JP2007222937A - Laser joining method - Google Patents

Laser joining method Download PDF

Info

Publication number
JP2007222937A
JP2007222937A JP2006050400A JP2006050400A JP2007222937A JP 2007222937 A JP2007222937 A JP 2007222937A JP 2006050400 A JP2006050400 A JP 2006050400A JP 2006050400 A JP2006050400 A JP 2006050400A JP 2007222937 A JP2007222937 A JP 2007222937A
Authority
JP
Japan
Prior art keywords
laser
upper plate
lower plate
joining method
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006050400A
Other languages
Japanese (ja)
Other versions
JP4739063B2 (en
Inventor
Hideo Nakamura
秀生 中村
Yasutaka Takeuchi
康恭 竹内
Koichi Hara
浩一 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Kogyo Co Ltd
Toyota Motor Corp
Original Assignee
Tokai Kogyo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Kogyo Co Ltd, Toyota Motor Corp filed Critical Tokai Kogyo Co Ltd
Priority to JP2006050400A priority Critical patent/JP4739063B2/en
Publication of JP2007222937A publication Critical patent/JP2007222937A/en
Application granted granted Critical
Publication of JP4739063B2 publication Critical patent/JP4739063B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser joining method where different kinds of metals having different laser reflectivities and thermal conductivities can be efficiently lap-welded in high quality. <P>SOLUTION: In the laser joining method where a lower plate 10 made of an iron based material and an upper plate 11 made of a copper based material having a laser reflectivity and a thermal conductivity higher than those of the iron based material are lapped, and a laser L is emitted from the side of the upper plate 11, so as to lap-weld both the plates, a recessed hole 12 is beforehand formed in the upper plate 11, the laser L is emitted in such a manner that an emission pattern is formed at the bottom of the recessed hole 12, and the thin part 12a at the bottom of the recessed hole 12 is concentrically heated and melted. Since the thin part 12 is heated and melted, the upper plate 11 can be efficiently heated and melted even without so increasing the energy density of the laser, thus the phenomenon of energy over on the side of the lower plate 10 is eliminated, pitting in the lower plate 10 is prevented, and further, the gasification of low boiling point components causing the generation of blow holes is suppressed as well. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、レーザにより上・下二枚の板体を重ね溶接するレーザ接合方法に係り、より詳しくは熱伝導率、レーザ反射率等の異なる異種材料からなる金属板同士の接合に向けて好適なレーザ接合方法に関する。   The present invention relates to a laser joining method in which two upper and lower plates are welded together by a laser, and more particularly suitable for joining metal plates made of different materials such as thermal conductivity and laser reflectance. The present invention relates to a laser joining method.

例えば、樹脂ハウジング内に電子回路(基板)を納めた半導体装置には、ハウジングとバスバーとを一体成形し、ハウジングから延出したバスバーの端部をハウジング内に配置された基板に重ねて接合するようにしたものがある(例えば、特許文献1参照)。このような半導体装置において、その基板とバスバーとの接合には種々の方法が用いられているが、最近では、接合強度のより一層の向上を図るため、基板上に鉄系材料からなるパッド(電極)を設けて、このパッドにバスバーをレーザ接合することが行われている。   For example, in a semiconductor device in which an electronic circuit (substrate) is housed in a resin housing, the housing and the bus bar are integrally formed, and the end portion of the bus bar extending from the housing is overlapped and bonded to the substrate disposed in the housing. There is something like that (see, for example, Patent Document 1). In such a semiconductor device, various methods are used for bonding the substrate and the bus bar. Recently, in order to further improve the bonding strength, a pad made of an iron-based material ( An electrode) is provided, and a bus bar is laser-bonded to this pad.

ところで、上記バスバーは、通常、純銅、真鍮等の銅系材料からなっており、上記した鉄系材料のパッドと比べると、レーザ反射率および熱伝導率が著しく高くなっている。このため、パッド上にバスバーを重ねてバスバー側からレーザを照射すると、上板となるバスバーの加熱溶融に非常に高いエネルギー密度のレーザが必要になり、設備の大型化および消費エネルギーの増大が避けられないようになる。また、バスバーの加熱溶融を促進するため、エネルギー密度を無理に高くすると、レーザがバスバーを貫通して下板となるパッドに到達すると同時に、エネルギーオーバーとなってパッドが過熱されてしまい、パッドに孔が明く現象が起きやすくなる。また、前記バッドのように下板が鉄系材料からなる場合は、下板に含まれる低沸点成分が激しくガス化し、ブローホールとして接合部に残り易くなる。   By the way, the bus bar is usually made of a copper-based material such as pure copper or brass, and has a significantly higher laser reflectivity and thermal conductivity than the iron-based material pad described above. For this reason, if a bus bar is placed on the pad and laser is irradiated from the bus bar side, a laser with a very high energy density is required for heating and melting the bus bar, which is the upper plate, avoiding an increase in equipment size and energy consumption. It becomes impossible. Also, if the energy density is forcibly increased to promote heating and melting of the bus bar, the laser reaches the lower pad through the bus bar, and at the same time the energy is over and the pad is overheated. The phenomenon that the holes are bright is likely to occur. Further, when the lower plate is made of an iron-based material as in the case of the bad, the low boiling point component contained in the lower plate is vigorously gasified and tends to remain as a blow hole at the joint.

そこで、上記したごとき異種材料からなる下板と上板とをレーザ接合する場合は、例えば、図8に示されるように、下板1に重ねる上板2に、予め小径の透孔(貫通孔)3を形成し、この貫通孔3を中心にレーザLを照射して、上板2の溶融を促進させることが試みられている(特許文献2の第8図参照)。しかし、レーザのエネルギーは、通常ガウシアン分布となって、その中心部が高エネルギー密度となっているので、前記したレーザ接合方法では、高エネルギー密度のレーザ中心部が、貫通孔3を透過して直接下板1に照射されることになり、上記したと同様に下板1側でエネルギーオーバーとなって、下板1に孔明きが発生しすくなる。   Therefore, when laser joining a lower plate and an upper plate made of different materials as described above, for example, as shown in FIG. 8, a small-diameter through-hole (through-hole) is previously formed in the upper plate 2 overlaid on the lower plate 1. ) 3 and an attempt is made to promote melting of the upper plate 2 by irradiating the laser L around the through hole 3 (see FIG. 8 of Patent Document 2). However, since the energy of the laser is usually Gaussian distribution and the central part has a high energy density, the laser central part having a high energy density is transmitted through the through hole 3 in the laser joining method described above. The lower plate 1 is directly irradiated, and as described above, the energy is over on the lower plate 1 side, so that the lower plate 1 is less likely to be perforated.

一方、上記した特許文献2には、図9に示されるように、上板2に比較的大径の透孔(貫通孔)3を形成して、この貫通孔3内に上板2と同質材料の小片4を複数入れ、貫通孔中心にその周辺を含めてレーザLを照射して、このレーザLを小片4の間隙を通して下板1も到達させて、上板2、小片4および下板1をバランスよく加熱溶融することが提案されている。しかし、このようなレーザ接合方法では、貫通孔3内に入れる小片4の大きさや個数を厳密に管理しないと、下板1に到達するレーザLの光量が増して下板1が過熱されしまい、下板1に孔明きが発生する危険がある。また、この場合は、貫通孔3に一様に小片5を入れる面倒な作業も必要になり、作業性の悪化も避けられない。   On the other hand, in Patent Document 2 described above, as shown in FIG. 9, a relatively large-diameter through hole (through hole) 3 is formed in the upper plate 2, and the same quality as the upper plate 2 is formed in the through hole 3. A plurality of small pieces 4 of material are put, and a laser L is irradiated to the center of the through hole including its periphery, and the lower plate 1 also reaches through the gap between the small pieces 4 so that the upper plate 2, the small piece 4 and the lower plate It has been proposed to heat and melt 1 in a well-balanced manner. However, in such a laser joining method, unless the size and the number of the small pieces 4 put in the through hole 3 are strictly managed, the amount of the laser L reaching the lower plate 1 increases and the lower plate 1 is overheated. There is a risk that perforation occurs in the lower plate 1. In this case, the troublesome work of putting the small pieces 5 uniformly in the through holes 3 is also necessary, and deterioration of workability is inevitable.

また、上記した特許文献2には、図10(a)に示されるように、レーザLを異形の凸レンズ5によりリング状の照射パターンに整形し、エネルギー密度の高いリング状部分を上板2に形成した透孔(貫通孔)3の周縁部に照射して、上板2および下板1をバランスよく加熱溶融することが提案されている。しかし、この場合は、高価な異形の凸レンズ5が必要になるため、装置にかかるコスト負担が大きくなる。また、このように孔の周縁部を加熱溶融する場合は、同図(b)に示されるように、融合部6の裏側に陰ができて下板1との融合が不十分になる虞があり、所望の接合強度を得るのが困難になる。   Further, in Patent Document 2 described above, as shown in FIG. 10A, the laser L is shaped into a ring-shaped irradiation pattern by the irregularly shaped convex lens 5, and a ring-shaped portion having a high energy density is formed on the upper plate 2. It has been proposed that the upper plate 2 and the lower plate 1 are heated and melted in a well-balanced manner by irradiating the peripheral portion of the formed through-hole (through-hole) 3. However, in this case, an expensive irregular-shaped convex lens 5 is required, and the cost burden on the apparatus is increased. Further, when the peripheral edge of the hole is heated and melted in this way, as shown in FIG. 5B, there is a possibility that the back side of the fusion part 6 is shaded and the fusion with the lower plate 1 becomes insufficient. In other words, it becomes difficult to obtain a desired bonding strength.

特開2005−64398号公報JP 2005-64398 A 特開昭57−91895号公報(第1図、第5図、第8図)JP-A-57-91895 (FIGS. 1, 5, and 8)

本発明は、上記したレーザにより異種金属同士を重ね溶接する際に生じる種々の問題点に鑑みてなされたもので、その課題とするところは、レーザ反射率や熱伝導率の異なる異種金属同士を高品質にかつ効率よく重ね溶接することができるレーザ接合方法を提供することにある。   The present invention has been made in view of various problems that occur when different types of metals are welded together by the laser described above, and the problem is that different types of metals having different laser reflectivities and thermal conductivities can be used. It is an object of the present invention to provide a laser joining method capable of lap welding with high quality and efficiency.

上記課題を解決するため、本発明は、下板上に、該下板よりもレーザ反射率および/または熱伝導率が高い材料からなる上板を重ね、上板側からレーザを照射して上・下板を接合するレーザ接合方法において、前記上板に、予め凹穴を形成し、該凹穴を中心にレーザを照射して上・下板を接合することを特徴とする。   In order to solve the above-mentioned problems, the present invention provides an upper plate made of a material having a higher laser reflectivity and / or thermal conductivity than the lower plate, and is irradiated with laser from the upper plate side. In the laser joining method for joining the lower plate, a concave hole is formed in the upper plate in advance, and the upper and lower plates are joined by irradiating a laser around the concave hole.

このように行うレーザ接合方法においては、少なくとも凹穴の底の薄肉部分を中心に上板が加熱されるので、レーザ照射のエネルギー密度を特別高くしなくても上板の加熱溶融が促進され、レーザが直接下板に照射されないこともあって、下板側でエネルギーオーバーになることはなくなる。そして、下板側でエネルギーオーバーになることがなくなる結果、下板における孔明きが防止され、さらには、下板が鉄系材料からなっていても、低沸点成分が激しくガス化することはなく、接合部におけるブローホールの発生も抑制される。   In the laser joining method performed in this way, the upper plate is heated at the center of at least the thin portion of the bottom of the recessed hole, so that heating and melting of the upper plate is promoted without specially increasing the energy density of laser irradiation, Since the laser beam is not directly applied to the lower plate, energy is not over on the lower plate side. And as a result of no energy over on the lower plate side, perforation in the lower plate is prevented, and even if the lower plate is made of iron-based material, the low boiling point components will not be vigorously gasified. Also, the occurrence of blowholes at the joint is suppressed.

本発明においては、上板の凹穴の底面に照射パターンが形成されるようにレーザを照射するようにしてもよく、この場合は、凹穴の底の薄肉部が集中的に加熱溶融されるので、上板の加熱溶融がより一層促進される。   In the present invention, the laser may be irradiated so that an irradiation pattern is formed on the bottom surface of the concave hole in the upper plate. In this case, the thin portion at the bottom of the concave hole is intensively heated and melted. Therefore, the heating and melting of the upper plate is further promoted.

本発明においてはまた、上板に形成する凹穴を底面に向かって次第に縮径するテーパ穴とし、該テーパ穴の壁面に沿う部分に照射パターンの周辺が重なるようにレーザを照射するようにしてもよく、この場合は、テーパ穴の壁面に沿う部分も加熱溶融されて凹部に形成される溶融金属の量が増すので、上板と下板との融合がより一層促進される。   In the present invention, the concave hole formed in the upper plate is a tapered hole that gradually decreases in diameter toward the bottom surface, and the laser is irradiated so that the periphery of the irradiation pattern overlaps the portion along the wall surface of the tapered hole. In this case, the portion along the wall surface of the taper hole is also heated and melted to increase the amount of molten metal formed in the recess, so that the fusion of the upper plate and the lower plate is further promoted.

本発明において、下板および上板の材種は任意であるが、下板が鉄系材料からなり、上板が銅系材料からなる構成とすることができる。銅系材料のレーザ反射率、熱伝導率は鉄系材料に比べて著しく高くなるが、本発明によれば、このような組合せでも、円滑にレーザ接合することができる。この場合、下板が、半導体装置の樹脂ハウジング内に配置された基板上のパッドであり、上板が、前記ハウジングに一体成形されたバスバーである構成とすることができる。   In the present invention, the material of the lower plate and the upper plate is arbitrary, but the lower plate can be made of an iron-based material and the upper plate can be made of a copper-based material. The laser reflectivity and thermal conductivity of the copper-based material are significantly higher than those of the iron-based material. However, according to the present invention, laser bonding can be smoothly performed even with such a combination. In this case, the lower plate may be a pad on a substrate disposed in the resin housing of the semiconductor device, and the upper plate may be a bus bar formed integrally with the housing.

本発明において、上板の凹穴を形成する方法は任意であるが、量産性およびコストを考慮すれば、プレス成形によって形成するのが望ましい。この場合、予め上板に開けた下孔を中心にポンチを押込んで成形するのが望ましい。これは、下孔なしで成形すると、凹穴の開口縁に応力が集中してクラックが発生するためであり、前記したように下孔を中心にピンチを押し込んだ場合は、応力集中が緩和されてクラック発生が防止される。   In the present invention, the method of forming the concave hole in the upper plate is arbitrary, but in consideration of mass productivity and cost, it is desirable to form by press molding. In this case, it is desirable that the punch is pushed into the center of the lower hole previously formed in the upper plate. This is because, when molding without a pilot hole, stress concentrates on the opening edge of the concave hole and cracks occur. As described above, when a pinch is pushed around the pilot hole, the stress concentration is relaxed. Cracking is prevented.

本発明はさらに、上記したレーザの照射中、その照射部から発生するプラズマ光をモニタリングし、該プラズマ光の光強度変化から接合品質を判定するようにしてもよい。レーザ照射中、万一下板に孔明きが発生し、あるいは下板に含まれる低沸点成分のガス化が激しく起こると、レーザ照射部から発生するプラズマ光の高強度が大きく変化するので、このプラズマ光をモニタリングすることで、接合不具合を確実に把握することができる。   In the present invention, during the laser irradiation described above, the plasma light generated from the irradiated portion may be monitored, and the bonding quality may be determined from the light intensity change of the plasma light. During the laser irradiation, if the bottom plate is perforated, or if the low-boiling components contained in the bottom plate are vigorously gasified, the high intensity of the plasma light generated from the laser irradiation section will change greatly. By monitoring the plasma light, it is possible to reliably grasp the bonding failure.

本発明に係るレーザ接合方法によれば、レーザ反射率または熱伝導率が高い材料を上板として重ね溶接する際、レーザ照射のエネルギー密度を特別高くする必要はなく、設備や消費エネルギーに要するコスト負担が大幅に低減する。また、下板側がエネルギーオーバーとなることもなくなるので、高品質の接合部を安定して得ることができる。
また、上記特有の効果から、例えば、鉄系材料からなる基板上のパッドと銅系材料からなるバスバーとの接合を必要とする半導体装置の製造に向けて極めて有用となる。
According to the laser joining method of the present invention, when a material having high laser reflectance or thermal conductivity is lap welded as an upper plate, it is not necessary to increase the energy density of laser irradiation, and the cost required for equipment and energy consumption. The burden is greatly reduced. In addition, since the lower plate side does not become over-energy, a high-quality joint can be obtained stably.
In addition, the above-described unique effect makes it extremely useful, for example, for manufacturing a semiconductor device that requires bonding between a pad on a substrate made of an iron-based material and a bus bar made of a copper-based material.

以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本発明の第1の実施形態を示したものである。本第1の実施形態は、鉄系材料からなる下板10上に銅系材料からなる上板11を重ね、上板11側からレーザLを照射して両者を重ね溶接するもので、上板11の上面側には、予め凹穴12が形成されている。本実施形態において、上板11に形成する凹穴12の大きさは、レーザ照射に必要かつ十分な大きさの面積を確保でき、なおかつ接合に必要かつ十分な量の融合部13を確保できれば任意であるが、一例として、上板11の板厚が1mmの場合、その直径Dは2〜2.5mm程度、その深さHは0.2〜0.5mm程度にそれぞれ設定される。   FIG. 1 shows a first embodiment of the present invention. In the first embodiment, an upper plate 11 made of a copper-based material is overlapped on a lower plate 10 made of an iron-based material, and laser L is irradiated from the upper plate 11 side to weld them both. A concave hole 12 is formed in advance on the upper surface side of 11. In the present embodiment, the size of the concave hole 12 formed in the upper plate 11 is arbitrary as long as an area of a sufficient size necessary and sufficient for laser irradiation can be secured and a sufficient amount of the fusion portion 13 necessary for bonding can be secured. However, as an example, when the plate thickness of the upper plate 11 is 1 mm, the diameter D is set to about 2 to 2.5 mm, and the depth H is set to about 0.2 to 0.5 mm.

レーザ接合に際しては、図1(a)に示されるように、下板10に上板11を重ねてセットした後、上板11の凹穴12の底面に照射パターンが形成されるようにレーザLを照射する。このレーザ照射により、凹穴12の底の薄肉部分12aが集中的に加熱されて溶融し、その熱を受けて下板10も加熱溶融する。そして、同図(b)に示されるように、下板10と上板11との合せ部には、両者の材料が融合した融合部13が形成され、その後、前記融合部13が凝固することで、下板10と上板11とは確実に接合される。   At the time of laser joining, as shown in FIG. 1A, after setting the upper plate 11 on the lower plate 10, the laser L is formed so that an irradiation pattern is formed on the bottom surface of the concave hole 12 of the upper plate 11. Irradiate. By this laser irradiation, the thin portion 12a at the bottom of the concave hole 12 is intensively heated and melted, and the lower plate 10 is also heated and melted by receiving the heat. Then, as shown in FIG. 2B, a fusion portion 13 in which the materials of both the lower plate 10 and the upper plate 11 are fused is formed, and then the fusion portion 13 is solidified. Thus, the lower plate 10 and the upper plate 11 are securely joined.

ところで、銅系材料からなる上板11は、鉄系材料からなる下板10に比べて、レーザ反射率および熱伝導率が著しく高くなっており、上板11に凹穴12が存在しない場合は、上板11の加熱溶融に大きなエネルギー密度のレーザが必要になる。しかし、本実施形態においては、上記したように凹穴12の底の薄肉部分12aを中心に上板11が加熱されるので、レーザ照射のエネルギー密度をそれほど高くしなくても上板11の加熱溶融が促進され、したがって、下板10にレーザLが到達してもエネルギーオーバーになることはない。また、前出図8に示したようにレーザLが直接下板10に照射されることもないので、この面からも、下板10側でエネルギーオーバーになることはない。この結果、下板10が過熱されることはなくなり、下板10における孔明きが防止される。また、下板10の鉄系材料に含まれる低沸点成分のガス化も抑制され、このガス化に起因するブローホールの発生も抑制される。   By the way, the upper plate 11 made of a copper-based material has remarkably higher laser reflectivity and thermal conductivity than the lower plate 10 made of an iron-based material, and there is no concave hole 12 in the upper plate 11. In order to heat and melt the upper plate 11, a laser having a large energy density is required. However, in the present embodiment, the upper plate 11 is heated around the thin portion 12a at the bottom of the concave hole 12 as described above, so that the upper plate 11 can be heated without increasing the energy density of laser irradiation so much. Melting is promoted. Therefore, even if the laser L reaches the lower plate 10, energy is not exceeded. Further, as shown in FIG. 8, since the laser L is not directly applied to the lower plate 10, the energy is not over on the lower plate 10 side also from this surface. As a result, the lower plate 10 is not overheated, and perforation in the lower plate 10 is prevented. Moreover, the gasification of the low boiling point component contained in the iron-based material of the lower plate 10 is suppressed, and the generation of blow holes due to this gasification is also suppressed.

図2は、本発明の第2の実施形態を示したものである。本第2の実施形態の特徴とするところは、同図(a)に示されるように、上板11に形成する凹穴を底面に向かって次第に縮径するテーパ穴12´とし、このテーパ穴12´の壁面に沿う部分に照射パターンの周辺が重なるようにレーザLを照射するようにした点にある。なお、下板10が鉄系材料からなり、上板11が銅系材料からなる点は、第1の実施形態と同じである。   FIG. 2 shows a second embodiment of the present invention. The feature of the second embodiment is that, as shown in FIG. 5A, a concave hole formed in the upper plate 11 is a tapered hole 12 'that gradually decreases in diameter toward the bottom surface. The laser L is irradiated so that the periphery of the irradiation pattern overlaps the portion along the wall surface of 12 '. The lower plate 10 is made of an iron-based material, and the upper plate 11 is made of a copper-based material, which is the same as in the first embodiment.

本第2の実施形態においては、テーパ穴12´の底の薄肉部分12aに加え、テーパ穴12´の壁面に沿う部分もレーザLによって加熱溶融するので、凹穴内に形成される溶融金属の量が増し、その熱を受けて下板10も効率よく加熱溶融する。そして、図2(b)に示されるように、下板10と上板11との合せ部には、両者の材料が融合した融合部13が広範に形成され、その後、前記融合部13が凝固することで、下板10と上板11とは確実に接合される。また、このレーザ接合に際し、下板10側でエネルギーオーバーになることがないことは、第1の実施形態と同様であり、結果として下板10における孔明きが防止されるとともに、下板10側における低融点成分のガス化が抑制される。   In the second embodiment, in addition to the thin portion 12a at the bottom of the tapered hole 12 ', the portion along the wall surface of the tapered hole 12' is also heated and melted by the laser L, so the amount of molten metal formed in the concave hole The lower plate 10 is efficiently heated and melted by receiving the heat. As shown in FIG. 2 (b), the joining portion of the lower plate 10 and the upper plate 11 is extensively formed with a fusion portion 13 in which both materials are fused, and then the fusion portion 13 is solidified. By doing so, the lower plate 10 and the upper plate 11 are reliably joined. Further, in this laser bonding, the energy does not become over on the lower plate 10 side, as in the first embodiment. As a result, the lower plate 10 is prevented from being perforated and the lower plate 10 side. The gasification of the low melting point component in is suppressed.

図3は、本レーザ接合方法を半導体装置の製造に適用した場合の1つの実施形態を示したものである。本実施形態において、半導体装置20は、樹脂ハウジング21とバスバー22とを一体成形した後、ハウジング21から延出したバスバー22の端部をハウジング21内に配置した基板23上のパッド24に重ねてレーザ接合することにより製造される。この半導体装置において、その基板23上のパッド24は鉄系材料から、そのバスバー22は銅系材料からそれぞれなっており、したがって、パッド24は上記した下板10(図1、2)に、バスバー22は上記した上板11(図1、2)にそれぞれ相当している。   FIG. 3 shows one embodiment when the laser bonding method is applied to the manufacture of a semiconductor device. In the present embodiment, in the semiconductor device 20, after integrally molding the resin housing 21 and the bus bar 22, the end portion of the bus bar 22 extending from the housing 21 is overlapped with the pad 24 on the substrate 23 disposed in the housing 21. Manufactured by laser bonding. In this semiconductor device, the pad 24 on the substrate 23 is made of an iron-based material, and the bus bar 22 is made of a copper-based material. Therefore, the pad 24 is placed on the lower plate 10 (FIGS. 1 and 2). Reference numeral 22 corresponds to the above-described upper plate 11 (FIGS. 1 and 2).

バスバー22は、図4に示されるように、ここではクランク形状をなしており、その一端部には、予め上記した凹穴12(図1)または12´(図2)に相当する凹穴25が形成されている。バスバー22は、前記凹穴25を設けた側と反対側端部がハウジング21と一体成形され、この状態で、凹穴25を設けた側の端部が、基板23上のパッド24に下面をわずか接触させる状態に位置決めされるようになっている。   As shown in FIG. 4, the bus bar 22 has a crank shape here, and a concave hole 25 corresponding to the above-described concave hole 12 (FIG. 1) or 12 ′ (FIG. 2) is provided at one end thereof. Is formed. The bus bar 22 is integrally formed with the housing 21 at the end opposite to the side where the concave hole 25 is provided. In this state, the end on the side where the concave hole 25 is provided has a lower surface on the pad 24 on the substrate 23. It is positioned so that it touches slightly.

上記バスバー22に凹穴15を形成するには、コスト安に量産できることから、プレス成形を用いるのが望ましい。この場合、ポンチを単に押込むと、成形された凹穴25の開口縁に応力が集中してクラックCが発生する虞があるので、図5に示す方法を採用するのが望ましい。   In order to form the recessed hole 15 in the bus bar 22, it is desirable to use press molding because it can be mass-produced at low cost. In this case, if the punch is simply pushed in, stress may concentrate on the opening edge of the formed concave hole 25 and crack C may occur. Therefore, it is desirable to employ the method shown in FIG.

図5中、30はポンチ、31は下型であり、ポンチ30の先端にはバスバー22の端部に押し込まれる突起32が形成され、下型31にはバスバー22を受ける凹部33が形成されている。凹穴25の成形に際しては、同図(a)に示されるように、予めバスバー22の端部に下孔34を開けておく。そして、同図(b)に示されるように、前記下孔34が開けられたバスバー22の端部を下型31の凹部33内にセットし、ポンチ30を下降させる。すると、ポンチ30の先端の突起32が前記下孔34を中心にバスバー22に次第に押し込まれ、これに応じてバスバー22の材料が孔34の中心側へ塑性流動するとともに、側方へ膨出する。そして遂には、同図(c)に示されるように、ポンチ30の肩部30aがバスバー22の上面に接して、バスバー22の先端部全体が押し潰され、これによって所定形状の凹穴25が成形される。前記したようにポンチ30の押し込みに応じてバスバー22の材料が下孔34の中心側へ塑性流動するので、応力集中が緩和され、これによって上記したクラックC(図4)の発生が防止される。   In FIG. 5, 30 is a punch, 31 is a lower mold, a protrusion 32 that is pushed into the end of the bus bar 22 is formed at the tip of the punch 30, and a recess 33 that receives the bus bar 22 is formed in the lower mold 31. Yes. When forming the concave hole 25, as shown in FIG. 3A, a pilot hole 34 is formed in advance at the end of the bus bar 22. Then, as shown in FIG. 4B, the end of the bus bar 22 with the lower hole 34 is set in the recess 33 of the lower mold 31 and the punch 30 is lowered. Then, the protrusion 32 at the tip of the punch 30 is gradually pushed into the bus bar 22 around the lower hole 34, and in response to this, the material of the bus bar 22 plastically flows toward the center of the hole 34 and bulges to the side. . Finally, as shown in FIG. 3C, the shoulder 30a of the punch 30 contacts the upper surface of the bus bar 22, and the entire front end of the bus bar 22 is crushed, thereby forming a concave hole 25 having a predetermined shape. Molded. As described above, the material of the bus bar 22 plastically flows toward the center of the lower hole 34 in response to the push-in of the punch 30, so that the stress concentration is alleviated, thereby preventing the occurrence of the crack C (FIG. 4). .

上記バスバー22と基板23上のパッド24とをレーザ接合するためのレーザ接合装置は、一例として、図6に示されるように構成されている。同図において、40はレーザトーチ、41はレーザ発振器(例えば、YAGレーザ発振器)であり、レーザトーチ40内には、レーザ発振器41から伝送されたレーザLをレーザトーチ40の先端から出射させるための反射ミラー42や図示を略す光学レンズが配設されている。前記バスバー22とパッド24とのレーザ接合に際しては、レーザトーチ40を適宜のハンドリング手段(ロボット等)により前記樹脂ハウジング21(図3)内に直立姿勢で装入し、レーザトーチ40の先端を上板となるバスバー22の上面に当接させて、バスバー22を下板となるパッド24に押圧する。そして、この状態でレーザLを前記バスバー22に予め形成した凹穴25(図4)を中心に照射し、図1、2に示したと同様の形態でバスバー22とパッド24とをレーザ接合する。   As an example, a laser bonding apparatus for laser bonding the bus bar 22 and the pad 24 on the substrate 23 is configured as shown in FIG. In the figure, reference numeral 40 denotes a laser torch, and reference numeral 41 denotes a laser oscillator (for example, a YAG laser oscillator). In the laser torch 40, a reflection mirror 42 for emitting the laser L transmitted from the laser oscillator 41 from the tip of the laser torch 40. An optical lens (not shown) is provided. When laser joining the bus bar 22 and the pad 24, the laser torch 40 is inserted into the resin housing 21 (FIG. 3) in an upright posture by an appropriate handling means (robot or the like), and the tip of the laser torch 40 is attached to the upper plate. The bus bar 22 is pressed against the pad 24 serving as the lower plate. In this state, the laser L is irradiated around the recessed hole 25 (FIG. 4) formed in advance on the bus bar 22, and the bus bar 22 and the pad 24 are laser-bonded in the same manner as shown in FIGS.

ところで、上記したレーザ接合においては、バスバー22とパッド24の成分変化、凹穴25を含めたバスバー22の寸法的なバラツキなどの要因で、溶接状況が変動し、場合によっては、下板となるパッド24に前記孔明きが生じ、あるいは低沸点成分の激しいガス化が起こる。一方、レーザ照射部で発生する光は、図7に示されるように波長1000〜1200nmのレーザ反射光の他、波長500〜600nmのプラズマ光と波長1300〜1700nm遠赤外光とを含んでいる。このうち、プラズマ光および遠赤外光は、前記孔明き発生の有無や低沸点成分のガス化の程度によって大きく変化する。なお、遠赤外光は、融合部13(図1、2)から発生するもので、該融合部13の表面温度に応じて変化する。そこで、本実施形態においては、同じく図6に示されるように、レーザ接合装置に、レーザ照射部で発生したプラズマ光および遠赤外光をモニタリングし、レーザ接合品質を判定するモニタリング装置50を付設している。   By the way, in the laser joining described above, the welding situation fluctuates due to changes in the components of the bus bar 22 and the pad 24, dimensional variations of the bus bar 22 including the recessed holes 25, and in some cases, the lower plate becomes a lower plate. The above-described perforation occurs in the pad 24, or severe gasification of low boiling point components occurs. On the other hand, the light generated in the laser irradiation part includes plasma light having a wavelength of 500 to 600 nm and far infrared light having a wavelength of 1300 to 1700 nm in addition to laser reflected light having a wavelength of 1000 to 1200 nm as shown in FIG. . Among these, plasma light and far-infrared light vary greatly depending on the presence or absence of the perforations and the degree of gasification of low-boiling components. The far-infrared light is generated from the fusion part 13 (FIGS. 1 and 2), and changes according to the surface temperature of the fusion part 13. Therefore, in the present embodiment, as shown in FIG. 6, a monitoring device 50 for monitoring the plasma light and far-infrared light generated in the laser irradiation unit and determining the laser bonding quality is attached to the laser bonding device. is doing.

より詳しくは、上記モニタリング装置50は、レーザ照射部(融合部13)で発生したレーザ反射光、プラズマ光および遠赤外光を照射用レーザLの光軸と同軸で集光する2つの集光レンズ51,52と、後側の集合レンズ52を透過した光を反射する反射ミラー53と、前記光に含まれるプラズマ光を分岐するハーフミラー54と、このハーフミラー54から直進した光から遠赤外光を分岐するハーフミラー55と、プラズマ光および遠赤外光を光強度を検出する検出部56と検出部56で検出結果に基づいて溶接不具合を判定する判定手段(パソコン)57とを備えている。検出部56は、前記2つのハーフミラー54および55に対応して2系列設けられており、各系列は、特定波長の光を透過するバンドパスフィルタ58A,58Bと、集光レンズ59A,59Bと、光電変換素子としてのフォトダイオード60A,60Bと、光の信号レベルを増幅するアンプ61A,61Bとからなっている。   More specifically, the monitoring device 50 collects two light condensing light concentrating the laser reflected light, plasma light and far-infrared light generated by the laser irradiation unit (fusion unit 13) coaxially with the optical axis of the irradiation laser L. Lenses 51, 52, a reflection mirror 53 that reflects the light transmitted through the rear collective lens 52, a half mirror 54 that divides the plasma light included in the light, and a far-red light from the light that travels straight from the half mirror 54 A half mirror 55 that branches outside light, a detection unit 56 that detects the light intensity of plasma light and far-infrared light, and a determination unit (personal computer) 57 that determines a welding defect based on the detection result by the detection unit 56. ing. The detection unit 56 is provided in two series corresponding to the two half mirrors 54 and 55. Each series includes bandpass filters 58A and 58B that transmit light of a specific wavelength, and condenser lenses 59A and 59B. The photodiodes 60A and 60B as photoelectric conversion elements and amplifiers 61A and 61B for amplifying the signal level of light.

上記モニタリング装置50においては、レーザ照射部で発生した光の中から、専用のハーフミラー54、55によってプラズマ光と遠赤外光とが抽出され、それぞれの強度が検出部56で検出される。したがって、予めプラズマ光および遠赤外光の強度レベルと接合品質(孔明き、ブローホール等)との相関を求め、判定手段57に、これらプラズマ光および遠赤外光に対応する適当な強度レベルのしきい値を設定しておくことで、孔明き発生の有無や低沸点成分のガス化の程度を把握することができる。このようにすることで、後にX線による内部検査が不要になり、その分、品質保証に要するコスト負担が軽減する。   In the monitoring device 50, plasma light and far-infrared light are extracted from the light generated by the laser irradiation unit by the dedicated half mirrors 54 and 55, and the intensity of each is detected by the detection unit 56. Accordingly, the correlation between the intensity level of the plasma light and far infrared light and the bonding quality (perforation, blowhole, etc.) is obtained in advance, and an appropriate intensity level corresponding to the plasma light and far infrared light is determined in the determination means 57. By setting this threshold value, it is possible to grasp the presence or absence of perforation and the degree of gasification of low boiling point components. This eliminates the need for internal inspection by X-rays later, thereby reducing the cost burden required for quality assurance.

本発明に係るレーザ接合方法の第1の実施形態を模式的に示す断面図である。1 is a cross-sectional view schematically showing a first embodiment of a laser bonding method according to the present invention. 本発明に係るレーザ接合方法の第2の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically 2nd Embodiment of the laser joining method which concerns on this invention. 本発明に係るレーザ接合方法を半導体装置の製造に適用した場合の1つの実施形態を示す側面図である。It is a side view showing one embodiment at the time of applying a laser joining method concerning the present invention to manufacture of a semiconductor device. 半導体装置の製造で用いるバスバーの形状を示す斜視図である。It is a perspective view which shows the shape of the bus bar used by manufacture of a semiconductor device. 図4に示したバスバーに対する凹穴の成形工程を示す工程図である。It is process drawing which shows the formation process of the recessed hole with respect to the bus-bar shown in FIG. レーザ接合品質を判定するためのモニタリング装置の構造を模式的に示す系統図である。It is a systematic diagram which shows typically the structure of the monitoring apparatus for determining laser joining quality. レーザ照射から発生する光の波長分布を示すグラフである。It is a graph which shows wavelength distribution of the light which generate | occur | produces from laser irradiation. 異種金属同士の重ね溶接に適用した従来のレーザ接合方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the conventional laser joining method applied to the lap welding of dissimilar metals. 異種金属同士の重ね溶接に適用した従来のレーザ接合方法の他の例を模式的に示す断面図である。It is sectional drawing which shows typically the other example of the conventional laser joining method applied to the lap welding of dissimilar metals. 異種金属同士の重ね溶接に適用した従来のレーザ接合方法の、さらに他の例を模式的に示す断面図である。It is sectional drawing which shows typically the further another example of the conventional laser joining method applied to the lap welding of dissimilar metals.

符号の説明Explanation of symbols

10 下板
11 上板
12 凹穴
12a 薄肉部
21 樹脂ハウジング
22 バスバー
23 基板23
24 基板上のパッド
30 ポンチ
34 下孔
50 モニタリング装置
L レーザ

10 Lower plate 11 Upper plate 12 Recessed hole 12a Thin portion 21 Resin housing 22 Bus bar 23 Substrate 23
24 Pad on substrate 30 Punch 34 Pilot hole 50 Monitoring device L Laser

Claims (7)

下板上に、該下板よりもレーザ反射率および/または熱伝導率が高い材料からなる上板を重ね、上板側からレーザを照射して上・下板を接合するレーザ接合方法において、前記上板に、予め凹穴を形成し、該凹穴を中心にレーザを照射して上・下板を接合することを特徴とするレーザ接合方法。   In the laser joining method in which an upper plate made of a material having a higher laser reflectance and / or thermal conductivity than the lower plate is stacked on the lower plate, and the upper and lower plates are joined by irradiating laser from the upper plate side. A laser joining method, wherein a concave hole is formed in the upper plate in advance, and laser irradiation is performed around the concave hole to join the upper and lower plates. 上板の凹穴の底面に照射パターンが形成されるようにレーザを照射することを特徴とする請求項1に記載のレーザ接合方法。   2. The laser bonding method according to claim 1, wherein the laser is irradiated so that an irradiation pattern is formed on the bottom surface of the concave hole of the upper plate. 上板に形成する凹穴を底面に向かって次第に縮径するテーパ穴とし、該テーパ穴の壁面に沿う部分に照射パターンの周辺が重なるようにレーザを照射することを特徴とする請求項1に記載のレーザ接合方法。   The concave hole formed in the upper plate is a tapered hole that gradually decreases in diameter toward the bottom surface, and the laser is irradiated so that the periphery of the irradiation pattern overlaps the portion along the wall surface of the tapered hole. The laser joining method described. 下板が鉄系材料からなり、上板が銅系材料からなることを特徴とする請求項1乃至3の何れか1項に記載のレーザ接合方法。   The laser joining method according to any one of claims 1 to 3, wherein the lower plate is made of an iron-based material, and the upper plate is made of a copper-based material. 下板が、半導体装置の樹脂ハウジング内に配置された基板上のパッドであり、上板が、前記ハウジングに一体成形されたバスバーであることを特徴とする請求項4に記載のレーザ接合方法。   The laser joining method according to claim 4, wherein the lower plate is a pad on a substrate disposed in a resin housing of the semiconductor device, and the upper plate is a bus bar integrally formed with the housing. 上板の凹穴が、予め上板に開けた下孔を中心にポンチを押込んで成形されることを特徴とする請求項1乃至5の何れか1項に記載のレーザ接合方法。   The laser joining method according to any one of claims 1 to 5, wherein the concave hole of the upper plate is formed by pressing a punch around a lower hole that is previously opened in the upper plate. レーザの照射中、その照射部から発生するプラズマ光をモニタリングし、該プラズマ光の光強度変化から接合品質を判定することを特徴とする請求項1乃至6の何れか1項に記載のレーザ接合方法。

The laser bonding according to any one of claims 1 to 6, wherein during laser irradiation, plasma light generated from the irradiated portion is monitored, and bonding quality is determined from a change in light intensity of the plasma light. Method.

JP2006050400A 2006-02-27 2006-02-27 Laser bonding method Expired - Fee Related JP4739063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050400A JP4739063B2 (en) 2006-02-27 2006-02-27 Laser bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006050400A JP4739063B2 (en) 2006-02-27 2006-02-27 Laser bonding method

Publications (2)

Publication Number Publication Date
JP2007222937A true JP2007222937A (en) 2007-09-06
JP4739063B2 JP4739063B2 (en) 2011-08-03

Family

ID=38545225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050400A Expired - Fee Related JP4739063B2 (en) 2006-02-27 2006-02-27 Laser bonding method

Country Status (1)

Country Link
JP (1) JP4739063B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102689089A (en) * 2011-03-23 2012-09-26 通用汽车环球科技运作有限责任公司 Beam welding of a multi-sheet work stack having a reduced thickness feature
JP2015530251A (en) * 2012-08-09 2015-10-15 ロフィン−ラザーク アクチエンゲゼルシャフトRofin−Lasagag Workpiece processing apparatus using laser beam
JP2018043273A (en) * 2016-09-14 2018-03-22 株式会社神戸製鋼所 Manufacturing method of aluminum joining body
KR20180138176A (en) * 2017-06-20 2018-12-28 도요타 지도샤(주) Method of welding laminated metal foils
JP2019166533A (en) * 2018-03-22 2019-10-03 オリンパス株式会社 Structure and method of laser lap welding
US11670803B2 (en) 2018-01-02 2023-06-06 Samsung Sdi Co., Ltd. Battery pack and manufacturing method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680381A (en) * 1979-12-03 1981-07-01 Toshiba Corp Welding of titanium and stainless steel
JPS5791895A (en) * 1980-11-29 1982-06-08 Matsushita Electric Works Ltd Welding method by laser beam
JPS63130290A (en) * 1986-11-20 1988-06-02 Matsushita Electric Works Ltd Welding method by energy beam
JPH0712753A (en) * 1993-06-28 1995-01-17 Nissan Motor Co Ltd Monitor device for welding condition
JPH08332582A (en) * 1995-06-05 1996-12-17 Toshiba Corp Laser welding method
JPH09108874A (en) * 1995-10-13 1997-04-28 Matsushita Electric Works Ltd Laser welding method
JP2000090992A (en) * 1998-09-17 2000-03-31 Harness Syst Tech Res Ltd Bus bar welding construction
JP2005064398A (en) * 2003-08-20 2005-03-10 Toyota Motor Corp Semiconductor device and manufacture of semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680381A (en) * 1979-12-03 1981-07-01 Toshiba Corp Welding of titanium and stainless steel
JPS5791895A (en) * 1980-11-29 1982-06-08 Matsushita Electric Works Ltd Welding method by laser beam
JPS63130290A (en) * 1986-11-20 1988-06-02 Matsushita Electric Works Ltd Welding method by energy beam
JPH0712753A (en) * 1993-06-28 1995-01-17 Nissan Motor Co Ltd Monitor device for welding condition
JPH08332582A (en) * 1995-06-05 1996-12-17 Toshiba Corp Laser welding method
JPH09108874A (en) * 1995-10-13 1997-04-28 Matsushita Electric Works Ltd Laser welding method
JP2000090992A (en) * 1998-09-17 2000-03-31 Harness Syst Tech Res Ltd Bus bar welding construction
JP2005064398A (en) * 2003-08-20 2005-03-10 Toyota Motor Corp Semiconductor device and manufacture of semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102689089A (en) * 2011-03-23 2012-09-26 通用汽车环球科技运作有限责任公司 Beam welding of a multi-sheet work stack having a reduced thickness feature
JP2015530251A (en) * 2012-08-09 2015-10-15 ロフィン−ラザーク アクチエンゲゼルシャフトRofin−Lasagag Workpiece processing apparatus using laser beam
JP2018043273A (en) * 2016-09-14 2018-03-22 株式会社神戸製鋼所 Manufacturing method of aluminum joining body
KR20180138176A (en) * 2017-06-20 2018-12-28 도요타 지도샤(주) Method of welding laminated metal foils
JP2019005769A (en) * 2017-06-20 2019-01-17 トヨタ自動車株式会社 Welding method for laminated metal foil
KR102240307B1 (en) * 2017-06-20 2021-04-14 도요타 지도샤(주) Method of welding laminated metal foils
US11123817B2 (en) 2017-06-20 2021-09-21 Toyota Jidosha Kabushiki Kaisha Method of welding laminated metal foils
US11670803B2 (en) 2018-01-02 2023-06-06 Samsung Sdi Co., Ltd. Battery pack and manufacturing method therefor
JP2019166533A (en) * 2018-03-22 2019-10-03 オリンパス株式会社 Structure and method of laser lap welding

Also Published As

Publication number Publication date
JP4739063B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
CN107405725B (en) Laser welding method using micro-welding piece pattern
JP4924771B2 (en) Laser welding method and battery manufacturing method including the same
JP4739063B2 (en) Laser bonding method
JP5124056B1 (en) Laser bonding parts
US20110168682A1 (en) Laser lap welding method for galvanized steel sheet
JP2011092944A (en) Fusion welding method and fusion welding apparatus
JP2016207412A (en) Laser weldment and laser welding quality determination method for battery
JPWO2018147283A1 (en) Vapor chamber
JP2005254282A (en) Method for manufacturing butt-welded metallic plates by laser
JP2010075967A (en) Method for welding different kind of metal
JP2005131645A (en) Laser beam machining method and machined state determination method
JP5366499B2 (en) Welding method
JP2005246434A (en) Method and apparatus for preventing or repairing hole defect in laser spot welding
JP2011005499A (en) Method for laser butt-welding aluminum member and copper member
CN113967787B (en) Laser welding method
JP2007203330A (en) Laser welding method
JP2011067830A (en) Method of joining copper sheet and steel sheet by laser
JP2009071123A (en) Chip resistor manufacturing method
JP6777023B2 (en) Welding method of laminated metal foil
Kelkar Pulsed laser welding
JP5760951B2 (en) Laser welding method
US11458568B2 (en) Laser processing method
JP2020093285A (en) Method of joining dissimilar metals
JP2011101894A (en) Joining structure and joining method
JP2013154398A (en) Butt joining method for dissimilar metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R151 Written notification of patent or utility model registration

Ref document number: 4739063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees