JPS62219459A - Manufacture of thin battery - Google Patents

Manufacture of thin battery

Info

Publication number
JPS62219459A
JPS62219459A JP61062775A JP6277586A JPS62219459A JP S62219459 A JPS62219459 A JP S62219459A JP 61062775 A JP61062775 A JP 61062775A JP 6277586 A JP6277586 A JP 6277586A JP S62219459 A JPS62219459 A JP S62219459A
Authority
JP
Japan
Prior art keywords
heat
sealing
jig
melt
metal plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61062775A
Other languages
Japanese (ja)
Inventor
Tatsu Nagai
龍 長井
Hiroshi Horiie
堀家 浩
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61062775A priority Critical patent/JPS62219459A/en
Publication of JPS62219459A publication Critical patent/JPS62219459A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To prevent a thermal effect from being exercised on an electricity generation unit in sealing, by disposing the electricity generation unit between two metal plates, using a pressure jig made of an electric resistor, to press a melt-bondable material on the peripheral portions of the metal plates, and applying electricity to the jig to melt and bond the material to the metal plates. CONSTITUTION:A melt-bondable material 4a is stuck to a spacer 2 stuck to the peripheral portion of a metal plate 1a. An electricity generation unit 5 comprising a positive and a negative electrodes and a separator is disposed inside the material 4a. The unit 5, the spacer 2 and the material 4a are then placed in a recessed frame 6. Another metal plate 1b to which another melt- bondable material 4b is stuck is disposed so that both the materials 4a, 4b are put in contact with each other. The materials 4a, 4b are then pressed by a pressure jig 7 made of an electric resistor such as a tungsten alloy. An electrical current is caused to flow through the jig 7 to heat it to melt-bond the materials 4a, 4b to each other. After that, the electrical current is stopped and forcible cooling is performed, so that a thin battery is manufactured. Productivity is thus enhanced without exercising a thermal effect on the electricity generation unit 5 in sealing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、対向配置した2枚の金属板間に発電要素が
装填され、両金属板の周辺部を封止部とする構造の薄型
電池の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a thin battery having a structure in which a power generation element is loaded between two metal plates arranged facing each other, and the periphery of both metal plates is a sealing part. The present invention relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

ボタン型やコイン型などの電池では、正負極集電板を構
成する2つの金属缶を相互に嵌合し、両金属缶の周縁部
を有機高分子材料からなるバッキングを挟んで屈曲して
締め付ける封止方式が汎用されている。しかるに、近年
の電子機器類の小型化、軽量化、薄型化などに伴って、
これらに使用する電池としても総厚が1)以下、さらに
は0.5朋以下といった薄型のものが要望されている。
In button-type or coin-type batteries, two metal cans that make up the positive and negative electrode current collector plates are fitted together, and the peripheral edges of both metal cans are bent and tightened with a backing made of an organic polymer material in between. Sealing methods are widely used. However, as electronic devices have become smaller, lighter, and thinner in recent years,
There is a demand for batteries used in these devices to be thin, with a total thickness of 1) or less, and even 0.5 or less.

このような薄型の電池になると上述した封止方式では加
工技術上で限界があるため、平板状の2枚の金属板を対
向配置してその周辺部間にセラミックなどからなるスペ
ーサを介在させて接合したり、2枚の金属板の一方もし
くは両方を皿形として同様に対向配置し、その周辺部に
おいて接合する封止方式が試みられている。
Since the above-mentioned sealing method has limitations in terms of processing technology when it comes to such thin batteries, two flat metal plates are placed facing each other and a spacer made of ceramic or the like is interposed between the peripheries. Attempts have been made to seal the metal plates by joining them together, or by arranging one or both of the two metal plates in a dish shape to face each other in the same way, and joining them at the periphery.

そして、これらの接合には低融点ハンダや接着剤が用い
られるが、とくにホットメルト接着剤やハーメチックシ
ール可能なセラミックなどの熱融着性材料は、シート状
に成形した固形部品として扱えて封止操作が容易である
こと、ならびに塗料溶液型接着剤のように電池内部へ流
入して電解質と混じり合って電池性能を低下させる惧れ
かないことなどから存望視されている(文献不詳)。
Low melting point solders and adhesives are used for these connections, but heat-sealing materials such as hot-melt adhesives and hermetically sealable ceramics can be handled as solid parts formed into sheet shapes and sealed. It is considered viable because it is easy to operate and there is no risk that it will flow into the battery like a paint solution adhesive and mix with the electrolyte, degrading battery performance (unspecified literature).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記熱融着性材料を用いて行う従来の薄
型電池の封止方法は、一般に高温に保持させるために大
形に成形したヒートブロックを使用し、このブロックに
て加圧しっつ封止部に介挿した熱融着性材料を加熱溶融
したのち、冷却固化するまで上記加圧を続けて融着封止
するものである。このため冷却に至るまでの長時間の加
熱状態下で装填された発電要素に熱影響が及び、電池性
能が低下し、また封止に時間がかかるので生産性が悪い
という問題点があった。
However, the conventional method of sealing thin batteries using the above-mentioned heat-fusible materials generally uses a heat block formed into a large size to maintain the temperature at a high temperature, and the block is used to pressurize and seal the battery tightly. After the heat-fusible material inserted in the part is heated and melted, the above-mentioned pressure is continued until the material is cooled and solidified, thereby fusion-sealing the material. For this reason, there were problems in that the loaded power generation elements were affected by heat during the long heating period until cooling, resulting in a decrease in battery performance, and in addition, sealing took time, resulting in poor productivity.

一方、これを避けるためにヒートブロックで加熱したの
ちクールブロックと交換して冷却を早める手段も考えら
れるが、この方法では加圧が不連続となることから封止
界面の密着性の低下や歪みを生じ、封止強度が不充分に
なり、操作的にも繁雑であるという問題点があった。さ
らに、このり一ルブロツクと交換する方式においても冷
却速度が充分といえず、発電要素に及ぼす熱影響はやは
り無視できなかった。
On the other hand, in order to avoid this, it is possible to speed up the cooling process by heating with a heat block and then replacing it with a cool block, but this method results in discontinuous pressurization, resulting in decreased adhesion and distortion of the sealing interface. There were problems in that the sealing strength was insufficient and the operation was complicated. Furthermore, even in this method of replacing the rotor with a single rub block, the cooling rate was not sufficient, and the thermal effect on the power generation element could not be ignored.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では、上記従来のヒートブロック方式と異なり
、加熱手段として抵抗体からなる押圧治具を使用し、こ
の冶具で封止部を押圧した状態で上記冶具に通電するこ
とによってこの治具を発熱させ、熱融着性材料の加熱融
着を行うようにしたものである。
In this invention, unlike the conventional heat block method described above, a pressing jig made of a resistor is used as a heating means, and the jig generates heat by applying electricity to the jig while pressing the sealing part with this jig. The heat-sealable material is heated and fused.

すなわち、この方式によると、押圧治具の形状を封止部
の形状に見合った小形としてもこれに通電することによ
り速やかに所要量の熱エネルギーを得ることができると
ともに、この通電を解除すれば上記小形のために迅速に
冷却できる。しかも、これら加熱−冷却は上記治具で封
止部を押圧した状態で連続して行えるから、従来のヒー
トブロック方式に比し封止作業が簡易迅速となって、電
池内容物(発電要素)への熱影響を回避でき、また熱接
着部の接着性、信頼性が向上する。
In other words, according to this method, even if the shape of the pressing jig is small enough to match the shape of the sealing part, by energizing it, the required amount of thermal energy can be quickly obtained, and when this energization is removed, Due to its small size, it can be cooled quickly. Moreover, since these heating and cooling operations can be performed continuously while pressing the sealing part with the jig, the sealing work is simpler and faster than with the conventional heat block method, and the battery contents (power generation elements) It is possible to avoid thermal effects on the parts, and improve the adhesion and reliability of the thermally bonded parts.

〔実施例〕〔Example〕

以下、この発明の製造方法を図面を参照して具体的に説
明する。
Hereinafter, the manufacturing method of the present invention will be specifically explained with reference to the drawings.

第1〜5図は、対向配置した正負極集電板を構成する2
枚の金属板が共に平板状で、両金属板の周辺部にスペー
サを介在させた構造の薄型電池の封止工程を示す。この
場合、まず第1図で示すようにステンレス鋼などからな
る一方の金属板1aの一面側にセラミックなどからなる
環状のスペーサ2を接着剤3にて固着する。この接着剤
3としてはホットメルト接着剤やハーメチックシール可
能なセラミックなどの熱融着性材料のばか塗料溶液型接
着剤などの他の接着剤を使用でき、また熱融着性材料を
使用する際の加熱融着手段としては後述するパルス電流
などの通電加熱による局部加熱ならびにヒートブロック
などによる全体ないし局部加熱など種々の方法を採用で
きる。そしてスペーサ2上に環状シートに成形した熱融
着性材料4aを加熱接着しておく。
Figures 1 to 5 show two electrodes constituting the positive and negative electrode current collector plates arranged opposite to each other.
This figure shows the sealing process of a thin battery having a structure in which two metal plates are both flat and a spacer is interposed around the periphery of both metal plates. In this case, first, as shown in FIG. 1, an annular spacer 2 made of ceramic or the like is fixed with adhesive 3 to one side of one metal plate 1a made of stainless steel or the like. As this adhesive 3, other adhesives such as hot-melt adhesives and heat-fusible materials such as ceramics that can be hermetically sealed, and solution-based adhesives can be used; As the heating and fusing means, various methods can be employed, such as local heating by electrical heating such as pulsed current, which will be described later, and whole or local heating using a heat block or the like. Then, a heat-fusible material 4a formed into an annular sheet is heat-bonded onto the spacer 2.

つぎに、第2図で示すように、上述の金属板1aのスペ
ーサ2の内側に正極、負極、セパレータおよび電解質を
含む周知構成の発電要素5を装填すると共に、これを凹
型受枠6上に載置する。そして環状シートに成形した熱
融着性材料4bを予め加熱接着した他方の金属板1bを
、再熱融着性材料4a、4bが当接するように載置する
Next, as shown in FIG. 2, a power generation element 5 having a known configuration including a positive electrode, a negative electrode, a separator and an electrolyte is loaded inside the spacer 2 of the metal plate 1a, and this is placed on a concave receiving frame 6. place Then, the other metal plate 1b to which the heat-fusible material 4b formed into an annular sheet has been heat-bonded in advance is placed so that the re-heat-fusible materials 4a and 4b are in contact with each other.

続いて、第4図で示すようなタングステン合金、銅タン
グステン合金、モリブデン・モリブデンカーバイド、銅
クロムなどの抵抗体からなる押圧治具7を用いて、この
治具7により第3図に示すように他方の金属板1b側か
ら加圧し、上記治具7にパルス的に制御された電流を流
して発熱させ、金属板1bの周辺部すなわち封止部に所
要時間の加熱圧着を行い、熱融着性材料4a、4bを短
時間に加熱溶融させる。その後、加圧した状態で通電を
解除するとともに、治具7の側面に通風口8゜8゛を通
して冷却したアルゴンガスを吹きつけて強制冷却を行う
。冷却固化後、抜工して封止が完了する。第5図はこの
封止完了後に受枠6から取り出された薄型電池を示す。
Next, using a pressing jig 7 made of a resistor such as tungsten alloy, copper tungsten alloy, molybdenum/molybdenum carbide, copper chromium, etc. as shown in FIG. Pressure is applied from the side of the other metal plate 1b, and a pulse-controlled current is passed through the jig 7 to generate heat, and the peripheral part of the metal plate 1b, that is, the sealing part, is heated and pressed for the required time to heat fusion. The flexible materials 4a and 4b are heated and melted in a short time. Thereafter, the current is turned off while the jig 7 remains under pressure, and cooled argon gas is blown onto the side surface of the jig 7 through a ventilation hole 8.times.8.degree. to perform forced cooling. After cooling and solidifying, it is extracted and sealing is completed. FIG. 5 shows the thin battery taken out from the receiving frame 6 after this sealing is completed.

第6〜8図は、2枚の金属板の一方を皿形として前記ス
ペーサを省略した構造の薄型電池の封止工程を示す。こ
の場合まず第6図で示すように、共にステンレス鋼など
からなる皿形の金属板ICおよび平板状の金属板1dの
各周辺部に前述と同様の環状シートに成形した熱融着性
材料4a、4bを予め加熱接着しておき、皿形の金属板
ICの凹部上に発電要素5を装填してこれを凹型受枠6
上に載置し、この上に平板状の金属板1dを熱融着性材
料4a、4bが当接するように!置する。
6 to 8 show the sealing process of a thin battery having a structure in which one of the two metal plates is plate-shaped and the spacer is omitted. In this case, first, as shown in FIG. 6, a heat-fusible material 4a formed into an annular sheet similar to that described above is formed around each of the dish-shaped metal plate IC and the flat metal plate 1d, both of which are made of stainless steel or the like. , 4b are heat-adhered in advance, the power generation element 5 is loaded onto the recess of the dish-shaped metal plate IC, and the power generation element 5 is placed in the recessed receiving frame 6.
Place the flat metal plate 1d on top so that the heat-fusible materials 4a and 4b are in contact with each other! place

つぎに、第7図で示すように、抵抗体からなる押圧治具
7にて平板状の金属板1d側から加圧し、この加圧下で
押圧治具7に前記同様に通電して熱融着性材料4a、4
bを瞬時に加熱溶融する。そして、その後通電を解除し
また強制冷却を行うことにより前述と同様に熱融着性材
料4は急速に冷却固化して封止が完了するから、この封
止完了後に受枠6から取り出して第8図で示す薄型電池
を得る。
Next, as shown in FIG. 7, pressure is applied from the flat metal plate 1d side using a pressing jig 7 made of a resistor, and under this pressure, the pressing jig 7 is energized in the same manner as described above to bond the heat fusion. material 4a, 4
Instantly heat and melt b. Then, by removing the electricity and performing forced cooling again, the heat-fusible material 4 is rapidly cooled and solidified to complete the sealing process as described above. Obtain the thin battery shown in the figure.

なお、上記2つの実施例では、封止時に下方に位置させ
る金属板に発電要素全体を装填しているが、負極もしく
は正極の構成材料によってはこの部分のみを上方に位置
させる金属板に固着させてもよい。また、受枠6および
押圧治具7の形状は種々変更可能である。さらに、2枚
の金属板を共に凹型とした電池の封止を前記第6〜8図
の場合と同様にして行うこともできる。
In the above two embodiments, the entire power generation element is loaded on the metal plate positioned below during sealing, but depending on the constituent material of the negative electrode or the positive electrode, only this part may be fixed to the metal plate positioned above. It's okay. Furthermore, the shapes of the receiving frame 6 and the pressing jig 7 can be changed in various ways. Furthermore, it is also possible to seal a battery in which two metal plates are both concave in the same manner as in the case of FIGS. 6 to 8 above.

なお、上述の実施例では、押圧治具7への通電をパルス
電流を流すことによって行っているが、パルス電流に限
らず、通常の電流を流すようにしてもよい。また、上記
例では通風口8,8”によって強制的に冷却しているが
、自然冷却法を採用することもできる。すなわち、上記
加熱方式では、治具7の形状が封止部の形状に沿った小
形とされたものであるため、通電を解除すればそれによ
って短時間のうちに自然冷却される。
In the above-described embodiment, the pressing jig 7 is energized by passing a pulsed current, but it is not limited to a pulsed current, and a normal current may be passed. Further, in the above example, cooling is forcibly performed using the ventilation holes 8, 8'', but a natural cooling method can also be adopted.In other words, in the above heating method, the shape of the jig 7 matches the shape of the sealing part. Since it has a small profile, it naturally cools down in a short time when the power is turned off.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明では、封止部の加熱手段
として抵抗体からなる押圧治具を用いてこれで加圧しな
がら通電して発熱させ、これによって封止部を加熱する
とともに、加圧状態を保ったまま通電を解除して冷却す
る構成としたから、従来のヒートブロックを用いる封止
方法に比較して、発電要素への熱影響が格段に少なくな
り、高性能の電池が得られると共に、封止時間が大幅に
短縮されて電池の生産性が向上する。
As explained above, in the present invention, a pressing jig made of a resistor is used as a heating means for the sealing part, and the pressing jig is used to apply electricity while applying pressure to generate heat, thereby heating the sealing part and applying pressure. Since the structure is such that the power is turned off and cooled while maintaining the state, the thermal effect on the power generation element is significantly reduced compared to the conventional sealing method using a heat block, resulting in a high-performance battery. At the same time, the sealing time is significantly shortened and battery productivity is improved.

また、この発明方法では、封止時の加熱から冷却に至る
まで連続した加圧状態を維持できるから、従来の冷却促
進のためにクールブロックを交換使用する方法に比較し
て手間を要さず、加圧の不連続による封止部の密着性低
下や歪を生じず、大きな封止強度が得られる。
In addition, with this invention method, a continuous pressurized state can be maintained from heating to cooling during sealing, so it requires less effort than the conventional method of replacing and using cool blocks to promote cooling. , large sealing strength can be obtained without causing deterioration in adhesion or distortion of the sealing part due to discontinuous pressurization.

つぎに、この発明による方法と従来のヒートブロックを
用いる方法との封止時の発電要素に対する熱影響を比較
するために下記の試験を行った。
Next, the following test was conducted to compare the thermal effects on the power generation element during sealing between the method according to the present invention and the conventional method using a heat block.

く熱影響試験A〉 第9図で示すように、−辺15mの正方形で厚さ0.1
鶴のステンレス製平板からなる金属板1と、厚さQ、3
mm、幅21)のアルミナセラミックからなる方形環状
のスペーサ2とに、それぞれ厚さ30μm1幅2鶴の方
形環状シートとした変性ポリオレフィン樹脂(三菱油化
社製の商品名MOI;IIcP−300M)ホットメル
ト接着剤である熱融着性材料4a、4bを予め加熱接着
すると共に、金属板lの中心部に熱電対9を接着した。
Thermal Effect Test A〉 As shown in Figure 9, a square with a - side of 15 m and a thickness of 0.1
A metal plate 1 made of a flat stainless steel plate with a thickness Q and 3
A rectangular annular spacer 2 made of alumina ceramic with a width of 21 mm and a width of 21 mm is coated with a modified polyolefin resin (product name: MOI: IIcP-300M, manufactured by Mitsubishi Yuka Co., Ltd.) hot, each made into a rectangular annular sheet with a thickness of 30 μm and a width of 2 mm. Heat-fusible materials 4a and 4b, which are melt adhesives, were bonded by heating in advance, and a thermocouple 9 was bonded to the center of the metal plate 1.

この金属板lとスペーサ2とを受枠6上にスペーサ2が
下位でかつ熱融着性材料4a、4bが当接する状態で載
置し、熱電対9を受枠6に設けた孔6aより導出した上
で、押圧部が2鶴幅の抵抗体からなる押圧治具7にて上
方から5kg/−にて加圧し、この加圧下で封止部の加
熱温度が250℃となるようにパルス電流を通電した。
The metal plate 1 and the spacer 2 were placed on the receiving frame 6 with the spacer 2 at the bottom and the heat-fusible materials 4a and 4b in contact with each other, and the thermocouple 9 was led out from the hole 6a provided in the receiving frame 6. A pressure of 5 kg/- is applied from above using a pressing jig 7 whose pressing part is made of a resistor with a width of 2 squares, and a pulse current is applied so that the heating temperature of the sealed part becomes 250°C under this pressure. The power was turned on.

10秒後に通電を解除するとともに、通風口8,8・よ
りアルゴンガスを吹き付けて冷却した。この際の通電開
始からの金属板1の中心部における温度変化を第1)図
に曲線Aとして示した。
After 10 seconds, the electricity was turned off, and argon gas was blown through the ventilation ports 8, 8. to cool it down. The temperature change at the center of the metal plate 1 from the start of current application at this time is shown as a curve A in Fig. 1).

〈熱影響試験B〉 第10図で示すように、上記試験Aと同様に金属板1と
スペーサ2を受枠6上に載置し、250℃とした下方凹
型のヒートブロック10を5kg/−の加圧下で10秒
間接触させたのち、直ちに銅製のクールブロックに交換
し、同加圧下で冷却させた。この時の加熱開始からの金
属板1の中心部における温度変化を第1)図に曲線Bと
して示す。
<Heat Effect Test B> As shown in Fig. 10, the metal plate 1 and spacer 2 were placed on the receiving frame 6 in the same manner as in Test A above, and a downwardly concave heat block 10 heated to 250°C was heated to 5 kg/-. After contacting under pressure for 10 seconds, it was immediately replaced with a copper cool block and cooled under the same pressure. The temperature change at the center of the metal plate 1 from the start of heating at this time is shown as curve B in Figure 1).

第1)図の結果から明らかなように、この発明の方法に
よれば、従来のヒートブロックを用いて加熱後にクール
ブロックで冷却する方法に比較しても金属板の熱伝導が
大幅に少なく、したがって発電要素への熱影響が著しく
低減されることが判る。また、この結果より、従来のヒ
ートブロックを用いてこれが冷却するまで放置する方法
では発電要素に極めて大きな熱影響が及ぶことが明らか
である。
As is clear from the results in Figure 1), according to the method of the present invention, the heat conduction of the metal plate is significantly lower than that of the conventional method of heating with a heat block and then cooling with a cool block. Therefore, it can be seen that the thermal influence on the power generation element is significantly reduced. Furthermore, from this result, it is clear that the conventional method of using a heat block and leaving it until it cools has an extremely large thermal effect on the power generation element.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図はこの発明の第1実施例に係る方法を工程順
に示す縦断面図、第4図は上記方法に用いる押圧治具と
強制冷却手段とを示す斜視図、第5図は第1実施例にて
製造した薄型電池の縦断面図、第6図および第7図はこ
の発明の第2実施例に係る方法を工程順に示す縦断面図
、第8図は第2実施例にて製造された電池の縦断面図、
第9図はこの発明の方法による熱影響試験構成を示す縦
断面図、第1O図は従来の方法による熱影響試験構成を
示す縦断面図、第1)図は上記再熱影響試験結果を示す
温度一時間相関図である。 la、lb、lc、Ld・・−金属板、2・・・スペー
サ、4,4a、4b・・・熱融着性材料、5・・・発電
要素、7・・・押圧治具 特許出願人  日立マクセル株式会社 第1図 第2図 Ia、1b;金属板 2;スヤーサ 4a、4b; 1縞41廿fi 5:発電fL秦 第3図 7−も田〉台呉 第5図 第6図 1c、ld;nは 第8図 第10図 第1)図 時間(至))
1 to 3 are longitudinal sectional views showing the method according to the first embodiment of the present invention in the order of steps, FIG. 4 is a perspective view showing a pressing jig and forced cooling means used in the above method, and FIG. 6 and 7 are vertical cross-sectional views showing the method according to the second embodiment of the present invention in the order of steps, and FIG. 8 is a longitudinal cross-sectional view of the thin battery manufactured in the second embodiment. A longitudinal cross-sectional view of the manufactured battery,
Fig. 9 is a vertical cross-sectional view showing the heat-effect test configuration according to the method of the present invention, Fig. 1O is a longitudinal cross-sectional view showing the heat-effect test configuration according to the conventional method, and Fig. 1) shows the results of the above-mentioned re-heat effect test. It is a temperature one-hour correlation diagram. la, lb, lc, Ld...metal plate, 2...spacer, 4, 4a, 4b...thermal adhesive material, 5...power generation element, 7...pressing jig patent applicant Hitachi Maxell Co., Ltd. Figure 1 Figure 2 Figure Ia, 1b; Metal plate 2; Syasa 4a, 4b; , ld; n is Fig. 8 Fig. 10 Fig. 1) Time (to))

Claims (1)

【特許請求の範囲】[Claims] (1)対向配置した2枚の金属板間に発電要素が装填さ
れ、両金属板の周辺部を封止部とする構造の薄型電池の
製造方法において、上記発電要素が装填された状態で両
金属板を、封止部に熱融着性材料を介在して対向配置し
、この一面側より、抵抗体からなる押圧治具にて封止部
を加圧し、この加圧下で上記治具に通電することにより
、上記熱融着性材料を加熱して融着封止することを特徴
とする薄型電池の製造方法。
(1) In a method for manufacturing a thin battery having a structure in which a power generating element is loaded between two metal plates arranged facing each other, and the periphery of both metal plates is used as a sealing part, both The metal plates are placed facing each other with a heat-sealable material interposed in the sealing part, and the sealing part is pressurized from one side with a pressing jig made of a resistor, and the jig is pressed under this pressure. A method for manufacturing a thin battery, characterized in that the heat-fusible material is heated and fused-sealed by applying electricity.
JP61062775A 1986-03-19 1986-03-19 Manufacture of thin battery Pending JPS62219459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61062775A JPS62219459A (en) 1986-03-19 1986-03-19 Manufacture of thin battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61062775A JPS62219459A (en) 1986-03-19 1986-03-19 Manufacture of thin battery

Publications (1)

Publication Number Publication Date
JPS62219459A true JPS62219459A (en) 1987-09-26

Family

ID=13210084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61062775A Pending JPS62219459A (en) 1986-03-19 1986-03-19 Manufacture of thin battery

Country Status (1)

Country Link
JP (1) JPS62219459A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204959A (en) * 1989-02-02 1990-08-14 Fuji Elelctrochem Co Ltd Thin construction battery sealing method
JPH0332356U (en) * 1989-08-08 1991-03-28
JPH03108278A (en) * 1989-09-21 1991-05-08 Yuasa Battery Co Ltd Thin type battery
JP2010097852A (en) * 2008-10-17 2010-04-30 Dainippon Printing Co Ltd Electrochemical cell and method for manufacturing same
WO2015051700A1 (en) * 2013-10-08 2015-04-16 广州丰江电池新技术股份有限公司 Adhesive pasting apparatus for lithium ion battery pole piece, adhesive pasting machine thereof and adhesive pasting method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119347A (en) * 1979-03-08 1980-09-13 Toshiba Battery Co Ltd Manufacture of laminated dry battery
JPS55136460A (en) * 1979-04-10 1980-10-24 Toshiba Battery Co Ltd Sealing method of thin type cell
JPS6089062A (en) * 1983-10-20 1985-05-18 Matsushita Electric Ind Co Ltd Manufacture of flat type battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119347A (en) * 1979-03-08 1980-09-13 Toshiba Battery Co Ltd Manufacture of laminated dry battery
JPS55136460A (en) * 1979-04-10 1980-10-24 Toshiba Battery Co Ltd Sealing method of thin type cell
JPS6089062A (en) * 1983-10-20 1985-05-18 Matsushita Electric Ind Co Ltd Manufacture of flat type battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204959A (en) * 1989-02-02 1990-08-14 Fuji Elelctrochem Co Ltd Thin construction battery sealing method
JPH0332356U (en) * 1989-08-08 1991-03-28
JPH03108278A (en) * 1989-09-21 1991-05-08 Yuasa Battery Co Ltd Thin type battery
JP2010097852A (en) * 2008-10-17 2010-04-30 Dainippon Printing Co Ltd Electrochemical cell and method for manufacturing same
WO2015051700A1 (en) * 2013-10-08 2015-04-16 广州丰江电池新技术股份有限公司 Adhesive pasting apparatus for lithium ion battery pole piece, adhesive pasting machine thereof and adhesive pasting method therefor

Similar Documents

Publication Publication Date Title
TWI479716B (en) A secondary battery manufacturing method, a secondary battery, a welding apparatus
JP2013143336A (en) Manufacturing method of packed electrode, packed electrode, secondary battery, and heat sealing device
JP5224658B2 (en) Manufacturing method of lead wire member with seal film
JP5602050B2 (en) Joining method and battery
JP4376472B2 (en) Electrode separator mounting method and apparatus
JPS62219459A (en) Manufacture of thin battery
JP2831356B2 (en) Manufacturing method of sputtering target
JPS59193773A (en) Weld bond method
JPH01167946A (en) Manufacture of thin battery
JPS61214353A (en) Method for sealing thin-type cell
JP2004243402A (en) Metal foil joining method, and metal foil connecting device
KR20170078362A (en) Friction welding Apparatus and Method by heating thin metal
JP4122647B2 (en) Electric double layer capacitor and manufacturing method thereof
JPH07116868A (en) Method and device for joining metallic material
JPH01320753A (en) Manufacture of thin battery
JPH09142948A (en) Method for joining ceramic structure
JP7348119B2 (en) Welding method and battery module manufacturing method
JPS63128547A (en) Sealing method of thin-type cell
JPH05283087A (en) Method and device for manufacturing flat battery
JPH01167945A (en) Manufacture of thin battery
JP2001076690A (en) Manufacture of thin battery and manufacturing device therefor
JPS6124979B2 (en)
JPH0615464A (en) Diffusion brazing method
CN113954372A (en) Ultrasonic welding treatment method and ultrasonic welding preheating assembly
JPH08330884A (en) Chip-type piezoelectric vibration component and its manufacture