JPS61214353A - Method for sealing thin-type cell - Google Patents

Method for sealing thin-type cell

Info

Publication number
JPS61214353A
JPS61214353A JP60055187A JP5518785A JPS61214353A JP S61214353 A JPS61214353 A JP S61214353A JP 60055187 A JP60055187 A JP 60055187A JP 5518785 A JP5518785 A JP 5518785A JP S61214353 A JPS61214353 A JP S61214353A
Authority
JP
Japan
Prior art keywords
heat
sealing
sealing part
heating
laser lights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60055187A
Other languages
Japanese (ja)
Inventor
Tatsu Nagai
龍 長井
Hiroshi Horiie
堀家 浩
Kozo Kajita
梶田 耕三
Akio Shimizu
清水 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60055187A priority Critical patent/JPS61214353A/en
Publication of JPS61214353A publication Critical patent/JPS61214353A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To shorten a time for forming a sealing part by facing collect-plates, with heat-welding materials being included at the sealing part, and pressing them from one face side with a pressing plate made of a material permeated by laser lights and then irradiating laser lights to sealing parts. CONSTITUTION:A ring-shaped spacer 2 of ceramics or the like is fixed at one- side collecting plate 1a with adhesive 3. Next, together with heating and sticking a heat-welding material 4a molded into a ring-shaped sheet on the spacer 2, an electric-generating element 5 is loaded on the collecting plate 1a. Then, the other side collecting plate 1b, on which a heat-welding material molded into a ring-shaped sheet is heated and stuck beforehand, is placed and pressed from above with a pressing plate 7 made of a material permeated by laser lights. After irradiating laser lights 8 to melt heat-welding materials 4a and 4b, cooling and sealing are performed. Therefore, with the time from heating to cooling being largely shortened, productivity of a thin-type cell can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、対向配置した2板の金属板間に発電要素が
装填され、両金属板の周辺部を封止部とする構造の薄型
電池における封止方法に関するも′ のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a thin battery having a structure in which a power generation element is loaded between two metal plates arranged facing each other, and the periphery of both metal plates is a sealing part. This paper also relates to the sealing method used in the present invention.

〔従来の技術〕[Conventional technology]

ボタン型やコイン型などの電池では、正負極集電板を構
成する2つ金属缶を相互に嵌合し、両金属缶の周縁部を
有機高分子材料からなるバッキングを挾んで屈曲して締
め付ける封止方式が汎用されている。しかるに、近年の
電子機器類の小型化。
In button-type or coin-type batteries, the two metal cans that make up the positive and negative electrode current collector plates are fitted together, and the peripheral edges of both metal cans are bent and tightened with a backing made of an organic polymer material sandwiched between them. Sealing methods are widely used. However, in recent years, electronic devices have become smaller.

軽量化、薄型化などに伴って、これらに使用する電池と
しても総厚がIn1以下、さらには0.5118以下と
いった薄型のものが要望されている。
As batteries become lighter and thinner, there is a demand for thinner batteries with a total thickness of In1 or less, and even 0.5118 or less.

このような薄型の電池になると上述した封止方式では加
工技術上で限界があるため、平板状の2枚の金属板を対
向配置してその周辺部間にセラミックなどからなるスペ
ーサを介在させて接合したり、2枚の金属板の一方もし
くは両方を皿形として同様に対向配置し、その周辺部に
おいて接合する封止方式が試みられている。そしてこれ
らの接合には低融点ハンダや接着剤が用いられるが、と
くにホットメルト接着剤やハーメチックシール可能なセ
ラミックなどの熱融着性材料は、シート状に成形した固
形部品として扱えて封止操作が容易でめること、ならび
に塗料溶液型接着剤のように電池内部へ流入して電解質
と混じり合って電池性能を低下させる惧れかないことな
どから有望視されている(文献不詳)。
Since the above-mentioned sealing method has limitations in terms of processing technology when it comes to such thin batteries, two flat metal plates are placed facing each other and a spacer made of ceramic or the like is interposed between the peripheries. Attempts have been made to seal the metal plates by joining them together, or by arranging one or both of the two metal plates in a dish shape to face each other in the same way, and joining them at the periphery. Low melting point solders and adhesives are used for these connections, but heat-sealing materials such as hot-melt adhesives and ceramics that can be hermetically sealed can be handled as solid parts formed into sheet shapes and can be sealed. It is viewed as promising because it is easy to apply, and there is no risk of it flowing into the battery like a paint solution adhesive and mixing with the electrolyte, degrading battery performance (unspecified literature).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記熱融着性材料を用いて行う従来の薄
型電池の封止方法は、一般に高温に保持したヒートブロ
ックにて加圧しつつ封止部に介挿した熱融着性材料を加
熱溶融したのち、冷却固化するまで上記加圧を続けて融
着封止するものであるから、冷却に至るまでの長時間の
加熱状態下で装填された発電要素に熱影響が及び、電池
性能が低下し、また封正に時間がかかるので生産性が悪
いという問題点があった。一方、これを避けるためにヒ
ートブロックで加熱したのちクールブロックと交換して
冷却を早める手段も考えられるが、この方法では加圧が
不連続となることがら封止界面の密着性の低下や歪みを
生じ、封止強度が不充分になり、操作的にも繁雑である
という問題点があった。
However, the conventional method for sealing thin batteries using the heat-fusible material described above generally involves heating and melting the heat-fusible material inserted into the sealing part while applying pressure with a heat block kept at a high temperature. Afterwards, the pressure described above is continued until the battery is cooled and solidified to seal it by fusion bonding, so the loaded power generating element is affected by heat during the long heating period until cooling, resulting in a decrease in battery performance. Moreover, since it takes time to seal, there is a problem that productivity is poor. On the other hand, in order to avoid this, it is possible to speed up cooling by heating with a heat block and then replacing it with a cool block, but this method results in discontinuous pressurization, resulting in decreased adhesion and distortion of the sealing interface. There were problems in that the sealing strength was insufficient and the operation was complicated.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明者らは上記問題点を解決するために鋭意検討を
重ねた結果、レーザー光を利用して封止部を局部的に加
熱することによシ、熱融着性材料の溶融から冷却固化に
至る時間がヒートブロックを使用する場合に比較して格
段に短縮され、内部に装填された発電要素への熱影響が
非常に少なくなり、もって優れた性能を備えた薄型電池
を高い生産性のもとに製作できることを見い出し、この
発明をなすに至った。
As a result of intensive studies to solve the above problems, the inventors found that by locally heating the sealing part using laser light, the heat-fusible material can be melted and then cooled and solidified. Compared to using a heat block, the time required to achieve this is significantly shortened, and the heat effect on the power generation elements loaded inside is greatly reduced, making it possible to produce thin batteries with excellent performance and high productivity. They discovered that it could be manufactured based on the original material, and came up with this invention.

すなわちこの発明は、対向配置した2枚の金属板間に発
電要素が装填され、両金属板の周辺部を封止部とする構
造の薄型電池の封止方法において、上記発電要素が装填
された状態で両金属板を、封止部に熱融着性材料を介在
して対向配置し、この一面側よりレーザー光が透過する
材料からなる押圧板にて封止部を加圧し、この加圧下で
上記押圧板を通して封止部にレーザー光を照射すること
によシ、上記熱融着性材料を加熱して融着封止すること
を特徴とする薄型電池の封止方法に係る。
That is, the present invention provides a method for sealing a thin battery having a structure in which a power generation element is loaded between two metal plates arranged facing each other, and the periphery of both metal plates is used as a sealing part, in which the power generation element is loaded. In this state, both metal plates are placed facing each other with a heat-adhesive material interposed in the sealing part, and the sealing part is pressurized from one side with a press plate made of a material through which laser light can pass. The present invention relates to a method for sealing a thin battery, characterized in that the heat-fusible material is heated and sealed by irradiating a laser beam onto the sealing portion through the pressing plate.

〔実施例〕〔Example〕

以下、この発明の封止方法を図面を参照して具体的に説
明する。
Hereinafter, the sealing method of the present invention will be specifically explained with reference to the drawings.

第1〜4図は、対向配置した正負極集電板を構成する2
枚の金属板が共に平板状で、両金属板の周辺部にスペー
サを介在させた構造の薄型電池の封止工程を示す。この
場合、まず第1図で示すよってステンレス鋼などからな
る一方の金属板1aの一面側にセラミックなどからなる
環状のスペーサ2を接着剤3にて固着する。この接着剤
3としてはホットメルト接着剤やハーメチックシール可
能なセラミックなどの熱融着性材料のほか塗料溶液型接
着剤などの他の接着剤を使用でき、また熱融着性材料を
使用する際の加熱融着手段としては後述するレーザー光
による局部加熱ならびにヒートブロックなどによる全体
ないし局部加熱など種々の方法を採用できる。そしてス
ペーサ2上に環状シートに成形した熱融着性材料4aを
加熱接着しておく。
Figures 1 to 4 show two electrodes constituting the positive and negative electrode current collector plates arranged oppositely.
This figure shows the sealing process of a thin battery having a structure in which two metal plates are both flat and a spacer is interposed around the periphery of both metal plates. In this case, first, as shown in FIG. 1, an annular spacer 2 made of ceramic or the like is fixed with adhesive 3 to one side of one metal plate 1a made of stainless steel or the like. As the adhesive 3, in addition to hot melt adhesives and heat-fusible materials such as hermetically sealable ceramics, other adhesives such as paint solution adhesives can be used. As the heating and fusing means, various methods can be adopted, such as local heating using a laser beam, which will be described later, and whole or local heating using a heat block or the like. Then, a heat-fusible material 4a formed into an annular sheet is heat-bonded onto the spacer 2.

次に、第2図で示すように、上記金属板1aのスペーサ
2の内側に正極、負極、セパレータおよび電解質を含む
周知構成の発電要素5を装填すると共に、これを凹型受
枠6上に載置する。そして環状シートに成形した熱融着
性材料4bを予め加熱接着した他方の金属板1bを、両
熱融着性材料4 a+ 4 bが当接するように載置す
る。
Next, as shown in FIG. 2, a power generating element 5 having a known configuration including a positive electrode, a negative electrode, a separator and an electrolyte is loaded inside the spacer 2 of the metal plate 1a, and this is placed on a concave receiving frame 6. do. Then, the other metal plate 1b to which the heat-fusible material 4b formed into an annular sheet has been heat-bonded in advance is placed so that both the heat-fusible materials 4a+4b are in contact with each other.

続いて第3図で示すようにレーザー光が透過する材料か
らなる下方凸状の押圧板7にて他方の金属板1b側から
加圧し、この加熱下で押圧板7を通してレーザー光8を
金属板1bの周辺部すなわち封止部に所要時間照射し、
熱融着性材料4a。
Subsequently, as shown in FIG. 3, pressure is applied from the other metal plate 1b side using a downwardly convex pressing plate 7 made of a material through which the laser beam can pass, and the laser beam 8 is applied to the metal plate through the pressing plate 7 under heating. Irradiate the peripheral part of 1b, that is, the sealed part, for the required time,
Heat-fusible material 4a.

4bを瞬時に加熱溶融させる。この場合、抑圧体7自体
は非加熱状態であってクールブロックとして作用するか
ら、溶融合体した熱融着性材料4は急速に冷却固化し、
封止が完了する。第4図はこの封止完了後に受枠6から
取シ出された薄型電池を示す。
4b is instantly heated and melted. In this case, since the suppressor 7 itself is not heated and acts as a cool block, the molten heat-fusible material 4 is rapidly cooled and solidified.
Sealing is complete. FIG. 4 shows the thin battery taken out from the receiving frame 6 after this sealing is completed.

第5〜7図は、2枚の金属板の一方を皿形として前記ス
ペーサを省略した構造の薄型電池の封止工程を示す。こ
の場合、まず第5図で示すように、共にステンレス鋼な
どからなる皿形の金属板ICおよび平板状の金属板1d
の各周辺部に前述と同様の環状シートに成形した熱融着
性材料4a、4bを予め加熱接着しておき、皿形の金属
板ICの凹部上に発電要素5を装填してこれを凹型受枠
6上に載置し、この上に平板状の金属板1dを熱融着性
材料4a、4bが当接するように載置する。
5 to 7 show the sealing process of a thin battery having a structure in which one of the two metal plates is plate-shaped and the spacer is omitted. In this case, first, as shown in FIG. 5, a dish-shaped metal plate IC and a flat metal plate 1d are both made of stainless steel or the like.
Thermal adhesive materials 4a and 4b formed into annular sheets similar to those described above are heat-adhered in advance to the respective peripheral parts of the IC, and the power generating element 5 is loaded onto the recessed part of the dish-shaped metal plate IC. It is placed on the receiving frame 6, and a flat metal plate 1d is placed thereon so that the heat-fusible materials 4a and 4b are in contact with each other.

次に第6図で示すように、レーザー光が透過する材料か
らなる押圧板7にて平板状の金属板1d側から加圧し、
この加圧下で押圧板7を通してレーザー光8を封止部に
所要時間照射し、熱融着性材料4a、4bを瞬時に加熱
溶融する。そして、前述と同様に熱融着性材料4は急速
に冷却固化して封止が完了するから、この封止完了後に
受枠6から取り出して第7図で示す薄型電池を得る。
Next, as shown in FIG. 6, pressure is applied from the flat metal plate 1d side using a pressing plate 7 made of a material that transmits laser light.
Under this pressure, the sealing portion is irradiated with laser light 8 through the press plate 7 for a required period of time to instantaneously heat and melt the heat-fusible materials 4a and 4b. Then, as described above, the heat-fusible material 4 is rapidly cooled and solidified to complete the sealing, and after the sealing is completed, it is removed from the receiving frame 6 to obtain the thin battery shown in FIG.

なお、上記2つの実施例では、封止時に下方に位置させ
る金属板に発電要素全体を装填しているが、負衡もしく
は正極の構成材料によってはこの部分のみを上方に位置
させる金属板に固着させてもよい。また受枠6および押
圧板7の形状は種々変更可能で61、たとえば押圧板7
を下方凹状とすることにより両金属板を共に凹型とした
電池の封止を前記第5〜7図の場合と同様にして行うこ
とができる。
In the above two embodiments, the entire power generating element is loaded on the metal plate positioned below during sealing, but depending on the negative balance or the constituent material of the positive electrode, only this part may be fixed to the metal plate positioned above. You may let them. Further, the shapes of the receiving frame 6 and the pressing plate 7 can be changed in various ways 61, for example, the pressing plate 7
By making the metal plates concave downward, it is possible to seal a battery in which both metal plates are concave in the same manner as in the case of FIGS. 5 to 7 above.

この発明において、封止に使用するレーザー光源として
は、炭酸ガスレーザーなどのガスレーザーを始め、各種
固体レーザーや半導体レーザーなども使用可能である。
In this invention, as a laser light source used for sealing, gas lasers such as carbon dioxide lasers, various solid lasers, semiconductor lasers, etc. can also be used.

そしてレーザー光の照射時間はレーザー光の強度、熱融
着性材料の種類、厚み、幅、金属板の材質と厚み、押圧
板の材質と厚みなどに応じて適宜設定すればよい。
The irradiation time of the laser beam may be appropriately set depending on the intensity of the laser beam, the type, thickness, and width of the heat-fusible material, the material and thickness of the metal plate, the material and thickness of the pressing plate, and the like.

また押圧板7を構成する材料としては、使用したレーザ
ー光が散乱、屈折、吸収などの作用を大きく受けずに透
過し得るものであればよく、加えて耐熱性および機械的
強度に優れ長寿命でおるものが好ましい。このようにレ
ーザー光を透過する材料の具体例としては、セレン化亜
鉛、塩化ナトリウム、塩化カリウムなどが挙げられ、と
くにセレン化亜鉛は水分の影響による強度低下を生じに
くく取扱い性もよいことから最適である。
In addition, the material constituting the press plate 7 may be any material as long as it can transmit the laser light used without being significantly affected by scattering, refraction, absorption, etc., and has excellent heat resistance and mechanical strength, and has a long life. Preferably one that can be washed. Specific examples of materials that transmit laser light in this way include zinc selenide, sodium chloride, potassium chloride, etc. Zinc selenide is particularly suitable because it is difficult to reduce strength due to moisture and is easy to handle. It is.

次に、この発明による封止方法と従来のヒートブロック
による封止方法の発電要素に対する熱影響を比較するた
めに下記の試験を行った。
Next, the following test was conducted to compare the thermal effects on the power generating element between the sealing method according to the present invention and the conventional sealing method using a heat block.

〈熱影響試験A〉 第8図で示すように、−辺1511nlの正方形で厚さ
0.1 ff1Jfのステンレス製平板からなる金属板
1と、厚さQ、3m、幅2ffのアルミナセラミックか
らなる方形環状のスペーサ2とに、それぞれ厚さ30μ
m1幅2WIKの方形環状シートとした変性ポリオレフ
ィン樹脂(三菱油化社製の商品名MODICP−300
M)ホットメルト接着剤である熱融着性材料4a、4b
を予め加熱接着すると共に、金属板1の中心部に熱電対
9を接着した。
<Heat Effect Test A> As shown in Fig. 8, a metal plate 1 is made of a stainless steel flat plate with a square side of 1511 nl and a thickness of 0.1 ff 1 Jf, and an alumina ceramic plate with a thickness Q of 3 m and a width of 2 ff. The rectangular annular spacer 2 has a thickness of 30 μm each.
Modified polyolefin resin (trade name: MODICP-300 manufactured by Mitsubishi Yuka Co., Ltd.) made into a rectangular annular sheet with a width of m1 and 2 WIK
M) Heat-fusible materials 4a and 4b that are hot-melt adhesives
were heat-bonded in advance, and a thermocouple 9 was bonded to the center of the metal plate 1.

この金属板1とスペーサ2とを受枠6上にスペーサ2が
下位でかつ熱融着性材料4a、4bが当接する状態で載
置し、熱電対9を受枠6に設けた孔6aより導出した上
で、レーザー光透過部の厚みが5Bであるセレン北面鉛
製の押圧板7にて上方から5kq/Aにて加圧し、この
加圧下で封止部の加熱温度(感熱紙にて判定)が250
°Cとなるように炭酸ガスレーザー光をX−Yテーブル
で走査して封止部1周10秒として照射した。この照射
開始からの金属板1の中心部における温度変化を第10
図に曲線Aとして示しだ。
The metal plate 1 and the spacer 2 were placed on the receiving frame 6 with the spacer 2 at the bottom and the heat-fusible materials 4a and 4b in contact with each other, and the thermocouple 9 was led out from the hole 6a provided in the receiving frame 6. Pressure was applied from above at 5 kq/A using a press plate 7 made of lead on the north side of selenium whose laser light transmitting part had a thickness of 5B, and the heating temperature of the sealing part was determined under this pressure (determined using thermal paper). is 250
The carbon dioxide gas laser beam was scanned with an X-Y table and irradiated for 10 seconds for one round of the sealing part so that the temperature was 0.degree. The temperature change at the center of the metal plate 1 from the start of this irradiation is calculated as
It is shown as curve A in the figure.

〈熱影響試験B〉 第9図で示すように、上記試験Aと同様に金属板lとス
ペーサ2を受枠6上に載置し、250°Cとした下方凹
型のヒートブロック10を5kf/ctlの加圧下で1
0秒間接触させたのち、直ちに銅製のクールブロックに
交換し、同加圧下で冷却させた。この時の加熱開始から
の金属板1の中心部における温度変化を第10図に曲線
Bとして示す。
<Heat Effect Test B> As shown in FIG. 9, the metal plate 1 and the spacer 2 were placed on the receiving frame 6 in the same manner as in the above test A, and the downward concave heat block 10 was heated to 250°C at 5 kf/ctl. 1 under the pressure of
After contacting for 0 seconds, it was immediately replaced with a copper cool block and cooled under the same pressure. The temperature change at the center of the metal plate 1 from the start of heating at this time is shown as curve B in FIG.

第10図の結果から明らかなように、この発明による封
止方法によれば、従来のヒートブロックを用いて加熱後
にクールブロックで冷却する方法に比較しても金属板の
熱伝導が大幅に少なく、従って発電要素への熱影響が著
しく低減されることが判る。また、この結果より、従来
のヒートブロックを用いてこれが冷却するまで放置する
方法では発電要素に極めて大きな熱影響が及ぶことが明
らかである。
As is clear from the results in Figure 10, according to the sealing method according to the present invention, the heat conduction of the metal plate is significantly reduced compared to the conventional method of heating with a heat block and then cooling with a cool block. It can therefore be seen that the thermal influence on the power generation element is significantly reduced. Furthermore, from this result, it is clear that the conventional method of using a heat block and leaving it until it cools has an extremely large thermal effect on the power generation element.

〔発明の効果〕〔Effect of the invention〕

この発明に係る薄型電池の封止方法は、封止部に熱融着
性材料を介挿して対向配置した2枚の金属板をレーザー
光が透過する材料からなる押圧板にて加圧し、この加圧
下で押圧板を通して封止部にレーザー光を照射すること
により、上記熱融着性材料を加熱して融着封止するもの
であるから、封止部のみの局部加熱が容易であり、しか
も押圧板自体は加熱されずにクールブロックとして作用
するので溶融した熱融着性材料が急速に冷却固化する。
The method for sealing a thin battery according to the present invention involves inserting a heat-fusible material into the sealing part and pressing two metal plates facing each other with a press plate made of a material through which laser light can pass. Since the heat-fusible material is heated and sealed by irradiating the sealing part with laser light through a press plate under pressure, local heating of only the sealing part is easy; Furthermore, since the press plate itself is not heated and acts as a cool block, the molten heat-fusible material is rapidly cooled and solidified.

したがってこの発明方法によれば、従来のヒートブロッ
クを用いて冷却するまで加圧する封止方法に比較して、
発電要素への熱影響が格段に少なくなり、高性能の電池
が得られると共に、封止時間が大幅に短縮されて電池の
生産性が向上する。
Therefore, according to the method of this invention, compared to the conventional sealing method of applying pressure until cooling using a heat block,
Thermal influence on the power generation element is significantly reduced, resulting in a high-performance battery, and the sealing time is significantly shortened, improving battery productivity.

またこの発明方法では封止時の加熱から冷却に至るまで
連続した加圧状態を維持できるから、従来の冷却促進の
ためにクールブロックを交換使用する方法に比較して手
間を要さず、加圧の不連続による封止部の密着性低下や
歪を生じず、大きな封止強度が得られる。
In addition, since the method of this invention can maintain a continuous pressurized state from heating to cooling during sealing, it requires less time and effort than the conventional method of replacing and using cool blocks to promote cooling. Great sealing strength can be obtained without deterioration of adhesion or distortion of the sealing part due to pressure discontinuity.

【図面の簡単な説明】 第1〜3図はこの発明の第1実施例に係る封止方法を工
程順に示す縦断面図、第4図は第1実施例にて封止した
薄型電池の縦断面図、第5図および第6図はこの発明の
第2実施例に係る封止方法を工程順に示す縦断面図、第
7図は第2実施例にて封止された電池の縦断面図、第8
図はこの発明の封止方法による熱影響試験構成を示す縦
断面図、第9図は従来の封止方法による熱影響試験構成
を示す縦断面図、第10図は上記側熱影響試験結果を示
す温度一時間相関図である。 1a、1b、IC21d・・・金属板、2−・−スヘー
サ、414a14b・・・熱融着性材料、5・・・発電
要素、7・・・押圧板、8・・・レーザー光。 特許出願人   日立マクセル株式会社第5図 り 第6図 第8図 第9図 第10図 o    s    io    15   20吟 
聞(1少)
[BRIEF DESCRIPTION OF THE DRAWINGS] Figures 1 to 3 are longitudinal sectional views showing the sealing method according to the first embodiment of the present invention in the order of steps, and Figure 4 is a longitudinal sectional view of a thin battery sealed in the first embodiment. 5 and 6 are vertical cross-sectional views showing step by step the sealing method according to the second embodiment of the present invention, and FIG. 7 is a vertical cross-sectional view of a battery sealed in the second embodiment. , 8th
The figure is a longitudinal sectional view showing a heat effect test configuration using the sealing method of the present invention, FIG. 9 is a longitudinal sectional view showing a heat effect test structure using a conventional sealing method, and FIG. 10 shows the results of the side heat effect test. It is a temperature one-hour correlation diagram shown in FIG. 1a, 1b, IC21d...metal plate, 2--shasa, 414a14b...thermal adhesive material, 5...power generation element, 7...pressing plate, 8...laser light. Patent Applicant Hitachi Maxell Co., Ltd. 5 Figure 6 Figure 8 Figure 9 Figure 10 o s io 15 20 gin
Listen (1 little)

Claims (1)

【特許請求の範囲】[Claims] (1)対向配置した2枚の金属板間に発電要素が装填さ
れ、両金属板の周辺部を封止部とする構造の薄型電池の
封止方法において、上記発電要素が装填された状態で両
金属板を、封止部に熱融着性材料を介在して対向配置し
、この一面側より、レーザー光が透過する材料からなる
押圧板にて封止部を加圧し、この加圧下で上記押圧板を
通して封止部にレーザー光を照射することにより、上記
熱融着性材料を加熱して融着封止することを特徴とする
薄型電池の封止方法。
(1) In a method for sealing a thin battery having a structure in which a power generating element is loaded between two metal plates arranged facing each other and the peripheral areas of both metal plates are used as a sealing part, the power generating element is loaded. Both metal plates are placed facing each other with a heat-adhesive material interposed in the sealing part, and the sealing part is pressurized from one side with a press plate made of a material that transmits laser light. A method for sealing a thin battery, characterized in that the heat-fusible material is heated and sealed by irradiating a laser beam onto the sealing portion through the press plate.
JP60055187A 1985-03-19 1985-03-19 Method for sealing thin-type cell Pending JPS61214353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055187A JPS61214353A (en) 1985-03-19 1985-03-19 Method for sealing thin-type cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055187A JPS61214353A (en) 1985-03-19 1985-03-19 Method for sealing thin-type cell

Publications (1)

Publication Number Publication Date
JPS61214353A true JPS61214353A (en) 1986-09-24

Family

ID=12991704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055187A Pending JPS61214353A (en) 1985-03-19 1985-03-19 Method for sealing thin-type cell

Country Status (1)

Country Link
JP (1) JPS61214353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182866A (en) * 1991-12-27 1993-07-23 Isuzu Motors Ltd Electric double layer capacitor
JP2006527468A (en) * 2003-06-14 2006-11-30 バルタ・オートモーティブ・ズュステームズ・ゲーエムベーハー Manufacturing methods for batteries and sealed contact terminal bushings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182866A (en) * 1991-12-27 1993-07-23 Isuzu Motors Ltd Electric double layer capacitor
JP2006527468A (en) * 2003-06-14 2006-11-30 バルタ・オートモーティブ・ズュステームズ・ゲーエムベーハー Manufacturing methods for batteries and sealed contact terminal bushings

Similar Documents

Publication Publication Date Title
JPS604270A (en) Manufacture of solar battery
JP5224658B2 (en) Manufacturing method of lead wire member with seal film
JP2013143336A (en) Manufacturing method of packed electrode, packed electrode, secondary battery, and heat sealing device
JP2016524323A (en) Laser welding connection method of crystalline silicon solar cell
US5279623A (en) Method of fabricating flat type electrochemical device
JP2011255420A (en) Device and method for joining, and battery
US3775189A (en) Forming sealed housings for electrochemical cells
CN110226247A (en) Battery module and its manufacturing method
JPS61214353A (en) Method for sealing thin-type cell
JPS62219459A (en) Manufacture of thin battery
JPH01167946A (en) Manufacture of thin battery
JP2001093507A (en) Method of manufacturing battery
JP4122647B2 (en) Electric double layer capacitor and manufacturing method thereof
JPS61138473A (en) Sodium-sulfur cell and manufacture thereof
JP2020145130A (en) Manufacturing method of fuel battery cell
CN220272554U (en) Diaphragm edge sealing device
JPH01320753A (en) Manufacture of thin battery
JPS6174255A (en) Manufacture of flat battery
JPS61140054A (en) Manufacture of thin cell
CN218985789U (en) Protective film hot melting equipment
JPS63174267A (en) Manufacture of flat plate type cell
JP2001076690A (en) Manufacture of thin battery and manufacturing device therefor
JPH05283087A (en) Method and device for manufacturing flat battery
JPH0260049A (en) Manufacture of thin type battery
JPH01167945A (en) Manufacture of thin battery