JP5602050B2 - Joining method and battery - Google Patents

Joining method and battery Download PDF

Info

Publication number
JP5602050B2
JP5602050B2 JP2011032695A JP2011032695A JP5602050B2 JP 5602050 B2 JP5602050 B2 JP 5602050B2 JP 2011032695 A JP2011032695 A JP 2011032695A JP 2011032695 A JP2011032695 A JP 2011032695A JP 5602050 B2 JP5602050 B2 JP 5602050B2
Authority
JP
Japan
Prior art keywords
joining
electrode
cylindrical
annular nozzle
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011032695A
Other languages
Japanese (ja)
Other versions
JP2011255420A (en
Inventor
努 櫻井
浩司 船見
誠二 熊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011032695A priority Critical patent/JP5602050B2/en
Priority to CN201110128783.8A priority patent/CN102240849B/en
Publication of JP2011255420A publication Critical patent/JP2011255420A/en
Application granted granted Critical
Publication of JP5602050B2 publication Critical patent/JP5602050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、治具の設置が困難な箇所にて接合を行う接合装置および接合方法ならびにそれらを用いて製造された電池に関する。   The present invention relates to a joining apparatus and a joining method for joining at places where it is difficult to install jigs, and a battery manufactured using them.

従来の接合方法について、図7および図10を用いて説明する。
図7は電池の構造を示す図であり、図7(a)は縦断面図、図7(b)は底面図である。図10は従来の接合方法を説明する図である。
A conventional joining method will be described with reference to FIGS.
7A and 7B are diagrams showing the structure of the battery. FIG. 7A is a longitudinal sectional view, and FIG. 7B is a bottom view. FIG. 10 is a diagram for explaining a conventional joining method.

従来から図7に示すような円筒型リチウム電池の円筒缶76と負極の電極7の接合方法として、広く抵抗溶接機によるスポット溶接が使用されている。
この原理は、ニッケルないし、ニッケルメッキされた銅クラッド材を、ニッケルメッキされた深絞り円筒形状の鉄缶(以下円筒缶76と略す)の内面底で、長い棒状のタングステン電極で挟み込み、大電流を流して接触部の接触抵抗による発熱で接合界面の金属を溶解して溶接するものである。しかし、接触部を大電流でショートさせるのでスパッタを皆無にするのは困難である。そのため、タングステン電極には積層構造の薄膜電極が接合されるが、スパッタ混入により正極板と負極板とが内部短絡して急激な温度上昇が発生する恐れがあり、信頼性の確保が困難であった。
Conventionally, spot welding by a resistance welding machine has been widely used as a method of joining the cylindrical can 76 of the cylindrical lithium battery and the negative electrode 7 as shown in FIG.
The principle is that nickel or nickel-plated copper clad material is sandwiched by a long rod-shaped tungsten electrode at the bottom of the inner surface of a nickel-plated deep-drawn cylindrical iron can (hereinafter abbreviated as cylindrical can 76). The metal at the joint interface is melted and welded by heat generated by the contact resistance of the contact portion. However, since the contact portion is short-circuited with a large current, it is difficult to eliminate sputtering. For this reason, a thin film electrode having a laminated structure is bonded to the tungsten electrode. However, the positive electrode plate and the negative electrode plate may be internally short-circuited due to the mixture of spatters, and a rapid temperature increase may occur, making it difficult to ensure reliability. It was.

スパッタを削減する有効な上記抵抗溶接以外の方法について図10を用いて説明する。
この方法は、図10に示すように、金属片91aと93を筒状治具で押えて、レーザ光Aを照射することにより接合界面を溶解し、金属片91aと93とを接合する方法である。しかしこの方法では、樹脂や低融点金属であれば接合ができるが、ニッケル等融点が1000℃を超える金属を接合する場合は、熱が筒状治具に多く奪われ、融点を超えることは困難であり、高融点材料の接合には不向きである。万一接合できたとしても温度勾配により中心部のみで接合し、接合した面積が小さいので接合部の電気抵抗が高く、大電流を流す必要のあるEVやHEVでは発熱で本来のリチウム電池の高密度・大電流の能力を十分活かすことができなかった。しかも、スパッタが発生した場合、治具上方に空間が空いている為、スパッタが外へ飛び出して品質の低化を招くという問題点も残る。
An effective method other than the above resistance welding for reducing spatter will be described with reference to FIG.
As shown in FIG. 10, this method is a method in which the metal pieces 91a and 93 are pressed by a cylindrical jig, the laser beam A is irradiated to melt the bonding interface, and the metal pieces 91a and 93 are joined. is there. However, with this method, bonding can be performed with a resin or a low-melting-point metal. However, when joining a metal such as nickel with a melting point exceeding 1000 ° C., it is difficult to exceed the melting point because much heat is taken away by the cylindrical jig. Therefore, it is not suitable for joining high melting point materials. Even if it can be joined, it is joined only at the center due to the temperature gradient, and since the joined area is small, the electrical resistance of the joint is high, and in EVs and HEVs that require a large current to flow, the heat generated by the original lithium battery is high. The capacity of density and large current could not be fully utilized. In addition, when spatter occurs, the space above the jig is vacant, so that the spatter jumps out and the quality is lowered.

さらに、円筒缶リチウム電池の場合は、積層電極が巻いてあるため、円筒缶中心部に3mm径程度の穴しかあいておらず、そもそも押え治具を設置するのは物理的に困難である(例えば、特許文献1参照)。   Furthermore, in the case of a cylindrical can lithium battery, since the laminated electrode is wound, only a hole with a diameter of about 3 mm is formed in the center of the cylindrical can, and it is physically difficult to install a holding jig in the first place ( For example, see Patent Document 1).

よって現在は殆どが抵抗溶接機で生産されているが、抵抗溶接機の溶接棒は毎日数回頻繁に交換する必要があると共に、スパッタ発生をなくすこともできず、後の充放電検査工程でスパッタによる不良を見つけることでしか対応できなかった。   Therefore, most of them are currently produced by resistance welding machines, but the welding rods of resistance welding machines need to be replaced frequently several times every day, and spattering cannot be eliminated. It was only possible to find a defect due to sputtering.

特開平4−220164号公報JP-A-4-220164

本発明は、上記問題点を解決するために、治具等の設置が困難な場所を溶接する場合であっても、容易な方法でスパッタの発生を抑制すると共に、接合面積を確保することを目的とする。   In order to solve the above problems, the present invention suppresses the occurrence of spatter by an easy method and secures a bonding area even when welding a place where it is difficult to install a jig or the like. Objective.

上記目的を達成するために、本発明の接合方法は、レーザ光の導波路を備える中空ツールと、前記中空ツールの先端に設けられて内壁が内向きのテーパ形状である中空の環状ノズルとからなる接合装置を用いて導電性の支持台に支持される接合対象を接合する接合方法であって、前記環状ノズルの先端を前記接合対象に圧接させる圧接工程と、前記支持台と前記中空ツールとの間に電圧をかけて接触抵抗による熱で加熱アシストする工程と、前記中空ツールを介して前記環状ノズルから前記接合対象に第1のレーザパワーの第1のレーザ光を照射することにより前記接合対象を加熱する第1の照射工程と、前記第1のパワーよりパワーが大きく、前記第1のレーザ光より波長の短い第2のレーザ光を前記環状ノズルから前記接合対象に照射することにより前記接合対象を接合する第2の照射工程とを有し、前記レーザ光が直接照射される箇所を熱伝導型溶接し、前記環状ノズルの内壁に前記レーザ光が照射されて前記環状ノズルが加熱されることにより、前記接合対象の前記環状ノズルが接する部分を熱拡散接合することを特徴とする。 In order to achieve the above object, a joining method according to the present invention includes a hollow tool including a laser beam waveguide, and a hollow annular nozzle provided at a tip of the hollow tool and having an inwardly tapered inner wall. A joining method for joining a joining target supported by a conductive support using a joining device comprising: a press-contacting step for pressing a tip of the annular nozzle against the joining target; and the support and the hollow tool. A step of assisting heating with heat generated by contact resistance by applying a voltage between the first electrode and the first laser beam having a first laser power from the annular nozzle through the hollow tool. A first irradiation step of heating the object, and a second laser beam having a power greater than the first power and a shorter wavelength than the first laser beam is irradiated from the annular nozzle onto the bonding target. Second and a irradiation step, a portion where the laser beam is irradiated directly with heat conduction type welding, the annular nozzle the laser beam is irradiated to the inner wall of the annular nozzle for bonding the bonding target by As a result of being heated, the portion where the annular nozzle to be joined is in contact by thermal diffusion joining.

また、前記第2のレーザ光の照射により、前記接合対象の前記第2のレーザ光が直接照射される箇所が前記接合対象の融点以上沸点以下の温度で液状化され、前記接合対象の前記環状ノズルが接する部分が前記接合対象の融点以下の温度で軟化されることが好ましい。   In addition, by the irradiation of the second laser light, the portion of the bonding target that is directly irradiated with the second laser light is liquefied at a temperature not lower than the melting point of the bonding target and not higher than the boiling point. It is preferable that the portion in contact with the nozzle is softened at a temperature equal to or lower than the melting point of the bonding target.

また、前記照射工程中に、前記接合対象に不活性ガスを流すことが好ましい。
また、前記照射工程中に、前記接合対象の前記環状ノズルが圧接される面の裏面を加熱することが好ましい。
Moreover, it is preferable to flow an inert gas to the said joining object during the said irradiation process.
Moreover, it is preferable to heat the back surface of the surface where the said annular nozzle of the said joining object is press-contacted during the said irradiation process.

さらに、本発明の電池は、円筒缶と、前記円筒缶内に内蔵される積層電極と、前記円筒缶内に前記円筒缶部を露出して形成される中空部と、前記円筒缶部に前記接合方法で接合される電極とを有することを特徴とする。 Furthermore, the battery of the present invention comprises a cylindrical can, a laminated electrode is built into the cylindrical can, a hollow portion formed by exposing the cylindrical can bottom into the cylindrical can, the cylindrical can bottom And an electrode joined by the joining method.

以上により、治具等の設置が困難な場所を溶接する場合であっても、容易な方法でスパッタの発生を抑制すると共に、接合面積を確保することができる。   As described above, even when a place where it is difficult to install a jig or the like is welded, the generation of spatter can be suppressed by an easy method and the bonding area can be secured.

レーザ光の導波路となる中空ツールに、先端ほど径が細くなる環状部を設け、狭く深い部分を溶接する際に、環状ノズルを溶接部分に挿入し、中空ツールを通って環状ノズルから溶接部分にレーザ光を照射することにより、レーザ光が直接照射される溶接部分が溶融接合すると共に、環状ノズルがレーザ光の照射を受けて加熱されることにより環状ノズルと接触する溶接部分が熱拡散接合することにより、治具等の設置が困難な場所を溶接する場合であっても、容易な方法でスパッタの発生を抑制すると共に、接合面積を確保することができる。   A hollow tool that becomes a laser beam waveguide is provided with an annular part with a diameter that decreases toward the tip. When welding a narrow and deep part, an annular nozzle is inserted into the welded part, and the welded part passes through the hollow tool from the annular nozzle. By irradiating the laser beam to the welded portion that is directly irradiated with the laser beam, the welded portion that is in contact with the annular nozzle is thermally diffusion bonded by heating the annular nozzle that is irradiated with the laser beam. By doing so, even when welding a place where it is difficult to install a jig or the like, it is possible to suppress the generation of spatter by an easy method and to secure a bonding area.

本発明の接合方法の工程を説明する断面図Sectional drawing explaining the process of the joining method of this invention 本発明の中空ツールの構成例を示す図The figure which shows the structural example of the hollow tool of this invention 本発明の環状ノズルの構成例を示す図The figure which shows the structural example of the annular nozzle of this invention 本発明のレーザパルスを制御する接合方法を説明する図The figure explaining the joining method which controls the laser pulse of this invention 本発明のレーザパルスを制御する接合方法を説明するレーザパワー遷移図Laser power transition diagram illustrating a bonding method for controlling laser pulses according to the present invention 本発明の環状ノズルの先端に凹凸を形成する場合の構成例を示す図The figure which shows the structural example in the case of forming an unevenness | corrugation in the front-end | tip of the annular nozzle of this invention 電池の構造を示す図Diagram showing battery structure 本発明の接合形状を説明する概略底面図Schematic bottom view explaining the joint shape of the present invention 本発明の接合形状例を示す概略底面図Schematic bottom view showing a bonding shape example of the present invention 従来の接合方法を説明する図The figure explaining the conventional joining method

本発明は、円筒缶電池の底部に電極を接合する場合の様に、開口部の面積が狭く深さの深い凹部等の底部に溶接を施す接合方法および接合装置に関するものである。このような場所においては、接合に際し、押さえ治具等を設けることができないので、レーザ光を接合箇所に照射するためのレーザ光導波路となる光ファイバ等を備える中空ツールと、中空ツールの先端に設けられ、先端に向かうにつれて中空部分の面積が狭くなる環状ノズルとを備える接合装置を用いて接合を行う。具体的には、接合箇所に環状ノズルが接触するように、中空ツールを凹部底部まで挿入し、中空ツールを介してレーザ光を接合箇所に照射することによって接合を行う。このような方法で接合を行うことにより、接合箇所のレーザ光が直接照射される箇所は熱伝導型溶接がなされる。同時に、環状ノズル内壁にレーザ光が照射されることにより、環状ノズルが加熱され、環状ノズルに接する接合箇所が環状ノズルの加圧と熱により熱拡散接合がなされる。このように、治具等の設置が困難な場所を溶接する場合であっても、接合箇所を環状ノズルで覆うことにより容易な方法でスパッタの発生を抑制すると共に、接合箇所が熱伝導型溶接と熱拡散接合とにより2重に接合されるため、接合面積を確保することができる。   The present invention relates to a joining method and a joining apparatus for welding a bottom portion such as a recess having a narrow opening area and a deep depth as in the case of joining an electrode to the bottom portion of a cylindrical can battery. In such a place, since a holding jig or the like cannot be provided at the time of joining, a hollow tool provided with an optical fiber or the like serving as a laser optical waveguide for irradiating the joint with laser light, and a tip of the hollow tool It joins using the joining apparatus provided with the cyclic | annular nozzle which is provided and the area of a hollow part becomes narrow as it goes to a front-end | tip. Specifically, the hollow tool is inserted to the bottom of the recess so that the annular nozzle comes into contact with the joining portion, and the joining is performed by irradiating the joining portion with laser light through the hollow tool. By joining by such a method, the heat conduction type welding is performed at the place where the laser beam at the joint is directly irradiated. At the same time, the laser beam is irradiated onto the inner wall of the annular nozzle, whereby the annular nozzle is heated, and the joining portion in contact with the annular nozzle is subjected to thermal diffusion bonding by the pressure and heat of the annular nozzle. In this way, even when welding a place where it is difficult to install a jig or the like, it is possible to suppress the generation of spatter by an easy method by covering the joint portion with an annular nozzle, and the joint portion is thermally conductive welding. And the thermal diffusion bonding, the bonding area can be ensured.

まず、本発明の概略を主に円筒缶電池を例に説明する。
本発明の基本的な原理は、熱に弱い積層電極の中央部の僅かな空間をカテーテルのようにくぐり、円筒缶電池の様に底の深いテール部にノズル先端を当て、光ファイバ等を介し出射されたレーザ光を封じ込めて熱伝導型溶接ないし熱拡散接合することによりスパッタの発生を完全に封じ込める方式である。
First, the outline of the present invention will be described mainly using a cylindrical can battery as an example.
The basic principle of the present invention is that a slight space at the center of a laminated electrode that is vulnerable to heat is passed through like a catheter, and the tip of a nozzle is applied to a tail part at the bottom like a cylindrical can battery, via an optical fiber or the like. In this method, the generated laser beam is confined and the generation of spatter is completely confined by heat conduction welding or thermal diffusion bonding.

更に、電気自動車(EV)やハイブリッドカー(HEV)用途等、接合抵抗を減らす必要がある製品を接合する場合は、ノズル先端にも低輝度ロングパルスレーザをあてることにより予熱した後、高輝度短パルスに切り替え、ノズル押え部で重ね合わせた金属界面で熱拡散接合させると共に、レーザ直接照射面では熱伝導型溶接を行うことにより、スパッタを積層電極内に発生させずに高品質で安定した接合を実現するばかりでなく、接合面積を大きくしてEVやHEVに必要な大電流を流せるように、電池自体の性能を向上させることができる。   In addition, when joining products that require a reduction in joint resistance, such as for electric vehicles (EV) and hybrid cars (HEV), after preheating by applying a low-intensity long pulse laser to the nozzle tip, Switch to pulse, heat diffusion bonding at the metal interface overlapped by the nozzle holder, and heat conduction type welding on the laser direct irradiation surface, high quality and stable bonding without generating spatter in the laminated electrode In addition to realizing the above, the performance of the battery itself can be improved so that the junction area can be increased and a large current required for the EV or HEV can flow.

例えば、本発明に係わる接合方法は、レーザ光をほぼ平行に透過させる中空ツールの加圧部材の先端に先が尖ったノズルの環状面を設け、第2部材である鉄缶等の円筒缶内部のテール部に接触させて載置された第1部材である電極板にノズルの環状面を接触させ、環状面内部を通過するレーザ光で直接第1部材を加熱すると共に、先端の環状面は先が内側に開口が小さくなっている為、環状面にレーザ光があたり、レーザ光を一部吸収して発熱して伝熱で電極板を加熱と加圧で変形させて、第1部材である電極板と第2部材である円筒缶の内部テール部とを接合する。直接レーザ光が照射される面の反対面の接合界面ではレーザ溶接による熱伝導型溶接または熱拡散接合となり、周囲の加圧部では熱拡散接合され、接合態様および接合箇所が2重になっているので、キーホール型による接合に比べ、接合面積を大きくでき、大電流が必要なEVやHEV用電池の性能を大きく向上させることができる。   For example, in the joining method according to the present invention, an annular surface of a pointed nozzle is provided at the tip of a pressure member of a hollow tool that transmits laser light substantially in parallel, and the second member is a cylindrical can such as an iron can. The annular surface of the nozzle is brought into contact with the electrode plate, which is the first member placed in contact with the tail portion of the nozzle, and the first member is directly heated by the laser beam passing through the inside of the annular surface. Since the opening is small on the inside, the laser beam hits the annular surface, absorbs a part of the laser beam and generates heat to deform the electrode plate by heating and pressurizing by heat transfer. A certain electrode plate and the inner tail part of the cylindrical can which is the second member are joined. At the bonding interface opposite to the surface directly irradiated with laser light, heat conduction welding or heat diffusion bonding is performed by laser welding, and heat diffusion bonding is performed at the surrounding pressurizing portion, and the bonding mode and the bonding location are doubled. Therefore, compared to the keyhole type bonding, the bonding area can be increased, and the performance of EV and HEV batteries that require a large current can be greatly improved.

また、中空の加圧部材である中空ツール内でレーザ照射されるので、スパッタや金属粒子を中空の加圧部材内に閉じ込めることができ、周囲の積層電極内にこれらのスパッタや金属粒子が入りショートを起こす危険性をなくすことができ、極めて安全で信頼性が高い接合が実現できる。   Moreover, since laser irradiation is performed in a hollow tool that is a hollow pressure member, spatter and metal particles can be confined in the hollow pressure member, and these spatter and metal particles enter the surrounding laminated electrode. The risk of short-circuiting can be eliminated, and extremely safe and highly reliable bonding can be realized.

なお、加圧部材の先端はレーザを適度に吸収して発熱する中空のセラミックスを用いることにより耐摩耗性や耐久性が向上するので好ましい。
本発明に係わる他の接合方法としては、中空ツールで電極を加圧した状態で、第1部材である電極のレーザ照射面と、中空ツールの先端部のレーザ光部分吸収部を、低輝度でロングパルスである第1のレーザ光で電極が溶融直前の温度まで加熱しておき、1m秒から100m秒程度の高輝度で短パルスのレーザパワーに切り替えることにより、電極と円筒缶との接触面の融点を瞬時で超えて熱伝導型のレーザ溶接をさせることも可能である。また、中空ツール先端の加圧環状面の電極の反対面の接合界面では、融点に達していなくても加圧力により熱拡散接合ができる。
Note that the tip of the pressure member is preferable because the wear resistance and durability are improved by using hollow ceramics that generate heat by appropriately absorbing the laser.
As another joining method according to the present invention, the laser irradiation surface of the electrode as the first member and the laser beam partial absorption portion at the tip of the hollow tool are made low in luminance while the electrode is pressurized with the hollow tool. The contact surface between the electrode and the cylindrical can is heated by the first laser beam that is a long pulse to the temperature immediately before melting, and is switched to a high intensity and short pulse laser power of about 1 to 100 milliseconds. It is also possible to carry out heat conduction type laser welding by instantaneously exceeding the melting point. Further, at the bonding interface of the pressure annular surface at the tip of the hollow tool opposite to the electrode, thermal diffusion bonding can be performed by applying pressure even if the melting point is not reached.

こうして2重の大きな面積の電極接合ができるので、EVやHEV用として大電流が流せる高品質な高性能電池を提供することができる。
また、中空ツールの先端加圧部に菊座の様な複数の凹凸部を設けることにより、本接合方式で接合された電極は回転モーメントに対して強い接合が実現できるので振動等に強い信頼性の高い電池を提供することができる。
In this way, since double electrode joining with a large area can be performed, a high-quality high-performance battery capable of flowing a large current can be provided for EV and HEV.
In addition, by providing multiple concave and convex portions such as chrysanthemum on the tip pressurizing part of the hollow tool, the electrodes joined by this joining method can realize strong joints against rotational moments, so that they are highly resistant to vibrations, etc. High battery can be provided.

また、中空ツール内に窒素等の酸化防止ガスやアルゴン等の不活性ガスを流しながら電極を加圧すると、加圧により密閉される直前までこれらのガスが流れていることにより、密閉された空間は極めて酸素含有量の低い状態となるため、接合箇所の酸化を防止することができる。よってニッケルメッキされた鉄製の円筒缶の電極接合では酸化不十分な鉄が表面にでないため、電池内の溶液での腐食を防止でき信頼性の高い電池を提供できる。   In addition, when an electrode is pressurized while flowing an antioxidant gas such as nitrogen or an inert gas such as argon into the hollow tool, these gases flow until just before being sealed by the pressurization. Since the oxygen content is extremely low, oxidation at the joint can be prevented. Therefore, in the electrode joining of nickel plated iron cylindrical cans, insufficiently oxidized iron is not on the surface, so that corrosion in the solution in the battery can be prevented and a highly reliable battery can be provided.

また、中空ツール内のテーパ部まで光ファイバにてレーザ光を導波すると、中空ツールの曲がりの影響を受けずに、よりロバストな接合装置が実現できる。ここで光ファイバと中空ツールは円筒が作成し易いが、光ファイバをHカットする等により、レーザ照射面で対象な2つの空間からでてくる不活性ガスが衝突する構造にしておくことができ、より不活性ガス純度の高い状態となるのでニッケル電極とニッケルメッキされた鉄缶の接合部にニッケルで覆われた状態をしっかりと築くことができるので、電池内の溶液での腐食を防止でき信頼性の高い電池を提供できる。   Further, when laser light is guided by an optical fiber to the tapered portion in the hollow tool, a more robust joining device can be realized without being affected by the bending of the hollow tool. Here, an optical fiber and a hollow tool can be easily formed into a cylinder. However, the optical fiber can be made to collide with inert gas from the two target spaces on the laser irradiation surface by H-cutting etc. Since the inert gas purity is higher, it is possible to firmly build the nickel-covered state at the joint between the nickel electrode and the nickel-plated iron can, thus preventing corrosion of the solution in the battery. A battery with high reliability can be provided.

また、電極と円筒缶テールとの接合部の反対の面を予熱または同時加熱すると、より短時間で高い接合品質を得ることができる。
なお、レーザで裏面をアシスト加熱する場合は照射面で対象な2つの空間からでてくる不活性ガスが衝突する構造にしておくと、より不活性ガス純度の高い状態となるので円筒缶の表面はニッケルメッキダメージを無くせるので、外的腐食に強い信頼性の高い電池を提供できる。
Moreover, when the surface opposite to the joint portion between the electrode and the cylindrical can tail is preheated or simultaneously heated, a high joint quality can be obtained in a shorter time.
In addition, when the back surface is assisted heated with a laser, the inert gas purity will be higher if the inert gas from the two target spaces collides with the irradiated surface. Can eliminate nickel plating damage and can provide a highly reliable battery resistant to external corrosion.

さらに、前記接合方法で接合することにより、第2部材である円筒缶の中には積層電極が内蔵されていて、円筒缶の中心軸には、積層電極が無い空間になっていて、積層電極に接続された電極と、円筒缶の底部が2重の接合痕がある電池を形成することができ、通常の抵抗溶接より接合面積が広い為、EVやHEV用として大電流が流せる高品質な高性能電池を提供することができる。   Furthermore, by joining by the said joining method, the laminated electrode is incorporated in the cylindrical can which is a 2nd member, and the center axis | shaft of a cylindrical can is a space without a laminated electrode, and a laminated electrode A battery with double joint marks on the bottom of the cylindrical can and the cylindrical can can be formed, and since the joint area is larger than that of normal resistance welding, high quality can be used for EV and HEV. A high-performance battery can be provided.

以下、本発明の接合方法および電池について、円筒缶電池の底部に電極を溶接する場合を例に図1〜図9を用いて詳細に説明する。
図1は本発明の接合方法の工程を説明する断面図、図2は本発明の中空ツールの構成例を示す図、図3は本発明の環状ノズルの構成例を示す図、図4は本発明のレーザパルスを制御する接合方法を説明する図、図5は本発明のレーザパルスを制御する接合方法を説明するレーザパワー遷移図、図6は本発明の環状ノズルの先端に凹凸を形成する場合の構成例を示す図、図8は本発明の接合形状を説明する概略底面図、図9は本発明の接合形状例を示す概略底面図である。
Hereinafter, the joining method and battery of the present invention will be described in detail with reference to FIGS. 1 to 9 by taking as an example the case of welding an electrode to the bottom of a cylindrical can battery.
FIG. 1 is a cross-sectional view illustrating the steps of the joining method of the present invention, FIG. 2 is a diagram illustrating a configuration example of a hollow tool of the present invention, FIG. 3 is a diagram illustrating a configuration example of an annular nozzle of the present invention, and FIG. FIG. 5 is a laser power transition diagram for explaining a joining method for controlling a laser pulse according to the present invention, and FIG. 6 is for forming an unevenness at the tip of an annular nozzle according to the present invention. FIG. 8 is a schematic bottom view illustrating the joint shape of the present invention, and FIG. 9 is a schematic bottom view illustrating the joint shape example of the present invention.

まず、図1を用いて本発明の接合工程を時系列に説明する。ここでは、レーザ光として同輝度を維持する矩形波を用いた場合を例に説明する。
以下の説明においては、円筒缶電池の内部底面である円筒缶テール部6に電極7を溶接する際に、円筒缶電池の積層電極の隙間から中空ツール2を挿入し、環状ノズル3を円筒缶テール部6上に載置した電極7に接触させ、中空ツール2を介してレーザ光1を電極7に照射することによって、円筒缶テール部6に電極7を接合する方法を例に説明する。
First, the joining process of the present invention will be described in time series with reference to FIG. Here, a case where a rectangular wave that maintains the same luminance is used as the laser light will be described as an example.
In the following description, when welding the electrode 7 to the cylindrical can tail portion 6 which is the inner bottom surface of the cylindrical can battery, the hollow tool 2 is inserted through the gap between the stacked electrodes of the cylindrical can battery, and the annular nozzle 3 is connected to the cylindrical can. A method for joining the electrode 7 to the cylindrical can tail portion 6 by contacting the electrode 7 placed on the tail portion 6 and irradiating the electrode 7 with the laser beam 1 through the hollow tool 2 will be described as an example.

図1(a)に示すように、レーザ光1をほぼ平行で透過させる中空ツール2に設けられた先が尖った環状ノズル3は、中空部分の内壁が内側に狭まるようにテーパを施した形状であり、レーザ光1の内の環状ノズル3に直接照射される一部のレーザ光4によって加熱される。円筒缶テール部6上に電極7を載置しておき、中空ツール2の内部を流れている不活性ガス8が電極7の電極表面9に吹きつけられている。なお、実際のレーザ照射は中空ツール2が電極7に接触あるいは加圧された後に行われる。   As shown in FIG. 1A, the pointed annular nozzle 3 provided in the hollow tool 2 that transmits the laser light 1 in parallel is tapered so that the inner wall of the hollow portion is narrowed inward. The laser beam 4 is heated by a part of the laser beam 4 that is directly irradiated onto the annular nozzle 3. An electrode 7 is placed on the cylindrical can tail portion 6, and an inert gas 8 flowing inside the hollow tool 2 is blown onto the electrode surface 9 of the electrode 7. In addition, actual laser irradiation is performed after the hollow tool 2 contacts or pressurizes the electrode 7.

また、円筒缶テール部6を低熱伝導性の支持台10で支持し、不活性ガス8がカウンタブローで吹きつけられる加圧部の反対側の面12に、さらにアシストレーザ光13を照射し、円筒缶テール部6を予熱ないしアシスト加熱しても良い。アシスト加熱する場合は、不活性ガスによる酸化を抑制できるため、円筒缶テール部6の裏表面のニッケルメッキダメージを無くせるので、外的腐食に強い信頼性の高い電池を提供できる。   Further, the cylindrical can tail portion 6 is supported by a support base 10 having low thermal conductivity, and the assist laser beam 13 is further irradiated to the surface 12 on the opposite side of the pressurizing portion to which the inert gas 8 is blown by counter blow, The cylindrical can tail portion 6 may be preheated or assisted heated. In the case of assist heating, since oxidation due to an inert gas can be suppressed, nickel plating damage on the back surface of the cylindrical can tail portion 6 can be eliminated, so that a highly reliable battery resistant to external corrosion can be provided.

図1(b)は中空ツール2の環状ノズル3が電極7に接触した状態であり、接触部5は、電極7が環状ノズル3で囲まれて密閉状態になり高純度な不活性ガス雰囲気になる。
図1(c)は加圧状態でレーザ光1を照射し続けて、電極7から円筒缶テール部6にわたり溶融部14が形成された状態を示す。この時中空ツール2の先端の環状ノズル3で加圧された電極7の環状面15の反対面は中空ツール2の環状ノズル3がレーザ光4により加熱されるため、環状ノズル3による加圧と加熱により接合されて熱拡散接合部16が形成される。
FIG. 1B shows a state in which the annular nozzle 3 of the hollow tool 2 is in contact with the electrode 7, and the contact portion 5 is sealed with the electrode 7 surrounded by the annular nozzle 3, resulting in a high purity inert gas atmosphere. Become.
FIG. 1C shows a state in which the melted portion 14 is formed from the electrode 7 to the cylindrical can tail portion 6 by continuously irradiating the laser beam 1 in a pressurized state. At this time, since the annular nozzle 3 of the hollow tool 2 is heated by the laser beam 4 on the surface opposite to the annular surface 15 of the electrode 7 pressurized by the annular nozzle 3 at the tip of the hollow tool 2, The heat diffusion bonding part 16 is formed by bonding by heating.

図1(d)は、レーザ照射を終えて中空ツール2と電極7とを分離した状態を示しており、溶融固化部17と熱拡散接合部16とで円筒缶テール部6と電極7とが接合されている。なお、中空ツール2の加熱と加圧によりくぼみ等の変形19が観察されることがある。   FIG. 1D shows a state where the laser irradiation is finished and the hollow tool 2 and the electrode 7 are separated from each other, and the cylindrical can tail portion 6 and the electrode 7 are formed by the melt-solidified portion 17 and the thermal diffusion bonding portion 16. It is joined. Note that deformation 19 such as a depression may be observed due to heating and pressurization of the hollow tool 2.

図2(a)は、中空ツール2の形態例を示す断面図である。この形態例では、中空ツール2の導波路が光ファイバ21で構成され、コア23を通ってレーザ光が照射される。光ファイバ21の内部は、コア23の周辺の一部に中空部を設け、Nガス26が通過するようにしている。例えば、中空部は、コア23を挟んで対向する光ファイバ21の周辺の一部を切断面が互いに平行となるように2箇所でHカットされてなる。そして、Hカットされた部分である中空部をNガス26が通過する構成にしている。このように、中空ツール2を光ファイバ21を用いて形成した場合でも、中空部を形成することによりNガス26等を供給しながら接合することができる。 FIG. 2A is a cross-sectional view illustrating a form example of the hollow tool 2. In this embodiment, the waveguide of the hollow tool 2 is constituted by the optical fiber 21 and the laser beam is irradiated through the core 23. Inside the optical fiber 21, a hollow portion is provided in a part of the periphery of the core 23 so that the N 2 gas 26 can pass therethrough. For example, the hollow portion is formed by H-cutting a part of the periphery of the optical fiber 21 facing each other with the core 23 therebetween so that the cut surfaces are parallel to each other. Then, has a hollow portion is H cut portion to the configuration N 2 gas 26 is passed. Thus, even when the hollow tool 2 is formed using the optical fiber 21, it can be joined while supplying the N 2 gas 26 and the like by forming the hollow portion.

図2(b)は中空ツール2の別の形態例を示す側面図である。
中空ツール2の先端にレーザ光の吸収率の高いSiC等の耐熱セラミックス製のノズル20を高温用接着材18で接着していて、中空ツール2の内部には高温耐熱の光ファイバ21がテーパ部22まで挿入されている。この光ファイバ21のコア23から出射されるレーザ光の内、直接電極7を加熱する直接加熱ビーム24とノズル20の筒の内壁を加熱し、伝熱で電極7を間接的に加熱するビーム25で電極7が加熱されている。
FIG. 2B is a side view showing another embodiment of the hollow tool 2.
A nozzle 20 made of heat-resistant ceramics such as SiC having a high laser light absorption rate is bonded to the tip of the hollow tool 2 with a high-temperature adhesive 18, and a high-temperature heat-resistant optical fiber 21 is tapered inside the hollow tool 2. Up to 22 are inserted. Of the laser light emitted from the core 23 of the optical fiber 21, a direct heating beam 24 for directly heating the electrode 7 and a beam 25 for heating the inner wall of the cylinder of the nozzle 20 and indirectly heating the electrode 7 by heat transfer. The electrode 7 is heated.

さらに、図2(b)に示すように、ノズル20として、耐熱性が高くレーザ光を部分吸収して電極7を融点近くまで加熱でき、同時に導電性を有する銅タングステンのような導電性金属を用いた場合は、ノズル20で加圧する時に、銅などの通電性の支持台10とステンレスや銅等の中空ツール間に電圧27をかけて接触抵抗による熱で加熱アシストしても良い。   Further, as shown in FIG. 2B, as the nozzle 20, a conductive metal such as copper tungsten having high heat resistance and partially absorbing the laser beam to heat the electrode 7 to near the melting point and having conductivity at the same time. When used, when pressure is applied by the nozzle 20, heating assist may be performed by applying a voltage 27 between the conductive support base 10 such as copper and a hollow tool such as stainless steel or copper and by heat due to contact resistance.

図3はさらに別形態の実施例の側面図であり、中空ツール2の先端に環状ノズルとしてBN等の耐熱・レーザ光透過性セラミックスでできたノズル31を取り付け、ノズル31にレーザ光を集光する凸レンズ30を設けることにより、光ファイバ21のコア部23から出射したレーザ光32を集光ビーム33にしてNiや銅、アルミ等の電極7をより効率的に加熱溶融させる。   FIG. 3 is a side view of another embodiment of the present invention. A nozzle 31 made of a heat-resistant / laser light transmissive ceramic such as BN is attached to the tip of the hollow tool 2 as an annular nozzle, and the laser beam is focused on the nozzle 31. By providing the convex lens 30, the laser beam 32 emitted from the core portion 23 of the optical fiber 21 is converted into a condensed beam 33 to heat and melt the electrode 7 made of Ni, copper, aluminum or the like more efficiently.

なお、このレーザ光透過性セラミックノズル31は部分的にレーザ光32を吸収して電極7の融点近傍まで高温に加熱されるため、中空ツール2で加圧することにより、電極7と円筒缶テール部6を熱拡散接合することができる。   The laser light transmitting ceramic nozzle 31 partially absorbs the laser light 32 and is heated to a high temperature up to the vicinity of the melting point of the electrode 7. 6 can be heat diffusion bonded.

次に、図4,図5を用いて接合方法の例を示す。
図4はレーザパワーP(W)の波形制御により、より効果的に接合できる過程を示す。
図4はノズル20で電極7を加圧した状態を示し、図5はノズル20を介して照射するレーザ光1のレーザパワーの時間遷移を示す。
Next, an example of a bonding method will be described with reference to FIGS.
FIG. 4 shows a process in which bonding can be performed more effectively by controlling the waveform of the laser power P (W).
FIG. 4 shows a state in which the electrode 7 is pressurized by the nozzle 20, and FIG. 5 shows a time transition of the laser power of the laser light 1 irradiated through the nozzle 20.

電極7のレーザ照射面40と、ノズル20の先端部のレーザ光部分吸収部41には、まず、図5に示す低輝度のレーザパワーP1でロングパルスである第1のレーザ光46を照射し、電極7のレーザ照射面40の加熱部42と円筒缶の伝熱部43を溶融直前の温度まで時間t1をかけて予熱する。この時、ノズル20の先端部で加圧されている加圧電極部44は、レーザ光1で加熱されたノズル先端にあるレーザ光部分吸収部41からの伝熱で融点近くまで同じ時間t1をかけて温度上昇される。   First, the laser irradiation surface 40 of the electrode 7 and the laser beam partial absorption unit 41 at the tip of the nozzle 20 are irradiated with a first laser beam 46 that is a long pulse with a low-intensity laser power P1 shown in FIG. The heating part 42 of the laser irradiation surface 40 of the electrode 7 and the heat transfer part 43 of the cylindrical can are preheated to a temperature just before melting over time t1. At this time, the pressurizing electrode portion 44 pressurized at the tip end of the nozzle 20 has the same time t1 to near the melting point by heat transfer from the laser beam partial absorption portion 41 at the tip of the nozzle heated by the laser beam 1. The temperature rises over time.

次に、数m秒程度の短時間t2で第1のレーザ光46より波長の短い高輝度のレーザパワーP2の第2のレーザ光47に切り替えることにより、電極7において、電極7と円筒缶テール部6との接触面にある加熱部42と伝熱部43は、電極7の形成材料の融点を超えて沸点を超えない温度で液状化し、電極7と円筒缶テール部6とが熱伝導型のレーザ溶接がなされる。その際、中空ツール先端部で加圧されている加圧電極部44の反対面の接合界面45では、電極7が電極7の形成材料の融点以下の温度で軟化し、加圧力により電極7と円筒缶テール部6とが熱拡散接合される。   Next, in the electrode 7, the electrode 7 and the cylindrical can tail are switched by switching to the second laser light 47 having a high-intensity laser power P 2 having a shorter wavelength than the first laser light 46 in a short time t 2 of about several milliseconds. The heating part 42 and the heat transfer part 43 on the contact surface with the part 6 are liquefied at a temperature exceeding the melting point of the forming material of the electrode 7 and not exceeding the boiling point, and the electrode 7 and the cylindrical can tail part 6 are of the heat conduction type. Laser welding is performed. At that time, the electrode 7 softens at a temperature equal to or lower than the melting point of the forming material of the electrode 7 at the bonding interface 45 on the opposite surface of the pressing electrode portion 44 that is pressed by the tip of the hollow tool. The cylindrical can tail portion 6 is heat diffusion bonded.

このように、照射するレーザ光1のレーザパワーを制御することにより、あらかじめ低輝度のレーザ光46で接合箇所を予熱させておくことにより、実際の接合を高輝度レーザ光で瞬時に行うことができると共に、熱伝導型溶接と熱拡散接合との2重の大きな面積の電極接合ができるので、EVやHEV用として大電流を流すことのできる高品質な高性能電池を提供することができる。   In this way, by controlling the laser power of the laser beam 1 to be irradiated and preheating the bonding portion with the low-intensity laser beam 46 in advance, the actual bonding can be performed instantaneously with the high-intensity laser beam. In addition, since it is possible to perform double-area electrode joining of heat conduction type welding and thermal diffusion joining, it is possible to provide a high-quality high-performance battery capable of flowing a large current for EV and HEV.

次に、環状ノズルの先端の構成例について図6を用いて説明する。
図6は第1の実施例の接合方法において、加圧部を凸凹にして回転モーメントに対して強い接合を実現した例を示す。
Next, a configuration example of the tip of the annular nozzle will be described with reference to FIG.
FIG. 6 shows an example in which, in the joining method according to the first embodiment, the pressurizing portion is made uneven to realize strong joining against the rotational moment.

図6(a)に側面図、図6(b)に底から見た図を示し、中空ツール2の先端加圧部60を菊座の様な複数の凹凸を有する構成に加工している。つまり、環状ノズルの電極7と接触する先端加圧部60に1または複数の凹凸を形成する構成を例示している。   FIG. 6A shows a side view and FIG. 6B shows a view from the bottom, and the tip pressurizing portion 60 of the hollow tool 2 is processed into a structure having a plurality of irregularities such as a chrysanthemum. That is, the structure which forms one or several unevenness | corrugations in the front-end | tip pressurization part 60 which contacts the electrode 7 of a cyclic | annular nozzle is illustrated.

図6(c)は先端加圧部60で接合した電極7の上面図である。くぼみ部61は先端加圧部60に形成された凸部で加圧されることによって形成された接合部表面外観であり、接合界面63は熱拡散接合される。平面部62は凹部で加圧された部位である。   FIG. 6C is a top view of the electrode 7 joined by the tip pressurizing unit 60. The indented portion 61 is a bonded portion surface appearance formed by pressurizing with a convex portion formed in the tip pressurizing portion 60, and the bonding interface 63 is heat diffusion bonded. The flat portion 62 is a portion pressurized by the concave portion.

なお、先端加圧部60の平面部62の反対側の接合界面63は必ずしも全ては熱拡散接合されていなくても溶接と2重の接合原理で接合されている為、信頼性の高い接合を実現している。   It should be noted that the bonding interface 63 on the opposite side of the flat surface portion 62 of the tip pressurizing unit 60 is not necessarily heat diffusion bonded, but is bonded by welding and a double bonding principle, so that highly reliable bonding is achieved. Realized.

また、平面部62と電極7の間には接合終了まで隙間があった方が良い場合がある。その場合とは、電極7のレーザ照射面である溶融部14から発生する金属蒸気64が流速の無い閉鎖空間では、金属蒸気64の自由分子運動で拡散するため、中空ツール2内に光ファイバ21や、セラミックレンズ機能を備えたノズル先端部31(図3参照)に金属蒸気64が付着することがあるとレーザ透過率が低下するが、その付着防止に有効であるからである。即ち、図2のようにノズル先端20を完全に電極7に押し当てて、完全に閉じてしまうとNガスやアルゴンガス雰囲気ではあるが、流速が無くなる為、気化した金属蒸気64が自由分子運動で拡散し、光ファイバ21のコア23からの出口65に付着して、出口65にダメージを起こすことがある。 In addition, there may be a case where there is a gap between the flat portion 62 and the electrode 7 until the end of bonding. In this case, the metal vapor 64 generated from the melted portion 14 that is the laser irradiation surface of the electrode 7 diffuses by the free molecular motion of the metal vapor 64 in a closed space where there is no flow velocity. If the metal vapor 64 adheres to the nozzle tip 31 (see FIG. 3) having a ceramic lens function, the laser transmittance decreases, but this is effective in preventing the adhesion. That is, as shown in FIG. 2, when the nozzle tip 20 is completely pressed against the electrode 7 and completely closed, the atmosphere is N 2 gas or argon gas atmosphere, but since the flow velocity is lost, the vaporized metal vapor 64 is free molecules. It may diffuse due to movement and adhere to the outlet 65 from the core 23 of the optical fiber 21, causing damage to the outlet 65.

これに対して、上記のように先端加圧部60に凹凸を形成し、先端加圧部60の内壁から外壁にわたって溝を形成することにより、凹凸の凸部を電極7に加圧接触させながら、溝となる凹部の底を電極7から離間させることも可能となるため、平面部62と電極7の間に形成される僅かな隙間66から、高圧・低流量の不活性ガス67が接合中も流れ出るようにすることができ、出口65への金属蒸気64の付着を防止して、ダメージを防ぎ、安定した高品質の接合を維持することができる。   On the other hand, as described above, irregularities are formed in the tip pressurizing portion 60, and grooves are formed from the inner wall to the outer wall of the tip pressurizing portion 60, so that the convex and concave portions of the irregularities are brought into pressure contact with the electrode 7. Since the bottom of the recess that becomes the groove can be separated from the electrode 7, the inert gas 67 having a high pressure and a low flow rate is being joined from the slight gap 66 formed between the flat portion 62 and the electrode 7. The metal vapor 64 can be prevented from adhering to the outlet 65, damage can be prevented, and stable high-quality bonding can be maintained.

また、本接合方式で接合された電極7は、くぼみ部61が接合箇所にアンカー効果をもたらせ、円筒缶回転モーメントに強い接合が実現できるので、振動等に強い信頼性の高い電池を提供することができる。   In addition, the electrode 7 joined by this joining method can provide a highly reliable battery that is resistant to vibration and the like because the indentation portion 61 can provide an anchor effect at the joining location and can realize a strong joint against the rotating moment of the cylindrical can. can do.

そして、中空ツール2内に不活性ガス8を流しながら電極7を加圧すると、これらの不活性ガス8が流れていることにより、密閉された空間は極めて酸素含有量の低い状態となり酸化を防止できる。よってニッケルメッキされた鉄製の円筒缶テール部6の電極接合では酸化不十分な鉄が表面にでないため、電池内の溶液での腐食を防止でき信頼性の高い電池を提供できる。   When the electrode 7 is pressurized while flowing the inert gas 8 into the hollow tool 2, the inert gas 8 flows, so that the sealed space becomes extremely low in oxygen content and prevents oxidation. it can. Therefore, in the electrode joining of the nickel-plated iron cylindrical can tail portion 6, iron that is not sufficiently oxidized is not on the surface, so that corrosion by the solution in the battery can be prevented and a highly reliable battery can be provided.

本発明の接合方法を用いて形成した電池の構成について、図7〜図10を用いて説明する。
図7に本発明の接合方法で接合された接合体の1実施例として電池の構造を示す。
A structure of a battery formed by using the bonding method of the present invention will be described with reference to FIGS.
FIG. 7 shows the structure of a battery as one embodiment of a joined body joined by the joining method of the present invention.

本発明の電池は、円筒缶76の中に積層電極70が内蔵されており、円筒缶76の中心軸71近傍では積層電極70が無い空間が形成される構造である。図8は円筒缶76の底部72から積層電極70に接続された電極7を除去した概念図であり、溶融部75とドーナッツ型熱拡散接合部73の2重の接合痕がある電池である。なお図9に別の2重の接合痕を示す。これは図6で示した凸凹が形成されたノズル先端形状によって作られ、溶融部75と凹型熱拡散接合部74とが形成されている。   The battery of the present invention has a structure in which a laminated electrode 70 is built in a cylindrical can 76 and a space without the laminated electrode 70 is formed in the vicinity of the central axis 71 of the cylindrical can 76. FIG. 8 is a conceptual diagram in which the electrode 7 connected to the laminated electrode 70 is removed from the bottom 72 of the cylindrical can 76, and is a battery having double joint marks of a melting portion 75 and a donut-type heat diffusion joint portion 73. FIG. 9 shows another double joint mark. This is made by the shape of the nozzle tip formed with the unevenness shown in FIG. 6, and the melting portion 75 and the concave heat diffusion joining portion 74 are formed.

これらの接合体は通常の抵抗溶接より接合面積が広い為、EVやHEV用として大電流が流せる高品質な高性能電池を提供することができる。
上記においては、円筒缶電池のテール接合をカテーテルの様なレーザ導波管を差し込んで加圧して接合する実施例で説明したが、同様なテール接合する形状であれば、電池に限らず金属や非金属がガラスや樹脂等材料を選ばずに加圧接合や熱接合できることは自明である。
Since these joined bodies have a larger joining area than ordinary resistance welding, it is possible to provide a high-quality high-performance battery capable of flowing a large current for EVs and HEVs.
In the above description, the tail joint of the cylindrical can battery has been described in the embodiment in which a laser waveguide such as a catheter is inserted and pressed to join the battery, but a similar tail joint shape is not limited to the battery. It is obvious that non-metals can be pressure bonded or thermally bonded without selecting a material such as glass or resin.

例えば、原子炉のような長い配管にもカテーテルのように入り込み、光ファイバでレーザエネルギーを供給して、補強板を接合することもできる。
また円筒缶に限らず、深絞りケースの内面テール部に電極や他の部品を加圧と加熱して接合することもできる。
For example, a reinforcing plate can be joined by entering a long pipe such as a nuclear reactor like a catheter and supplying laser energy with an optical fiber.
Moreover, not only a cylindrical can but an electrode and another component can also be joined to the inner surface tail part of a deep drawing case by pressurization and heating.

また、電極やケースにロウ材を塗っておいて加圧と加熱で接合できることも自明である。例えば、リチウム電池のアルミ缶底部にNiリードを接合する際に、あらかじめアルミ缶底部とNiリードとの間にアルミロウ材を塗っておき、その状態で加圧,加熱することによりアルミ缶底部とNiリードとを接合することができる。   It is also obvious that a brazing material can be applied to the electrodes and case and bonded by pressing and heating. For example, when joining a Ni lead to the bottom of an aluminum can of a lithium battery, an aluminum brazing material is applied in advance between the bottom of the aluminum can and the Ni lead, and the aluminum can bottom and the Ni are pressed and heated in that state. Leads can be joined.

なお、他の銅箔等の積層箔電極にも有効である。
ここで、上記に例示した各実施例は互いに組み合わせて用いることも可能である。
It is also effective for other laminated foil electrodes such as copper foil.
Here, the embodiments illustrated above can also be used in combination with each other.

本発明は、治具等の設置が困難な場所を溶接する場合であっても、容易な方法でスパッタの発生を抑制すると共に、接合面積を確保することができ、治具の設置が困難な箇所にて接合を行う接合装置および接合方法ならびにそれを用いた電池等に関する。   Even when welding a place where it is difficult to install a jig or the like, the present invention can suppress the generation of spatter by an easy method and can secure a bonding area, which makes it difficult to install the jig. The present invention relates to a bonding apparatus and a bonding method for bonding at a location, a battery using the same, and the like.

1・・・レーザ光
2・・・中空ツール
3・・・環状ノズル
4・・・一部のレーザ光
5・・・接触部
6・・・円筒缶テール部
7・・・電極
8・・・不活性ガス
9・・・電極表面
10・・・支持台
12・・・加圧部の反対の面
13・・・アシストレーザ光
14・・・溶融部
15・・・環状面
16・・・熱拡散接合部
17・・・溶融固化部
18・・・高温接着剤
19・・・くぼみ変形部
20・・・ノズル
21・・・光ファイバ
22・・・テーパ部
23・・・コア
24・・・直接加熱ビーム
25・・・間接加熱ビーム
26・・・Nガス
27・・・電圧
30・・・凸レンズ
31・・・ノズル
32・・・レーザ光
33・・・集光ビーム
40・・・レーザ照射面
41・・・レーザ光部分吸収部
42・・・加熱部
43・・・伝熱部
44・・・加圧電極部
45・・・接合界面
46・・・第1のレーザ光
47・・・第2のレーザ光
60・・・先端加圧部
61・・・くぼみ部
62・・・平面部
63・・・接合界面
64・・・金属蒸気
65・・・出口
66・・・隙間
67・・・高圧・低流量の不活性ガス
70・・・積層電極
71・・・中心軸
72・・・円筒缶の底部
73・・・ドーナッツ型熱拡散接合部
74・・・凹型熱拡散接合部
75・・・溶融部
76・・・円筒缶
80・・・積層箔電極
81・・・大電流電源
82・・・部分溶融部
91a・・・金属片
93・・・金属片
DESCRIPTION OF SYMBOLS 1 ... Laser beam 2 ... Hollow tool 3 ... Ring nozzle 4 ... Part of laser beam 5 ... Contact part 6 ... Cylindrical can tail part 7 ... Electrode 8 ... Inert gas 9 ... electrode surface 10 ... support base 12 ... surface opposite to pressurizing part 13 ... assist laser beam 14 ... melting part 15 ... annular surface 16 ... heat Diffusion bonding part 17 ... Melt solidification part 18 ... High temperature adhesive 19 ... Depression deformation part 20 ... Nozzle 21 ... Optical fiber 22 ... Tapered part 23 ... Core 24 ... direct heating beam 25 ... indirect heating beam 26 ... N 2 gas 27 ... voltage 30 ... lens 31 ... nozzle 32 ... laser beam 33 ... focused beam 40 ... laser Irradiation surface 41 ... Laser light partial absorption part 42 ... Heating part 43 ... Heat transfer part DESCRIPTION OF SYMBOLS 4 ... Pressure electrode part 45 ... Bonding interface 46 ... 1st laser beam 47 ... 2nd laser beam 60 ... Tip pressurizing part 61 ... Recessed part 62 ... Flat part 63 ... Bonding interface 64 ... Metal vapor 65 ... Outlet 66 ... Gap 67 ... High pressure / low flow inert gas 70 ... Multilayer electrode 71 ... Central axis 72 ..Bottom of cylindrical can 73 ... Doughnut type heat diffusion bonding part 74 ... Concave heat diffusion bonding part 75 ... Melting part 76 ... Cylinder can 80 ... Laminated foil electrode 81 ... High current Power source 82... Partial melting portion 91 a. Metal piece 93.

Claims (5)

レーザ光の導波路を備える中空ツールと、前記中空ツールの先端に設けられて内壁が内向きのテーパ形状である中空の環状ノズルとからなる接合装置を用いて導電性の支持台に支持される接合対象を接合する接合方法であって、
前記環状ノズルの先端を前記接合対象に圧接させる圧接工程と、
前記支持台と前記中空ツールとの間に電圧をかけて接触抵抗による熱で加熱アシストする工程と、
前記中空ツールを介して前記環状ノズルから前記接合対象に第1のレーザパワーの第1のレーザ光を照射することにより前記接合対象を加熱する第1の照射工程と、
前記第1のパワーよりパワーが大きく、前記第1のレーザ光より波長の短い第2のレーザ光を前記環状ノズルから前記接合対象に照射することにより前記接合対象を接合する第2の照射工程と
を有し、前記レーザ光が直接照射される箇所を熱伝導型溶接し、前記環状ノズルの内壁に前記レーザ光が照射されて前記環状ノズルが加熱されることにより、前記接合対象の前記環状ノズルが接する部分を熱拡散接合することを特徴とする接合方法。
It is supported on a conductive support using a joining device comprising a hollow tool having a laser beam waveguide and a hollow annular nozzle provided at the tip of the hollow tool and having an inner wall with an inward taper shape. A joining method for joining objects to be joined,
A pressure-contacting step of pressing the tip of the annular nozzle against the object to be joined;
Applying a voltage between the support and the hollow tool to assist heating with heat due to contact resistance;
A first irradiation step of heating the joining object by irradiating the joining object with a first laser beam having a first laser power from the annular nozzle through the hollow tool;
A second irradiation step of bonding the bonding target by irradiating the bonding target from the annular nozzle with a second laser beam having a power larger than the first power and a wavelength shorter than that of the first laser beam; The portion to be directly irradiated with the laser beam is heat conduction welded, and the annular nozzle is heated by irradiating the inner wall of the annular nozzle with the laser beam, thereby the annular nozzle to be joined A bonding method characterized by heat diffusion bonding a portion that contacts.
前記第2のレーザ光の照射により、前記接合対象の前記第2のレーザ光が直接照射される箇所が前記接合対象の融点以上沸点以下の温度で液状化され、前記接合対象の前記環状ノズルが接する部分が前記接合対象の融点以下の温度で軟化されることを特徴とする請求項1記載の接合方法。   Due to the irradiation of the second laser light, the portion to which the second laser light of the bonding target is directly irradiated is liquefied at a temperature not lower than the melting point of the bonding target and not higher than the boiling point, and the annular nozzle of the bonding target is The joining method according to claim 1, wherein the contacting portion is softened at a temperature equal to or lower than the melting point of the joining object. 前記照射工程中に、前記接合対象に不活性ガスを流すことを特徴とする請求項1または請求項2のいずれかに記載の接合方法。   The joining method according to claim 1, wherein an inert gas is allowed to flow through the joining target during the irradiation step. 前記照射工程中に、前記接合対象の前記環状ノズルが圧接される面の裏面を加熱することを特徴とする請求項1〜請求項3のいずれかに記載の接合方法。   The joining method according to any one of claims 1 to 3, wherein a back surface of a surface to which the annular nozzle to be joined is pressed is heated during the irradiation step. 円筒缶と、
前記円筒缶内に内蔵される積層電極と、
前記円筒缶内に前記円筒缶底部を露出して形成される中空部と、
前記円筒缶底部に請求項1〜請求項4のいずれか1項に記載の接合方法で接合される電極と
を有することを特徴とする電池。
A cylindrical can,
A laminated electrode incorporated in the cylindrical can;
A hollow part formed by exposing the cylindrical can bottom in the cylindrical can;
It has an electrode joined by the joining method of any one of Claims 1-4 in the said cylindrical can bottom part, The battery characterized by the above-mentioned.
JP2011032695A 2010-05-13 2011-02-18 Joining method and battery Active JP5602050B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011032695A JP5602050B2 (en) 2010-05-13 2011-02-18 Joining method and battery
CN201110128783.8A CN102240849B (en) 2010-05-13 2011-05-11 Jointing method and battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010110701 2010-05-13
JP2010110701 2010-05-13
JP2011032695A JP5602050B2 (en) 2010-05-13 2011-02-18 Joining method and battery

Publications (2)

Publication Number Publication Date
JP2011255420A JP2011255420A (en) 2011-12-22
JP5602050B2 true JP5602050B2 (en) 2014-10-08

Family

ID=45472179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032695A Active JP5602050B2 (en) 2010-05-13 2011-02-18 Joining method and battery

Country Status (1)

Country Link
JP (1) JP5602050B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960144B2 (en) 2015-10-15 2018-05-01 Jtekt Corporation Method for heating a metal member, method for bonding heated metal members, and apparatus for heating a metal member
US10722979B2 (en) 2016-04-12 2020-07-28 Jtekt Corporation Bonding method and bonding device for metal member
TWI770826B (en) * 2020-02-19 2022-07-11 日商片岡製作所股份有限公司 Welding jigs and laser processing machines

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2851992B1 (en) * 2012-09-04 2016-12-21 Panasonic Intellectual Property Management Co., Ltd. Battery block and manufacturing method therefor
JP5860995B1 (en) * 2014-09-09 2016-02-16 株式会社ミヤタ Manufacturing method of pipe assembly
KR102155077B1 (en) * 2015-10-30 2020-09-11 주식회사 엘지화학 Laser Welding Device Including Focus Lens Having Wide Depth of Focus
CN108857067B (en) * 2018-07-25 2023-11-10 大连中比动力电池有限公司 Point bottom welding device and point bottom welding method for cylindrical steel shell lithium ion battery
JP7460046B2 (en) 2020-09-10 2024-04-02 エルジー エナジー ソリューション リミテッド Secondary battery welding method and welding device, and monitoring method and device for secondary battery welding process
WO2023063794A1 (en) * 2021-10-14 2023-04-20 주식회사 엘지에너지솔루션 Welding mask and welding method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341387U (en) * 1986-08-27 1988-03-18
JPH10146684A (en) * 1996-11-20 1998-06-02 Ishikawajima Harima Heavy Ind Co Ltd Laser beam irradiation equipment
DE10020820C2 (en) * 2000-04-28 2002-03-28 Astrium Gmbh Laser beam welding device and method for laser beam welding
JP2006224134A (en) * 2005-02-17 2006-08-31 Nissan Motor Co Ltd Structure, method, and equipment for joining different kind of metals by high energy beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960144B2 (en) 2015-10-15 2018-05-01 Jtekt Corporation Method for heating a metal member, method for bonding heated metal members, and apparatus for heating a metal member
US10722979B2 (en) 2016-04-12 2020-07-28 Jtekt Corporation Bonding method and bonding device for metal member
TWI770826B (en) * 2020-02-19 2022-07-11 日商片岡製作所股份有限公司 Welding jigs and laser processing machines

Also Published As

Publication number Publication date
JP2011255420A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5602050B2 (en) Joining method and battery
JP7392022B2 (en) Visible laser welding of electronic packaging, automotive electrical equipment, batteries, and other components
KR102473803B1 (en) Methods and systems for welding copper using blue laser
CN108465933B (en) Method and device for laser welding of foil and tab
JP6101513B2 (en) Metal foil lap joint method and joint structure
JP5612348B2 (en) Resistance welding structure, resistance welding method, welded member and manufacturing method thereof
CN102240849B (en) Jointing method and battery
TW201349622A (en) Manufacturing method of secondary battery, secondary battery, and welding device
JP2013143336A (en) Manufacturing method of packed electrode, packed electrode, secondary battery, and heat sealing device
JP4923313B2 (en) Sealed battery and manufacturing method thereof
TW202204075A (en) Laser welding stacked foils
CN113118624A (en) Double-layer tab and bus piece optical fiber laser welding method
JP2011067830A (en) Method of joining copper sheet and steel sheet by laser
JP2014136242A (en) Lap-welding method and welding structure
TWI307286B (en) Golf head and welding method thereof
CN113967787B (en) Laser welding method
JP2007222937A (en) Laser joining method
JP5491093B2 (en) Resistance welding equipment
JP2001093507A (en) Method of manufacturing battery
US20220281028A1 (en) Welding device and method for welding at least two components
Kim et al. Review on Ultrasonic and Laser Welding Technologies of Multi-Layer Thin Foils for the Lithium-Ion Pouch Cell Manufacturing
WO2022270595A1 (en) Welding method, metal laminate, electrical component, and electrical product
WO2023157809A1 (en) Laser welding method
CN117754133A (en) Laser welding method for multi-layer aluminum foil, battery, welding system and control device
JP2010131652A (en) Metallic foil joining method and capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R151 Written notification of patent or utility model registration

Ref document number: 5602050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151