # 5500 "(trade name): carbon black manufactured by Tokai Carbon Co., Ltd.) together with 300 g of zirconia beads having a diameter of 1 mm (" YTZ ball "(trade name): manufactured by Nikkato Co., Ltd.) and S-bottle Hiroguchi round shape The dispersion was charged at 250 cc and dispersed for 2 hours with a paint conditioner (“Paint Shaker” (trade name) manufactured by Asada Tekko Co., Ltd.) to obtain “Dispersion 3” as a dispersion of the conductivity-imparting material.

導電性付与剤の分散体として、分散体3を使用した以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。   A battery was prepared in the same manner as in Example 1 except that Dispersion 3 was used as the conductivity imparting agent dispersion, and charging and discharging were performed in the same manner.

<実施例12>
〔導電性付与材の分散体の作製〕
溶媒としてイオン交換水80.5gと分散剤(「セロゲン5A」(商品名):第一工業製薬(株)製)1.5gと導電性付与材(「デンカブラック粒状」(商品名):電気化学工業(株)製アセチレンブラック)18.0gを直径1mmのジルコニアビーズ(「YTZボール」(商品名):(株)ニッカトー製)300gとともに、S−ボトル広口丸形250ccに仕込み、ペイントコンディショナー(「ペイントシェーカー」(商品名):浅田鉄工(株)製)で2時間分散を行い、導電性付与材の分散体として、「分散体4」を得た。
<Example 12>
[Preparation of dispersion of conductivity imparting material]
80.5 g of ion-exchanged water as a solvent, 1.5 g of a dispersant (“Serogen 5A” (trade name): manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and a conductivity-imparting material (“Denka Black Granule” (trade name): Electric 18.0 g of acetylene black manufactured by Chemical Industry Co., Ltd., together with 300 g of zirconia beads having a diameter of 1 mm (“YTZ ball” (trade name): manufactured by Nikkato Co., Ltd.) into 250 cc S-bottle wide-mouth round shape, paint conditioner ( “Paint shaker” (trade name: manufactured by Asada Tekko Co., Ltd.) was used for dispersion for 2 hours to obtain “Dispersion 4” as a dispersion of the conductivity imparting material.

〔正極集電体被覆物の混合物の作製〕
正極活物質として、コバルト酸リチウム(「セルシードC10N」(商品名):日本化学工業(株)製)19.1gとバインダー(「TDR2001」(商品名):JSR(株)製スチレン・ブタジエンゴム(SBR)エマルション)0.8g(SBR固形分:0.3g)と分散体4を3.3g(アセチレンブラック含有量:0.6g)とイオン交換水1.0gを仕込み、スパチュラで予備撹拌したのち、遊星攪拌機(「ARE−310」(商品名):(株)シンキー製)で自転2000rpm、公転800rpmで1分間混錬し、混合した。
導電性付与材の分散体として分散体4を用い、正極集電体被覆物の混合物として上記のものを用いた以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
[Preparation of mixture of cathode current collector coating]
As a positive electrode active material, 19.1 g of lithium cobalt oxide ("Cellseed C10N" (trade name): manufactured by Nippon Chemical Industry Co., Ltd.) and a binder ("TDR2001" (trade name): styrene butadiene rubber (manufactured by JSR Corporation) ( (SBR) emulsion) 0.8 g (SBR solid content: 0.3 g), 3.3 g of dispersion 4 (acetylene black content: 0.6 g) and 1.0 g of ion-exchanged water were charged, and after pre-stirring with a spatula The mixture was kneaded with a planetary stirrer (“ARE-310” (trade name): manufactured by Sinky Co., Ltd.) at 2000 rpm for rotation and 800 rpm for 1 minute and mixed.
A battery was prepared in the same manner as in Example 1 except that the dispersion 4 was used as the dispersion of the conductivity imparting material, and the above-described mixture was used as the mixture of the positive electrode current collector coating, and charging and discharging were performed in the same manner. It was.

<実施例13>
バインダーとしてブチラール樹脂(「エスレックSH−3」(商品名):積水化学工業(株)製)を使用した以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 13>
A battery was prepared in the same manner as in Example 1 except that butyral resin (“ESREC SH-3” (trade name): manufactured by Sekisui Chemical Co., Ltd.) was used as a binder, and charging and discharging were performed in the same manner.

<実施例14>
〔正極集電体被覆物の混合物の作製〕
溶媒(NMP:三菱化学(株)製)6.0gと導電性付与材(「デンカブラック粉状」(商品名:電気化学工業(株)製アセチレンブラック)を遊星攪拌機(「ARE−310」(商品名):(株)シンキー製)で自転2000rpm、公転800rpmで1分間混錬した。そこに、正極活物質として、コバルト酸リチウム(「セルシードC10N」(商品名):日本化学工業(株)製)19.1gとバインダー(「KFポリマーL#7208」(商品名):クレハ化学(株)製。PVDFを8wt%含有)3.75g(樹脂固形分:0.3g)を添加し、スパチュラで予備撹拌したのち、遊星攪拌機(「ARE−310」(商品名):(株)シンキー製)で自転2000rpm、公転800rpmで1分間混錬し、混合して正極集電体被覆物の混合物を得た。
正極集電体被覆物の混合物の作製方法以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 14>
[Preparation of mixture of cathode current collector coating]
A planetary stirrer (“ARE-310”) (6.0 g of a solvent (NMP: manufactured by Mitsubishi Chemical Corporation) and a conductivity-imparting material (“DENKA BLACK POWDER” (trade name: acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd.)) (Product name): manufactured by Shinky Co., Ltd., and kneaded for 1 minute at a rotational speed of 2000 rpm and revolution of 800 rpm, and as a positive electrode active material, lithium cobaltate ("Cellseed C10N" (trade name): Nippon Chemical Industry Co., Ltd. 19.1 g and a binder (“KF polymer L # 7208” (trade name): manufactured by Kureha Chemical Co., Ltd. containing 8 wt% PVDF) 3.75 g (resin solid content: 0.3 g) were added, and a spatula was added. , And then kneaded with a planetary stirrer (“ARE-310” (trade name): manufactured by Sinky Co., Ltd.) at a rotation speed of 2000 rpm and a revolution speed of 800 rpm for 1 minute, and mixed to cover the positive electrode current collector. To give a mixture of.
A battery was prepared in the same manner as in Example 1 except for the method of preparing the mixture of the positive electrode current collector coating, and charging and discharging were performed in the same manner.

<比較例1>
正極集電体として亜鉛箔(厚さ0.1mm:(株)ニラコ製)を使用した他は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Comparative Example 1>
A battery was prepared in the same manner as in Example 1 except that zinc foil (thickness 0.1 mm: manufactured by Nilaco Co., Ltd.) was used as the positive electrode current collector, and charging and discharging were performed in the same manner.

<比較例2>
正極集電体としてスズ箔(厚さ0.1mm:(株)ニラコ製)を使用した他は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Comparative example 2>
A battery was prepared in the same manner as in Example 1 except that tin foil (thickness 0.1 mm: manufactured by Nilaco Co., Ltd.) was used as the positive electrode current collector, and charging and discharging were performed in the same manner.

<比較例3>
負極としてニッケル箔(厚さ0.1mm:(株)ニラコ製)を使用した他は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Comparative Example 3>
A battery was prepared in the same manner as in Example 1 except that nickel foil (thickness 0.1 mm: manufactured by Nilaco Co., Ltd.) was used as the negative electrode, and charging and discharging were performed in the same manner.

<比較例4>
負極としてグラッシーカーボン(厚さ1.0mm:(株)ニラコ製)炭素を使用した他は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Comparative example 4>
A battery was prepared in the same manner as in Example 1 except that glassy carbon (thickness 1.0 mm: manufactured by Nilaco Co., Ltd.) carbon was used as the negative electrode, and charging and discharging were performed in the same manner.

<比較例5>
負極としてチタン箔(厚さ0.1mm:(株)ニラコ製)を使用した他は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Comparative Example 5>
A battery was prepared in the same manner as in Example 1 except that titanium foil (thickness 0.1 mm: manufactured by Nilaco Co., Ltd.) was used as the negative electrode, and charging and discharging were performed in the same manner.

<比較例6>
負極としてSUS304板(JIS G 4305 厚さ1.0mm:日本テストパネル(株)製)を使用した他は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Comparative Example 6>
A battery was prepared in the same manner as in Example 1 except that a SUS304 plate (JIS G 4305 thickness 1.0 mm: manufactured by Nippon Test Panel Co., Ltd.) was used as the negative electrode, and charging and discharging were performed in the same manner.

<比較例7>
〔電解液の作製〕
100ccメスフラスコに硫酸リチウム(硫酸リチウム:キシダ化学(株)製)22.0gを仕込み、イオン交換水で100ccにメスアップし、2mol/リットルの硫酸リチウム水溶液を作製した。
電解液として、この2mol/リットルの硫酸リチウム溶液を使用した以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Comparative Example 7>
(Preparation of electrolyte)
22.0 g of lithium sulfate (lithium sulfate: manufactured by Kishida Chemical Co., Ltd.) was charged into a 100 cc volumetric flask and made up to 100 cc with ion-exchanged water to prepare a 2 mol / liter lithium sulfate aqueous solution.
A battery was prepared in the same manner as in Example 1 except that this 2 mol / liter lithium sulfate solution was used as the electrolytic solution, and charged and discharged in the same manner.

<比較例8>
〔電解液の作製〕
100ccメスフラスコに塩化リチウム(塩化リチウム:東京化成工業(株)製)25.4gを仕込み、イオン交換水で100ccにメスアップし、6mol/リットルの塩化リチウム水溶液を作製した。
電解液として、この6mol/リットルの塩化リチウム溶液を使用した以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Comparative Example 8>
(Preparation of electrolyte)
Into a 100 cc volumetric flask, 25.4 g of lithium chloride (lithium chloride: manufactured by Tokyo Chemical Industry Co., Ltd.) was charged and made up to 100 cc with ion-exchanged water to prepare a 6 mol / liter lithium chloride aqueous solution.
A battery was prepared in the same manner as in Example 1 except that this 6 mol / liter lithium chloride solution was used as the electrolytic solution, and charged and discharged in the same manner.

<実施例15>
〔電解液の作製〕
100ccのメスフラスコに硫酸リチウム(硫酸リチウム:キシダ化学(株)製)22.0gと硝酸リチウム((硝酸リチウム:ナカライテスク(株)製)20.7gを仕込み、イオン交換水で100ccにメスアップし、2mol/リットル硫酸リチウム、1mol/リットル硝酸リチウム水溶液を作製した。
電解液として、この2mol/リットル硫酸リチウム、1mol/リットル硝酸リチウム水溶液を使用した以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 15>
(Preparation of electrolyte)
Into a 100 cc volumetric flask, 22.0 g of lithium sulfate (lithium sulfate: manufactured by Kishida Chemical Co., Ltd.) and 20.7 g of lithium nitrate ((lithium nitrate: manufactured by Nacalai Tesque)) were charged, and the volume was increased to 100 cc with ion-exchanged water. Then, 2 mol / liter lithium sulfate and 1 mol / liter lithium nitrate aqueous solution were prepared.
A battery was prepared in the same manner as in Example 1 except that this 2 mol / liter lithium sulfate and 1 mol / liter lithium nitrate aqueous solution were used as the electrolytic solution, and charged and discharged in the same manner.

<実施例16>
〔電解液の作製〕
100ccのメスフラスコに硫酸リチウム(硫酸リチウム:キシダ化学(株)製)22.0gと硝酸リチウム((硝酸リチウム:ナカライテスク(株)製)10.4gを仕込み、イオン交換水で100ccにメスアップし、2mol/リットル硫酸リチウム、0.5mol/リットル硝酸リチウム水溶液を作製した。
電解液として、この2mol/リットル硫酸リチウム、0.5mol/リットル硝酸リチウム水溶液を使用した以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 16>
(Preparation of electrolyte)
Into a 100 cc volumetric flask, 22.0 g of lithium sulfate (lithium sulfate: manufactured by Kishida Chemical Co., Ltd.) and 10.4 g of lithium nitrate ((lithium nitrate: manufactured by Nacalai Tesque)) were charged, and the volume was increased to 100 cc with ion-exchanged water. Then, 2 mol / liter lithium sulfate and 0.5 mol / liter lithium nitrate aqueous solution were prepared.
A battery was prepared in the same manner as in Example 1 except that this 2 mol / liter lithium sulfate and 0.5 mol / liter lithium nitrate aqueous solution were used as the electrolytic solution, and charged and discharged in the same manner.

<実施例17>
〔電解液の作製〕
100ccのメスフラスコに硫酸リチウム(硫酸リチウム:キシダ化学(株)製)22.0gと硝酸リチウム((硝酸リチウム:ナカライテスク(株)製)2.1gを仕込み、イオン交換水で100ccにメスアップし、2mol/リットル硫酸リチウム、0.1mol/リットル硝酸リチウム水溶液を作製した。
電解液として、この2mol/リットル硫酸リチウム、0.1mol/リットル硝酸リチウム水溶液を使用した以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 17>
(Preparation of electrolyte)
Into a 100 cc volumetric flask, 22.0 g of lithium sulfate (lithium sulfate: manufactured by Kishida Chemical Co., Ltd.) and 2.1 g of lithium nitrate ((lithium nitrate: manufactured by Nacalai Tesque)) were charged, and the volume was increased to 100 cc with ion-exchanged water. Then, 2 mol / liter lithium sulfate and 0.1 mol / liter lithium nitrate aqueous solution were prepared.
A battery was prepared in the same manner as in Example 1 except that this 2 mol / liter lithium sulfate and 0.1 mol / liter lithium nitrate aqueous solution were used as the electrolytic solution, and charged and discharged in the same manner.

<実施例18>
〔電解液の作製〕
100ccのメスフラスコに硫酸リチウム(硫酸リチウム:キシダ化学(株)製)11.0gと硝酸リチウム((硝酸リチウム:ナカライテスク(株)製)2.1gを仕込み、イオン交換水で100ccにメスアップし、1mol/リットル硫酸リチウム、0.1mol/リットル硝酸リチウム水溶液を作製した。
電解液として、この1mol/リットル硫酸リチウム、0.1mol/リットル硝酸リチウム水溶液を使用した以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 18>
(Preparation of electrolyte)
A 100 cc volumetric flask was charged with 11.0 g of lithium sulfate (lithium sulfate: manufactured by Kishida Chemical Co., Ltd.) and 2.1 g of lithium nitrate ((lithium nitrate: manufactured by Nacalai Tesque)), and the volume was increased to 100 cc with ion-exchanged water. Then, 1 mol / liter lithium sulfate and 0.1 mol / liter lithium nitrate aqueous solution were prepared.
A battery was prepared in the same manner as in Example 1 except that this 1 mol / liter lithium sulfate and 0.1 mol / liter lithium nitrate aqueous solution were used as the electrolytic solution, and charged and discharged in the same manner.

<実施例19>
〔電解液の作製〕
100ccのメスフラスコに硫酸リチウム(硫酸リチウム:キシダ化学(株)製)11.0gと硝酸リチウム((硝酸リチウム:ナカライテスク(株)製)1.0gを仕込み、イオン交換水で100ccにメスアップし、1mol/リットル硫酸リチウム、0.05mol/リットル硝酸リチウム水溶液を作製した。
電解液として、この1mol/リットル硫酸リチウム、0.05mol/リットル硝酸リチウム水溶液を使用した以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Example 19>
(Preparation of electrolyte)
A 100 cc volumetric flask was charged with 11.0 g of lithium sulfate (lithium sulfate: manufactured by Kishida Chemical Co., Ltd.) and 1.0 g of lithium nitrate ((lithium nitrate: manufactured by Nacalai Tesque)), and the volume was increased to 100 cc with ion-exchanged water. Then, 1 mol / liter lithium sulfate and 0.05 mol / liter lithium nitrate aqueous solution were prepared.
A battery was prepared in the same manner as in Example 1 except that this 1 mol / liter lithium sulfate and 0.05 mol / liter lithium nitrate aqueous solution were used as the electrolytic solution, and charged and discharged in the same manner.

<比較例9>
〔電解液の作製〕
100ccのメスフラスコに塩化リチウム(塩化リチウム:東京化成工業(株)製)4.2gと硝酸リチウム((硝酸リチウム:ナカライテスク(株)製)20.7gを仕込み、イオン交換水で100ccにメスアップし、1mol/リットル塩化リチウム、1mol/リットル硝酸リチウム水溶液を作製した。
電解液として、この1mol/リットル塩化リチウム、1mol/リットル硝酸リチウム水溶液を使用した以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Comparative Example 9>
(Preparation of electrolyte)
Into a 100 cc volumetric flask, 4.2 g of lithium chloride (lithium chloride: manufactured by Tokyo Chemical Industry Co., Ltd.) and 20.7 g of lithium nitrate ((lithium nitrate: manufactured by Nacalai Tesque)) were charged, and the volume was adjusted to 100 cc with ion-exchanged water. 1 mol / liter lithium chloride, 1 mol / liter lithium nitrate aqueous solution was prepared.
A battery was prepared in the same manner as in Example 1 except that this 1 mol / liter lithium chloride and 1 mol / liter lithium nitrate aqueous solution were used as the electrolytic solution, and charging and discharging were performed in the same manner.

<比較例10>
〔電解液の作製〕
100ccのメスフラスコに水酸化リチウム(水酸化リチウム一水和物:和光純薬工業(株)製)4.2gを仕込み、イオン交換水で100ccにメスアップし、1mol/リットル水酸化リチウム水溶液を作製した。
電解液として、この1mol/リットル水酸化リチウム水溶液を使用した以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Comparative Example 10>
(Preparation of electrolyte)
Into a 100 cc volumetric flask was charged 4.2 g of lithium hydroxide (lithium hydroxide monohydrate: manufactured by Wako Pure Chemical Industries, Ltd.), made up to 100 cc with ion-exchanged water, and a 1 mol / liter lithium hydroxide aqueous solution was added. Produced.
A battery was prepared in the same manner as in Example 1 except that this 1 mol / liter lithium hydroxide aqueous solution was used as the electrolytic solution, and charged and discharged in the same manner.

<比較例11>
〔電解液の作製〕
100ccのメスフラスコに水酸化リチウム(水酸化リチウム一水和物:和光純薬工業(株)製)4.2gと1.0gを仕込み、イオン交換水で100ccにメスアップし、1mol/リットル水酸化リチウム、0.05mol/リットル硝酸リチウム水溶液を作製した。
電解液として、この1mol/リットル水酸化リチウム、0.05mol/リットル硝酸リチウム水溶液を使用した以外は実施例1と同様にして電池を作成し、同様に充電、放電を行った。
<Comparative Example 11>
(Preparation of electrolyte)
4.2 g and 1.0 g of lithium hydroxide (lithium hydroxide monohydrate: manufactured by Wako Pure Chemical Industries, Ltd.) are charged into a 100 cc volumetric flask, and the volume is increased to 100 cc with ion-exchanged water. Lithium oxide, 0.05 mol / liter lithium nitrate aqueous solution was prepared.
A battery was prepared in the same manner as in Example 1 except that this 1 mol / liter lithium hydroxide and 0.05 mol / liter lithium nitrate aqueous solution were used as the electrolytic solution, and charged and discharged in the same manner.

以上の実施例及び比較例における使用材料、並びに測定された起電力及びモーター回転時間を、表1〜4に示す。   The materials used in the above Examples and Comparative Examples, and the measured electromotive force and motor rotation time are shown in Tables 1 to 4.

Figure 2017027944
Figure 2017027944

Figure 2017027944
Figure 2017027944

Figure 2017027944
Figure 2017027944

Figure 2017027944
Figure 2017027944

正極集電体のみを変化させた実施例1〜5と比較例1〜2とを比較すると、正極集電体としてアルミニウム、チタン、ステンレス、ニッケル、及び炭素から選択すれば、充放電が可能であり、しかも2ボルト以上の高い起電力を得ることができるが、正極集電体として亜鉛、スズを用いた場合には充放電しないことがわかる。   Comparing Examples 1 to 5 and Comparative Examples 1 and 2 in which only the positive electrode current collector was changed, charging and discharging are possible if the positive electrode current collector is selected from aluminum, titanium, stainless steel, nickel, and carbon. In addition, a high electromotive force of 2 volts or more can be obtained, but it is understood that charging and discharging are not performed when zinc or tin is used as the positive electrode current collector.

負極のみを変化させた実施例6〜7と比較例3〜6とを比較すると、負極として亜鉛、スズから選択すれば充放電可能であり、しかも2ボルト以上の高い起電力を得ることができるが、負極としてチタン、ステンレス、ニッケル、炭素を用いた場合は充放電しないことがわかる。これら負極として充放電可能な材質と充放電しない材質とは、水素化電圧の点で差がある。すなわち、負極として充放電可能な材質は、充放電しない材質に比べて、大幅に高い水素過電圧を持っていることが特徴である。したがって、充放電可能な材質と同等の高い水素過電圧が特徴であるカドミウム、鉛、水銀、水素吸蔵合金も、充放電可能であることが合理的に推測できる。   Comparing Examples 6 to 7 and Comparative Examples 3 to 6 in which only the negative electrode was changed, charging and discharging are possible if zinc or tin is selected as the negative electrode, and a high electromotive force of 2 volts or more can be obtained. However, when titanium, stainless steel, nickel, or carbon is used as the negative electrode, it is understood that charging / discharging is not performed. There is a difference in the hydrogenation voltage between the material that can be charged and discharged as the negative electrode and the material that is not charged and discharged. That is, a material that can be charged and discharged as a negative electrode is characterized by having a significantly higher hydrogen overvoltage than a material that does not charge and discharge. Therefore, it can be reasonably estimated that cadmium, lead, mercury, and a hydrogen storage alloy, which are characterized by a high hydrogen overvoltage equivalent to a chargeable / dischargeable material, can also be charged / discharged.

したがって、正極集電体としてアルミニウム、チタン、ステンレス、ニッケル、及び炭素のうち1種以上を用い、且つ、負極として亜鉛、スズ、カドミウム、鉛、水銀、及び水素吸蔵合金のうち1種以上を用いることが、水系で2ボルト以上の高い起電力を有するリチウムイオン電池を得るための条件であることがわかる。
さらに、実施例1と比較例7〜8の結果から、電解液として硝酸リチウムの水溶液を用いれば、充電時に気泡の発生がなく、水系で2ボルト以上の高い起電力を有するリチウムイオン電池を得ることができることがわかる。
Accordingly, at least one of aluminum, titanium, stainless steel, nickel, and carbon is used as the positive electrode current collector, and at least one of zinc, tin, cadmium, lead, mercury, and a hydrogen storage alloy is used as the negative electrode. This is a condition for obtaining a lithium ion battery having a high electromotive force of 2 volts or more in an aqueous system.
Furthermore, from the results of Example 1 and Comparative Examples 7-8, if an aqueous solution of lithium nitrate is used as the electrolyte, a lithium ion battery having no electrolysis during charging and having a high electromotive force of 2 volts or more in an aqueous system is obtained. You can see that

以上から、正極集電体としてアルミニウム、チタン、ステンレス、ニッケル、及び炭素のうち1種以上を用い、負極として亜鉛、スズ、カドミウム、鉛、水銀、及び水素吸蔵合金のうち1種以上を用い、且つ電解液として硝酸リチウムの水溶液を用いれば、充電時に気泡の発生がなく、水系で2ボルト以上の高い起電力を有するリチウムイオン電池を得ることができることがわかる。
また、実施例1と7の結果から、電解液に硝酸リチウムの水溶液を用いた場合の硝酸リチウム塩の濃度すなわち硝酸イオンの濃度は高い方が起電力が高く電池性能が優れていることがわかる。
また、実施例15〜19の結果からは、電解液に硝酸イオン、硫酸イオン及びリチウムイオンを含有させた場合の硫酸イオン濃度は高いほど性能が良く、硝酸イオン濃度は非常に少なく0.05モル/リットル以上であれば十分に良好な電池性能が発現していることがわかる。
From the above, using one or more of aluminum, titanium, stainless steel, nickel, and carbon as the positive electrode current collector, using one or more of zinc, tin, cadmium, lead, mercury, and hydrogen storage alloy as the negative electrode, In addition, when an aqueous solution of lithium nitrate is used as the electrolytic solution, it is understood that there is no generation of bubbles during charging, and a lithium ion battery having a high electromotive force of 2 volts or more in an aqueous system can be obtained.
Further, from the results of Examples 1 and 7, it is understood that the higher the concentration of lithium nitrate, that is, the concentration of nitrate ions, in the case of using an aqueous solution of lithium nitrate as the electrolyte, the higher the electromotive force and the better the battery performance. .
Further, from the results of Examples 15 to 19, the higher the sulfate ion concentration when the electrolyte solution contains nitrate ion, sulfate ion and lithium ion, the better the performance, and the very low nitrate ion concentration is 0.05 mol. It can be seen that a sufficiently good battery performance is exhibited when the capacity is 1 / liter or more.

実施例1、8及び11の結果からは、導電性付与材としてカーボンブラックやカーボンナノチューブなど各種の炭素材料を用いることができること、特にアセチレンブラックを用いれば、高い起電力が得られ、電池性能が優れることがわかる。
実施例1、9及び10からは、正極活物質として従来から知られているリチウム金属化合物であるコバルト酸リチウム、ニッケルマンガンコバルト酸リチウム、マンガン酸リチウムといった各種の化合物が使用できることがわかる。
実施例1、12及び13からは、バインダーとして正極集電体に密着性のあるPVDF、SBRといった各種の材料を使用できることがわかる。
From the results of Examples 1, 8 and 11, it is possible to use various carbon materials such as carbon black and carbon nanotubes as the conductivity-imparting material. In particular, if acetylene black is used, high electromotive force can be obtained and battery performance is improved. It turns out that it is excellent.
Examples 1, 9 and 10 show that various compounds such as lithium cobaltate, nickel manganese lithium cobaltate, and lithium manganate, which are lithium metal compounds conventionally known as positive electrode active materials, can be used.
From Examples 1, 12 and 13, it can be seen that various materials such as PVDF and SBR having adhesion to the positive electrode current collector can be used as the binder.

実施例1及び14からは、正極集電体被覆物を作成するための前述の方法のうち、(2)正極集電体被覆物を構成する物質をN−メチル−2−ピロリドンや水のような液体中で混練し、混合する方法、及び(3)導電性付与材をN−メチル−2−ピロリドンや水のような液体中に分散剤等を使用し事前に分散させた導電性付与材の分散体と正極活物質とバインダーを混錬し、混合する方法、のいずれも使用可能であること、がわかる。また、導電性付与材の分散に分散剤を用いていない実施例14に比べて実施例1の方が優れた結果を得ていることから、特に(3)の方法が、より優れた性能を得られることがわかる。これは、一般に均一な分散が困難な微細粒子である導電性付与材を、より均一化しておくことにより一層性能を発揮できるためと推測される。したがって、(2)や(3)の方法のほうが、前述の(1)正極集電体被覆物を構成する物質を乳鉢やミキサーのような混合器で混合する方法、に比べて、より優れた性能を発揮できることが推測できる。   From Examples 1 and 14, among the above-described methods for preparing the positive electrode current collector coating, (2) the substance constituting the positive electrode current collector coating is N-methyl-2-pyrrolidone or water. A method of kneading and mixing in a simple liquid, and (3) a conductivity imparting material in which the conductivity imparting material is dispersed in advance in a liquid such as N-methyl-2-pyrrolidone or water It can be seen that any of the dispersion method, the positive electrode active material, and the binder can be kneaded and mixed. In addition, since the result of Example 1 is superior to Example 14 in which a dispersant is not used for dispersing the conductivity imparting material, the method (3) has particularly superior performance. It turns out that it is obtained. This is presumed to be because performance can be further enhanced by making the conductivity imparting material, which is generally fine particles difficult to uniformly disperse, more uniform. Therefore, the methods (2) and (3) are superior to the method (1) in which the material constituting the positive electrode current collector coating is mixed with a mixer such as a mortar or a mixer. It can be estimated that performance can be demonstrated.

本発明により、起電力が高く、かつ安全性に優れたリチウムイオン電池を得ることができる。   According to the present invention, a lithium ion battery having high electromotive force and excellent safety can be obtained.

1 正極
2 正極集電体
3 正極集電体被覆物
4 負極
5 電解液
6 正極活物質
7 導電性付与材
8 バインダー
9 外部回路
10 キャップ
11 電解液充填セル
12 正極押さえ
13 負極押さえ
14 バンド
15 開口部分
16 スイッチ
17 ポテンショスタット
18 モーター
19 導線
20 リチウムイオン電池
21 テスタ
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode collector 3 Positive electrode collector covering 4 Negative electrode 5 Electrolytic solution 6 Positive electrode active material 7 Conductivity imparting material 8 Binder 9 External circuit 10 Cap 11 Electrolyte filling cell 12 Positive electrode holder 13 Negative electrode holder 14 Band 15 Opening Portion 16 Switch 17 Potentiostat 18 Motor 19 Conductor 20 Lithium ion battery 21 Tester

Claims (6)

(a)少なくとも正極、負極、及び電解液を有し、
(b)正極が、少なくとも正極集電体及び正極集電体被覆物から成り、
(c)正極集電体が、アルミニウム、チタン、ステンレス、ニッケル及び炭素のうち一種以上から成り、
(d)負極が、亜鉛、スズ、カドミウム、鉛、水銀、水素吸収蔵合金のうち一種以上から成り、且つ、
(e)電解液が、硝酸リチウムの水溶液である、
(f)リチウムイオン電池。
(a) having at least a positive electrode, a negative electrode, and an electrolytic solution,
(b) the positive electrode comprises at least a positive electrode current collector and a positive electrode current collector coating;
(c) the positive electrode current collector is composed of one or more of aluminum, titanium, stainless steel, nickel and carbon;
(d) the negative electrode is composed of one or more of zinc, tin, cadmium, lead, mercury, hydrogen absorbing alloy, and
(e) the electrolyte is an aqueous solution of lithium nitrate;
(f) Lithium ion battery.
(a)少なくとも正極、負極、及び電解液を有し、
(b)正極が、少なくとも正極集電体及び正極集電体被覆物から成り、
(c)正極集電体が、アルミニウム、チタン、ステンレス、ニッケル及び炭素のうち一種以上から成り、
(d)負極が、亜鉛、スズ、カドミウム、鉛、水銀、水素吸収蔵合金のうち一種以上から成り、且つ、
(e)電解液が、硝酸リチウム及び硫酸リチウムの水溶液である、
(f)リチウムイオン電池。
(a) having at least a positive electrode, a negative electrode, and an electrolytic solution,
(b) the positive electrode comprises at least a positive electrode current collector and a positive electrode current collector coating;
(c) the positive electrode current collector is composed of one or more of aluminum, titanium, stainless steel, nickel and carbon;
(d) the negative electrode is composed of one or more of zinc, tin, cadmium, lead, mercury, hydrogen absorbing alloy, and
(e) the electrolyte is an aqueous solution of lithium nitrate and lithium sulfate,
(f) Lithium ion battery.
(a)少なくとも正極、負極、及び電解液を有し、
(b)正極が、少なくとも正極集電体及び正極集電体被覆物から成り、
(c)正極集電体が、アルミニウム、チタン、ステンレス、ニッケル及び炭素のうち一種以上から成り、
(d)負極が、亜鉛、スズ、カドミウム、鉛、水銀、水素吸収蔵合金のうち一種以上から成り、且つ、
(e)電解液が、硝酸イオン、硫酸イオン及びリチウムイオンを含有する、
(f)リチウムイオン電池。
(a) having at least a positive electrode, a negative electrode, and an electrolytic solution,
(b) the positive electrode comprises at least a positive electrode current collector and a positive electrode current collector coating;
(c) the positive electrode current collector is composed of one or more of aluminum, titanium, stainless steel, nickel and carbon;
(d) the negative electrode is composed of one or more of zinc, tin, cadmium, lead, mercury, hydrogen absorbing alloy, and
(e) the electrolytic solution contains nitrate ion, sulfate ion and lithium ion,
(f) Lithium ion battery.
負極が亜鉛及びスズのうち一種以上であることを特徴とする請求項1〜3のいずれかに記載の水系リチウムイオン電池。 The water-based lithium ion battery according to claim 1, wherein the negative electrode is one or more of zinc and tin. 起電力が2.0V以上である請求項1〜4のいずれかに記載の水系リチウムイオン電池。   The water based lithium ion battery according to any one of claims 1 to 4, wherein the electromotive force is 2.0 V or more. 正極活物質がリチウム金属酸化物である請求項1〜5のいずれかに記載のリチウムイオン電池。   The lithium ion battery according to claim 1, wherein the positive electrode active material is a lithium metal oxide.
JP2016144932A 2015-07-24 2016-07-22 Lithium ion battery Pending JP2017027944A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015146343 2015-07-24
JP2015146343 2015-07-24

Publications (1)

Publication Number Publication Date
JP2017027944A true JP2017027944A (en) 2017-02-02

Family

ID=57946746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016144932A Pending JP2017027944A (en) 2015-07-24 2016-07-22 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP2017027944A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021514A (en) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 Negative electrode current collector, negative electrode, and aqueous lithium ion secondary battery
JP2020021609A (en) * 2018-07-31 2020-02-06 株式会社豊田中央研究所 Aqueous solution secondary battery
WO2020054099A1 (en) 2018-09-13 2020-03-19 Kabushiki Kaisha Toshiba Secondary battery, battery pack, vehicle, and stationary power supply

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021470A1 (en) * 1994-02-03 1995-08-10 Moli Energy (1990) Limited Aqueous rechargeable battery
US20100221596A1 (en) * 2009-02-06 2010-09-02 Huggins Robert A Systems, methods of manufacture and use involving lithium and/or hydrogen for energy-storage applications
JP2013062135A (en) * 2011-09-13 2013-04-04 Toyota Motor Corp Air cell
JP2014515546A (en) * 2011-06-03 2014-06-30 ▲蘇▼州宝▲時▼得▲電▼▲動▼工具有限公司 battery
JP2015095431A (en) * 2013-11-14 2015-05-18 株式会社豊田中央研究所 Aqueous solution-type secondary battery
CN205052863U (en) * 2015-07-02 2016-03-02 广西中烟工业有限责任公司 River system lithium ion battery electron cigarette

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021470A1 (en) * 1994-02-03 1995-08-10 Moli Energy (1990) Limited Aqueous rechargeable battery
US20100221596A1 (en) * 2009-02-06 2010-09-02 Huggins Robert A Systems, methods of manufacture and use involving lithium and/or hydrogen for energy-storage applications
JP2014515546A (en) * 2011-06-03 2014-06-30 ▲蘇▼州宝▲時▼得▲電▼▲動▼工具有限公司 battery
JP2013062135A (en) * 2011-09-13 2013-04-04 Toyota Motor Corp Air cell
JP2015095431A (en) * 2013-11-14 2015-05-18 株式会社豊田中央研究所 Aqueous solution-type secondary battery
CN205052863U (en) * 2015-07-02 2016-03-02 广西中烟工业有限责任公司 River system lithium ion battery electron cigarette

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021514A (en) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 Negative electrode current collector, negative electrode, and aqueous lithium ion secondary battery
US10998547B2 (en) 2017-07-18 2021-05-04 Toyota Jidosha Kabushiki Kaisha Negative electrode current collector, negative electrode, and aqueous lithium ion secondary battery
JP2020021609A (en) * 2018-07-31 2020-02-06 株式会社豊田中央研究所 Aqueous solution secondary battery
WO2020054099A1 (en) 2018-09-13 2020-03-19 Kabushiki Kaisha Toshiba Secondary battery, battery pack, vehicle, and stationary power supply
US11251436B2 (en) 2018-09-13 2022-02-15 Kabushiki Kaisha Toshiba Secondary battery, battery pack, vehicle, and stationary power supply

Similar Documents

Publication Publication Date Title
Chen et al. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries
KR20180080228A (en) Rechargeable aluminum ion battery
CN109314240B (en) Aqueous secondary battery
CN103534861B (en) Active material for rechargeable battery
KR101812388B1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP6922855B2 (en) Water-based electrolyte and water-based potassium ion battery
US9017880B2 (en) Inorganic magnesium solid electrolyte, magnesium battery, and method for producing inorganic magnesium solid electrolyte
CN103078076A (en) Composite diaphragm and lithium ion battery employing same
CN111971769A (en) Incorporation of lithium ion source materials into activated carbon electrodes for capacitor-assisted batteries
EP3699988A1 (en) Resin current collector, multilayer current collector and lithium ion battery
JPWO2018043375A1 (en) Storage element and method of manufacturing the same
JP2017027944A (en) Lithium ion battery
JP5660086B2 (en) Magnesium secondary battery
JP2006302827A (en) Aqueous electrolytic liquid lithium secondary battery
Saravanan et al. Enhanced electrochemical performance of a lead–acid battery by a surface modified negative grid with multiwall carbon nanotube coating
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JP6662353B2 (en) Negative electrode current collector, negative electrode, and aqueous lithium ion secondary battery
JP2008269824A (en) Electrochemical cell
JP4496727B2 (en) Storage element and method for manufacturing the same
JP2013145712A (en) Nonaqueous electrolyte secondary battery
JP6770701B2 (en) Power storage element
CN105990549B (en) Electric storage element
JP2013114920A (en) Lithium sulfur battery
JP6766742B2 (en) Lithium ion secondary battery
JP2016186886A (en) Electricity storage element

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201117