JP2016207412A - Laser weldment and laser welding quality determination method for battery - Google Patents

Laser weldment and laser welding quality determination method for battery Download PDF

Info

Publication number
JP2016207412A
JP2016207412A JP2015086794A JP2015086794A JP2016207412A JP 2016207412 A JP2016207412 A JP 2016207412A JP 2015086794 A JP2015086794 A JP 2015086794A JP 2015086794 A JP2015086794 A JP 2015086794A JP 2016207412 A JP2016207412 A JP 2016207412A
Authority
JP
Japan
Prior art keywords
laser
battery
processing
battery outer
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015086794A
Other languages
Japanese (ja)
Other versions
JP6512474B2 (en
Inventor
吉永 光宏
Mitsuhiro Yoshinaga
光宏 吉永
船見 浩司
Koji Funemi
浩司 船見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015086794A priority Critical patent/JP6512474B2/en
Publication of JP2016207412A publication Critical patent/JP2016207412A/en
Application granted granted Critical
Publication of JP6512474B2 publication Critical patent/JP6512474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser weldment and a laser welding quality determination method for a battery that enable the laser intensity applied to a battery exterior can processed portion to be checked based on grasp of the state of the processing trace of a test processed portion without observing the cross-section of a melt surface to determine welding quality.SOLUTION: A laser welding quality determination method for a battery is a welding quality determination method in a case where a current collector tab 12 of a battery is welded to a battery outer can 5. A first laser beam 23 having a spot diameter d smaller than the plate thickness h of the battery outer can is irradiated to form a welded portion 13. The battery outer can is irradiated with second and third laser beams having lower laser intensities than the first laser beam at the same time, and the shapes of first to third processing traces vary due to the difference in laser intensity to be irradiated, whereby the welding quality can be determined by only observing the appearance.SELECTED DRAWING: Figure 2A

Description

本発明は、レーザ溶接物及び電池のレーザ溶接良否判定方法に関する。より具体的には、本発明は、例えば、円筒形電池の電池外装缶と集電タブの接合部構造及び電池外装缶と集電タブの接合良否判定方法に関するものである。   The present invention relates to a laser welded article and a battery laser welding quality determination method. More specifically, the present invention relates to, for example, a joint structure between a battery outer can and a current collecting tab of a cylindrical battery and a method for determining whether or not the battery outer can and the current collecting tab are joined.

一般に、電池は、大きく分けて乾電池又はリチウム電池などの一次電池、ニッケル水素電池又はリチウムイオン電池などの充電可能な二次電池に大分できる。また、形状で分類すると、円筒型、角型、コイン型などがあり、その組み合わせにより多くの種類が存在する。これらの主な電池の構成は、鉄又はアルミニウムなどの金属からなる電池外装缶に、電極体と呼ばれる正極、セパレータ、及び負極から構成される発電部分を挿入して、正極及び負極に溶接されたニッケル又はアルミニウムからなる集電タブを電池外装缶及び蓋に溶接したものとなっている。   In general, batteries can be broadly classified into primary batteries such as dry batteries or lithium batteries, and rechargeable secondary batteries such as nickel metal hydride batteries or lithium ion batteries. In addition, when classified by shape, there are a cylindrical shape, a square shape, a coin shape, and the like, and there are many types depending on the combinations. The structure of these main batteries was welded to a positive electrode and a negative electrode by inserting a power generation part composed of a positive electrode, a separator, and a negative electrode called an electrode body into a battery outer can made of metal such as iron or aluminum. A current collecting tab made of nickel or aluminum is welded to the battery outer can and the lid.

また、パソコン用を中心とした円筒形電池は、正極板と負極板とをセパレータを介して渦巻状に巻回してなる電極体を円筒形ケースに挿入し、負極板に溶接された負極リードがケース底部に溶接されている構造が一般的となっている。そして、溶接方法としては、抵抗溶接が主に用いられている。電池外装缶又は集電タブは、電池容量の増大を目的として電極体の容積を拡大するため、薄くなる傾向にある。これに伴い、電池外装缶と集電タブとを安定して溶接する技術が必要となっている。   In addition, a cylindrical battery centering on a personal computer has an electrode body in which a positive electrode plate and a negative electrode plate are wound in a spiral shape with a separator inserted into a cylindrical case, and a negative electrode lead welded to the negative electrode plate has A structure welded to the bottom of the case is common. And as a welding method, resistance welding is mainly used. The battery outer can or the current collecting tab tends to be thin in order to increase the volume of the electrode body for the purpose of increasing the battery capacity. Accordingly, a technique for stably welding the battery outer can and the current collecting tab is required.

抵抗溶接工法では、近年、電池外装缶及び集電タブの薄型化が進んでくると、溶融部の集電タブの表面露出を防止し、且つ所望の接合強度を得るための電流の制御範囲が狭くなる。これは、電池外装缶又は集電タブの厚さ、電極棒の形状変化、又は、電池外装缶と集電タブとの接触面積などによるばらつきの影響が大きくなり、集電タブ内部の溶融部位置が不安定となり、穴開きが発生する原因となっていた。また、電池外装缶と集電タブとの溶接部周辺に、電池外装缶材料の飛散りも確認され、これも電池外装缶の穴開きの原因となっていた。   In recent years, in the resistance welding method, when the battery outer can and the current collecting tab are made thinner, there is a current control range for preventing the surface of the current collecting tab from being melted and obtaining a desired joint strength. Narrow. This is due to variations in the thickness of the battery outer can or current collecting tab, changes in the shape of the electrode rod, or the contact area between the battery outer can and current collecting tab. Became unstable, causing holes to be generated. In addition, scattering of the battery outer can material was also confirmed around the welded portion between the battery outer can and the current collecting tab, which also caused holes in the battery outer can.

そして、従来の抵抗溶接では、抵抗溶接時に発生するスパッタが電池外装缶内部に入り込み、電池の信頼性が悪化するという課題があった。そのため、最近では、電池外装缶と集電タブを電池外装缶の外側からレーザビームを照射して、電池外装缶と集電タブとを接合させて、スパッタ発生を防止しているものがある(例えば、特許文献1〜3参照。)。   And in the conventional resistance welding, the sputter | spatter generate | occur | produced at the time of resistance welding entered the inside of a battery exterior can, and there existed a subject that the reliability of a battery deteriorated. Therefore, recently, the battery outer can and the current collecting tab are irradiated with a laser beam from the outside of the battery outer can to join the battery outer can and the current collecting tab to prevent spattering ( For example, see Patent Documents 1 to 3.)

例えば、図12は、特許文献3に記載された従来の密閉型電池及びその製造方法を示す図である。   For example, FIG. 12 is a diagram showing a conventional sealed battery described in Patent Document 3 and a manufacturing method thereof.

図12において、電池外装缶101の内面底部に集電タブ102が密接されている。電池外装缶101の外側底面からレーザビーム103を照射して、電池外装缶101と集電タブ102とを溶融させて溶融部104を形成し、電池外装缶101と集電タブ102とを接合している。更に、その溶融部104は、集電タブ102を貫通せず、電池外装缶101と集電タブ102とが未貫通接合されているため、電池外装缶101の内部にスパッタは混入しない。図13には、更に、溶融部104を拡大した詳細図を示す。但し、理解しやすいように上下を反転させて、レーザビーム103が図面上方から照射している図に変更している。図12と同じ要素は同じ符号をつけており、その説明は省略する。   In FIG. 12, a current collecting tab 102 is in close contact with the bottom of the inner surface of the battery outer can 101. A laser beam 103 is irradiated from the outer bottom surface of the battery outer can 101 to melt the battery outer can 101 and the current collecting tab 102 to form a melting portion 104, and the battery outer can 101 and the current collecting tab 102 are joined. ing. Furthermore, since the melted portion 104 does not penetrate the current collecting tab 102 and the battery outer can 101 and the current collecting tab 102 are non-penetrated and joined, no spatter is mixed into the battery outer can 101. FIG. 13 further shows an enlarged detailed view of the melting part 104. However, for the sake of easy understanding, the figure is reversed so that the laser beam 103 is irradiated from above. The same elements as those in FIG. 12 are denoted by the same reference numerals, and the description thereof is omitted.

特許第4175975号公報Japanese Patent No. 4175975 特許第4547855号公報Japanese Patent No. 4547855 特許第5306905号公報Japanese Patent No. 5306905

しかし、近年、電池外装缶及び集電タブの薄型化が進んで来ると、レーザ強度の微小な変動により、集電タブ厚みをレーザが貫通する、又は、逆に集電タブ部の所定の深さまでレーザ加工が施されないなど、レーザ加工状態及び加工結果をより厳密に管理すべき状況が発生してきた。   However, in recent years, when the battery outer can and the current collecting tab are made thinner, the laser penetrates the thickness of the current collecting tab due to minute fluctuations in the laser intensity, or conversely, a predetermined depth of the current collecting tab portion. There has been a situation where the laser processing state and the processing result should be managed more strictly, such as no laser processing.

レーザ加工では、レーザ光路上で、いずれかの光学部品に生じた汚れ、損傷、又は劣化によって被加工物の加工点でのレーザ出力が異常に低下しても、レーザ発振器本体側はそれを把握することは出来ない。よって、レーザ加工による溶接不具合を確認する方法として、レーザ加工後の加工点での外観検査、非破壊検査、又は、抜き取りでの剥離検査などの破壊検査などが用いられてきた。   In laser processing, even if the laser output at the processing point of the workpiece drops abnormally due to dirt, damage, or deterioration that occurs in any of the optical components in the laser beam path, the laser oscillator body grasps it. I can't do it. Therefore, as a method for confirming a welding defect due to laser processing, a destructive inspection such as an appearance inspection at a processing point after laser processing, a nondestructive inspection, or a peeling inspection by sampling has been used.

そして、レーザ強度の管理方法として、以下の方法が一般的に採用されているが、実ワーク上での加工状態を管理したものではなく、加工点の前までの状態変化を管理するものであり、実際の加工点での状態を管理出来ない状況が発生していた。   The following methods are generally used as the laser intensity management method. However, it does not manage the machining state on the actual workpiece, but manages the state change up to the point before the machining point. There was a situation where the state at the actual machining point could not be managed.

一般的な管理方法として、
(1)レーザ発振器内部での照射パワーモニタリング、
(2)レーザヘッド部での漏光を用いたパワーモニタリング、などがあり、実際の量産現場でも採用されている。
As a general management method,
(1) Irradiation power monitoring inside the laser oscillator,
(2) There is power monitoring using light leakage at the laser head, and it is also used in actual mass production sites.

また、実際の加工点での把握としては、加工後の工程にはなるが、前記に挙げた外観検査の方法があり、主にCCDカメラなどを用いて、レーザ加工部の溶融幅、溶融長さ、又は焼けなどを観察するなどがある。   In addition, as for grasping at the actual processing point, although it is a post-processing step, there is the above-mentioned appearance inspection method, mainly using a CCD camera or the like, the melting width and melting length of the laser processing part. There are also observations such as burning.

特に、レーザ強度の把握としては、加工面の溶融幅で良否を判定する場合が多く、レーザ強度が高ければ溶融幅は広く、低ければ溶融幅が狭くなり、その溶融幅をカメラで確認し、許容幅内であるか否かを管理したりしている。   In particular, as for grasping the laser intensity, it is often judged whether the processing surface is melted or not, the melting width is wide if the laser intensity is high, the melting width is narrow if the laser intensity is low, and the melting width is confirmed with a camera, It manages whether it is within the allowable range.

但し、本発明で用いているレーザビーム径を小さく絞ったキーホール溶接(後段で詳しく説明)では、レーザ強度が変化しても、溶融深さは変化するが、溶融幅はほとんど変化しない、という結果が出ている。その為、従来では、前記外観検査において加工面の溶融幅では良否を判定出来ない為、加工面に照射されたレーザ強度の良否を知るには、破壊試験のみでしか、レーザ強度変化を確認することが出来なかった。   However, in keyhole welding with a small laser beam diameter used in the present invention (described in detail later), even if the laser intensity changes, the melting depth changes, but the melting width hardly changes. Results are coming out. For this reason, conventionally, in the appearance inspection, it is impossible to determine whether the processed surface is melted or not. Therefore, in order to know the quality of the laser intensity irradiated to the processed surface, only the destructive test is used to check the laser intensity change. I couldn't.

よって、従来より用いている加工溶融幅の測定以外の方法で、レーザ強度の変化、ひいては、接合強度の良否を判定する必要があった。   Therefore, it has been necessary to determine the change in the laser intensity, and thus the quality of the bonding strength, by a method other than the measurement of the work melt width conventionally used.

従って、本発明の目的は、前記問題を解決することにあって、溶融面の断面を観察することなく、接合強度の良否を判定することができる、レーザ溶接物及び電池のレーザ溶接良否判定方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problem, and to determine the quality of the joining strength without observing the cross section of the molten surface, and a laser welding quality determination method for laser welded articles and batteries. Is to provide.

前記目的を達成するため、本発明の1つの態様にかかる電池のレーザ溶接良否判定方法は、電池の集電タブを電池外装缶に溶融部で溶接して接合した電池のレーザ溶接良否判定方法であって、
前記集電タブの平面を前記電池外装缶の内面底面部に当接させる工程と、
前記電池外装缶の板厚より小さいスポット径を有する第1のレーザビームを前記電池外装缶の外側底面に照射して前記第1のレーザビームによる前記溶融部の第1の加工痕を形成する照射工程とを有し、
前記照射工程において、前記電池外装缶と前記集電タブとを前記溶融部で接合するレーザ強度の前記第1のレーザビームを前記電池外装缶の外側底面に照射させると同時に、前記第1のレーザビームの前記レーザ強度よりレーザ強度の低い第2のレーザビームの照射と、前記第2のレーザビームよりレーザ強度の低い第3のレーザビームの照射とを同時に前記電池外装缶へ照射させ、
前記照射工程後、第2のレーザビームの第2の加工痕の形状及び前記第3のレーザビームの第3の加工痕の形状により接合不良の判定を行う判定工程をさらに備える。
To achieve the above object, a battery laser welding quality determination method according to one aspect of the present invention is a battery laser welding quality determination method in which a current collecting tab of a battery is welded to a battery outer can at a molten portion and joined. There,
Contacting the flat surface of the current collecting tab with the bottom surface of the inner surface of the battery outer can;
Irradiation that irradiates the outer bottom surface of the battery outer can with a first laser beam having a spot diameter smaller than the plate thickness of the battery outer can to form a first processing mark of the melted portion by the first laser beam. A process,
In the irradiation step, the first laser beam having the laser intensity for joining the battery outer can and the current collecting tab at the melting portion is irradiated to the outer bottom surface of the battery outer can, and at the same time, the first laser Irradiating the battery outer can simultaneously with irradiation of a second laser beam having a laser intensity lower than the laser intensity of the beam and irradiation of a third laser beam having a laser intensity lower than that of the second laser beam;
After the irradiation step, the method further includes a determination step of determining a bonding failure based on a shape of the second processing mark of the second laser beam and a shape of the third processing mark of the third laser beam.

以上のように、本発明の前記態様にかかるレーザ溶接物及び電池のレーザ溶接良否判定方法によれば、電池外装缶加工部に照射されたレーザ強度を、溶融面の断面を観察することなく、加工痕の状態把握により確認し、溶接の良否判定をすることが出来る。よって、レーザ溶接時の加工変化を外観観察で確認することが出来、接合不良の製品を後工程へ流すこともなくなる。   As described above, according to the laser welded article and battery laser welding quality determination method according to the aspect of the present invention, without observing the cross section of the melt surface, the laser intensity irradiated to the battery outer can processing portion, It can be confirmed by grasping the state of the machining mark, and the quality of welding can be judged. Therefore, it is possible to confirm the processing change at the time of laser welding by external observation, and it is not necessary to send a product with poor bonding to a subsequent process.

本発明の実施形態の一例である密閉型電池の構成を模式的に示す断面図Sectional drawing which shows typically the structure of the sealed battery which is an example of embodiment of this invention 本発明の実施形態の一例である電池外装缶と集電タブの接合部の拡大図The enlarged view of the junction part of the battery exterior can and the current collection tab which is an example of embodiment of this invention 本発明の実施形態の一例である電池外装缶と集電タブの接合部の縦断面模式図The longitudinal cross-sectional schematic diagram of the junction part of the battery exterior can and the current collection tab which is an example of embodiment of this invention 本発明の実施形態において溶融部とテスト加工部へのレーザ加工時に供給されるレーザ強度と加工位置とをそれぞれ示すグラフThe graph which each shows the laser intensity | strength and processing position which are supplied at the time of the laser processing to a fusion | melting part and a test process part in embodiment of this invention 本発明の実施形態の一例である密閉型電池の製造方法を実施するためのレーザ加工装置を示す説明図Explanatory drawing which shows the laser processing apparatus for enforcing the manufacturing method of the sealed battery which is an example of embodiment of this invention 従来のパルスYAGレーザによる接合方法を示す説明図Explanatory drawing which shows the joining method by the conventional pulse YAG laser 本発明の実施の形態におけるファイバーレーザによる接合方法を示す説明図Explanatory drawing which shows the joining method by the fiber laser in embodiment of this invention キーホール溶接の原理を説明するための概念図Conceptual diagram for explaining the principle of keyhole welding 本発明の実施形態のキーホール溶接での照射レーザ強度と溶融深さとの関係を示したグラフThe graph which showed the relationship between the irradiation laser intensity | strength in the keyhole welding of embodiment of this invention, and a fusion | melting depth 本発明の実施形態のキーホール溶接での溶融深さと溶融幅との関係を示したグラフThe graph which showed the relationship between the fusion depth and the fusion width in the keyhole welding of embodiment of this invention 本発明の実施形態のキーホール溶接でレーザ加工した加工部写真Processed portion photographed by laser processing by keyhole welding according to an embodiment of the present invention 本発明の実施形態のキーホール溶接でレーザ加工した加工部写真Processed portion photographed by laser processing by keyhole welding according to an embodiment of the present invention 本発明の実施形態の溶融部及びテスト加工部でのレーザ強度を説明するための拡大底面図The enlarged bottom view for demonstrating the laser intensity in the fusion | melting part and test process part of embodiment of this invention 本発明の実施形態の溶融部及びテスト加工部でのレーザ強度を説明するための縦断面模式図The longitudinal cross-sectional schematic diagram for demonstrating the laser intensity in the fusion | melting part and test process part of embodiment of this invention 図8Bでのレーザ強度と加工位置との関係を示すグラフGraph showing the relationship between laser intensity and machining position in FIG. 8B 本発明の実施形態の溶融部及びテスト加工部でのレーザ強度の一例を説明するための拡大底面図The enlarged bottom view for demonstrating an example of the laser intensity in the fusion | melting part and test process part of embodiment of this invention 本発明の実施形態の溶融部及びテスト加工部でのレーザ強度の別の例を説明するための拡大底面図The enlarged bottom view for demonstrating another example of the laser intensity in the fusion | melting part and test processing part of embodiment of this invention 本発明の実施形態の溶融部及びテスト加工部でのレーザ強度のさらに別の例を説明するための拡大底面図The enlarged bottom view for demonstrating another example of the laser intensity in the fusion | melting part and test process part of embodiment of this invention 本発明の実施形態の溶融部及びテスト加工部での異なるレーザ加工パターンの説明図Explanatory drawing of the different laser processing pattern in the fusion | melting part and test processing part of embodiment of this invention 本発明の実施形態の溶融部及びテスト加工部での別のレーザ加工パターンの説明図Explanatory drawing of another laser processing pattern in the fusion | melting part and test processing part of embodiment of this invention 本発明の実施形態における電池製造方法を実施するためのレーザ加工装置を示す説明図Explanatory drawing which shows the laser processing apparatus for enforcing the battery manufacturing method in embodiment of this invention 図10Aの電池製造方法における溶融部及びテスト加工部での縦断面模式図FIG. 10A is a schematic vertical cross-sectional view of a melting part and a test processing part in the battery manufacturing method of FIG. 10A. 図10Aの電池製造方法における本発明の実施形態の溶融部及びテスト加工部でのレーザ加工パターンの説明図Explanatory drawing of the laser processing pattern in the fusion | melting part and test processing part of embodiment of this invention in the battery manufacturing method of FIG. 10A. 本発明の実施形態における電池製造方法を実施するためのレーザ加工装置を示す説明図Explanatory drawing which shows the laser processing apparatus for enforcing the battery manufacturing method in embodiment of this invention 図11Aの電池製造方法における溶融部及びテスト加工部での縦断面模式図FIG. 11A is a schematic vertical cross-sectional view of a melting part and a test processing part in the battery manufacturing method of FIG. 11A. 図11Aの電池製造方法における本発明の実施形態の溶融部及びテスト加工部でのレーザ加工パターンの説明図Explanatory drawing of the laser processing pattern in the fusion | melting part and test processing part of embodiment of this invention in the battery manufacturing method of FIG. 11A 特許文献3に記載された従来の密閉型電池及びその製造方法を示す図The figure which shows the conventional sealed type battery described in patent document 3, and its manufacturing method 従来の密閉型電池の溶融部の拡大図Enlarged view of the melting part of a conventional sealed battery

以下、本発明の実施に形態について、図面を参照しながら説明する。ただし、以下に示す各実施形態又は変形例は、本発明を具体的に実用化検討している円筒型電池の製造方法を例示するものであって、本発明を円筒型電池の製造方法に特定することを意図するものではなく、例えば角型電池等、特許請求の範囲に含まれるその他の実施形態のものにも等しく適応し得るものである。また、電池に限らず、レーザ接合する場合全般に適応し得るものであると考える。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, each embodiment or modification shown below exemplifies a method for manufacturing a cylindrical battery in which the present invention is specifically put into practical use, and the present invention is specified as a method for manufacturing a cylindrical battery. And is equally applicable to other embodiments within the scope of the claims, such as, for example, a prismatic battery. In addition, it is considered that the present invention can be applied not only to batteries but also to general laser bonding.

(実施形態共通の構成)
図1は、本発明の実施形態におけるレーザ溶接物の一例としての密閉型電池の構成を模式的に示した断面図である。
(Configuration common to the embodiments)
FIG. 1 is a cross-sectional view schematically showing a configuration of a sealed battery as an example of a laser welded product in an embodiment of the present invention.

図1に示すように、正極板1と負極板2とがセパレータ3を介して巻き取られた巻取体4が、複数個、電池外装缶5内に絶縁板7,8で挟み込まれた状態で電解液とともに収容されている。電池外装缶5の開口部は、ガスケット6を介して封口板10で封口されている。巻取体4のいずれか一方の極板(例えば、正極板1)から導出された正極集電タブ11は、封口板10に溶融部9にて、レーザ溶接されている。また、他方の極板(例えば、負極板2)から導出された負極集電タブ12は、電池外装缶5の外側底面の溶融部(レーザ溶融部)13にてレーザ接合されている。電池外装缶5は第1被溶接物の一例である。集電タブ11,12は第2被溶接物の一例である。密閉型電池はレーザ溶接物の一例である。   As shown in FIG. 1, a plurality of winding bodies 4 in which a positive electrode plate 1 and a negative electrode plate 2 are wound via a separator 3 are sandwiched between insulating plates 7 and 8 in a battery outer can 5. And is stored together with the electrolyte. The opening of the battery outer can 5 is sealed with a sealing plate 10 via a gasket 6. The positive electrode current collecting tab 11 led out from any one of the electrode plates (for example, the positive electrode plate 1) of the winding body 4 is laser welded to the sealing plate 10 at the melting portion 9. Further, the negative electrode current collecting tab 12 led out from the other electrode plate (for example, the negative electrode plate 2) is laser-bonded at a melting portion (laser melting portion) 13 on the outer bottom surface of the battery outer can 5. The battery outer can 5 is an example of a first workpiece. The current collecting tabs 11 and 12 are examples of the second workpiece. The sealed battery is an example of a laser welded product.

このような密閉型電池は、以下のような製造方法により製造される。   Such a sealed battery is manufactured by the following manufacturing method.

まず、正極板1及び負極板2がセパレータ3を介して捲回又は積層されてなる巻取体4を形成する。   First, a wound body 4 is formed in which the positive electrode plate 1 and the negative electrode plate 2 are wound or laminated with a separator 3 interposed therebetween.

次いで、巻取体4のそれぞれの極板1,2に、それぞれの集電タブ11,12の一端を接続する。   Next, one end of each current collecting tab 11, 12 is connected to each electrode plate 1, 2 of the winding body 4.

次いで、巻取体4を電池外装缶5内に収容する。   Next, the wound body 4 is accommodated in the battery outer can 5.

次いで、集電タブ12の他端の平面を電池外装缶5の内面底面部に当接させるように配置する。   Next, the current collecting tab 12 is disposed so that the other end of the current collecting tab 12 is in contact with the bottom surface of the inner surface of the battery outer can 5.

次いで、電池外装缶5の板厚hより小さいスポット径dを有するレーザビーム23を電池外装缶5の外側底面の照射位置、例えば、概略中央に、外側底面と直交する方向(中心軸)に照射するか又は外側底面と直交する方向に対して一定の照射角度を付けて照射して、溶融部13を形成する(図2A参照)。溶融部13は、集電タブ12を貫通せず、電池外装缶5と集電タブ12とが未貫通接合されている。この照射と同時に、溶融部13の近傍に、回析を利用して複数のレーザビーム23を照射して、複数のテスト加工部14も形成する。   Next, a laser beam 23 having a spot diameter d smaller than the plate thickness h of the battery outer can 5 is irradiated at an irradiation position on the outer bottom surface of the battery outer can 5, for example, approximately in the center, in a direction (central axis) perpendicular to the outer bottom surface. Or by irradiating at a fixed irradiation angle with respect to the direction orthogonal to the outer bottom surface to form the melting portion 13 (see FIG. 2A). The melting part 13 does not penetrate through the current collecting tab 12, and the battery outer can 5 and the current collecting tab 12 are non-through joined. Simultaneously with this irradiation, a plurality of test processing parts 14 are also formed by irradiating a plurality of laser beams 23 in the vicinity of the melting part 13 using diffraction.

この結果、電池外装缶5の外側表面の溶融部13及びテスト加工部14として直線状の加工痕が形成される。   As a result, linear processing marks are formed as the melting portion 13 and the test processing portion 14 on the outer surface of the battery outer can 5.

以下、テスト加工部14の加工痕の形状を基に、レーザ溶接良否判定を行うことについて、詳細に説明する。   Hereinafter, it will be described in detail that the laser welding quality determination is performed based on the shape of the processing mark of the test processing unit 14.

(密閉型電池の構成)
以下、本発明に係わる実施形態について、図面を参照しながら説明する。
(Configuration of sealed battery)
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

図2Aは、本発明の実施形態における、電池外装缶5と負極集電タブ12との接合溶融部13の拡大図である。溶融部13の形状又は長さなどは、必要な接合強度又はプロセスにより変更される。図2Aでは、溶融部13は、一番単純な点で示すが、詳しくは、後段で述べることとする。主に実際のプロセスでは、溶融部13は、電池外装缶5と負極集電タブ12との接合強度を確保する為、ある一定の長さの直線で構成されている。これは、レーザ加工しながら加工対象の電池外装缶5を一方向へ移動させながら加工している為、加工痕として、直線になっていることを表している。   FIG. 2A is an enlarged view of the joint melting portion 13 between the battery outer can 5 and the negative electrode current collecting tab 12 in the embodiment of the present invention. The shape or length of the melted portion 13 is changed depending on the required bonding strength or process. In FIG. 2A, the melting part 13 is shown by the simplest point, but details will be described later. Mainly in an actual process, the melting part 13 is constituted by a straight line having a certain length in order to ensure the bonding strength between the battery outer can 5 and the negative electrode current collecting tab 12. This indicates that the processing is performed while moving the battery outer can 5 to be processed in one direction while performing laser processing, so that the processing trace is a straight line.

テスト加工部14は、通常、溶融部13の近傍に位置し、溶融部13と同様な形状を形成しており、点又は直線である場合が主であるが、レーザ加工方法により、同様でない場合もありえる(後述する図11の実施形態の場合など)。   The test processing part 14 is usually located in the vicinity of the melting part 13 and forms the same shape as the melting part 13 and is mainly a point or a straight line, but is not the same depending on the laser processing method. It is also possible (such as in the case of the embodiment of FIG. 11 described later).

図2Bは、図2Aの断面模式図である。電池外装缶5と負極集電タブ12とは、接合溶融部13において接合されている。溶融部13は、負極集電タブ12を貫通しておらず、負極集電タブ12の内部で下方向に溶融している。   FIG. 2B is a schematic cross-sectional view of FIG. 2A. The battery outer can 5 and the negative electrode current collecting tab 12 are joined at the joining and melting part 13. The melting part 13 does not penetrate the negative electrode current collector tab 12 and melts downward in the negative electrode current collector tab 12.

図2Cは、溶融部13、そしてテスト加工部14へのレーザ加工時に供給されるレーザ強度をそれぞれ示している。溶融部13へ供給されるレーザ強度13Sは、テスト加工部14へ供給されるレーザ強度14Sと比較し、格段に大きいことが確認される。例えば、テスト加工部14へのレーザ強度は、溶融部13に供給されるレーザ強度の1/100以下のものであり、複数本ある場合は、その供給されるレーザ強度を変化させるものとする。外観でも、溶融部13とは溶融幅が異なることが確認出来る。テスト加工部14は、溶融部13よりもレーザ強度を小さくし、溶融深さを浅くすることが望ましい。   FIG. 2C shows the laser intensity supplied at the time of laser processing to the melting part 13 and the test processing part 14, respectively. It is confirmed that the laser intensity 13S supplied to the melting part 13 is much larger than the laser intensity 14S supplied to the test processing part 14. For example, the laser intensity to the test processing part 14 is 1/100 or less of the laser intensity supplied to the melting part 13, and when there are a plurality of laser intensity, the supplied laser intensity is changed. Also in appearance, it can be confirmed that the melting width is different from the melting part 13. It is desirable that the test processing unit 14 has a laser intensity smaller than the melting unit 13 and a melting depth shallower.

これらのレーザビームの供給は同時に、同じレーザ発振部より実施されることが必須であり、このようなレーザプロファイルの作り方としては、回折格子などを用いることが望ましい。その詳細は後段で述べる。   It is essential that these laser beams be supplied simultaneously from the same laser oscillation unit, and it is desirable to use a diffraction grating or the like as a method of creating such a laser profile. Details will be described later.

(接合装置)
次に、図2Aで示した溶融部13とテスト加工部14とを形成して、電池外装缶5と負極集電タブ12とを接合する接合装置を図3に示す。
(Joining equipment)
Next, FIG. 3 shows a joining apparatus for joining the battery outer can 5 and the negative electrode current collecting tab 12 by forming the melting part 13 and the test processing part 14 shown in FIG. 2A.

図3は、レーザ発振器19と、レーザ平行光20と、回折格子21と、レーザ加工ヘッド22と、集光レーザビーム23とを備える接合装置(レーザ加工装置)である。24はレーザビーム23が集光する集光点である。集光レーザビーム23は、回折格子21により、溶融部13用、テスト加工部14用に複数個所に分岐されている。   FIG. 3 shows a bonding apparatus (laser processing apparatus) including a laser oscillator 19, laser parallel light 20, a diffraction grating 21, a laser processing head 22, and a focused laser beam 23. Reference numeral 24 denotes a condensing point where the laser beam 23 condenses. The focused laser beam 23 is branched into a plurality of locations by the diffraction grating 21 for the melting portion 13 and the test processing portion 14.

まず始めに、この接合装置で使用しているレーザ発振器19、及び、レーザ加工ヘッド22から出たレーザビーム23のビーム品質(集光スポット径)について言及する。レーザビーム23は、回折格子21により分岐されているが、その1つの1つのビームは、レーザ強度は違うがビーム性質は同じであるとして、説明を行う。   First, the beam quality (condensed spot diameter) of the laser beam 23 emitted from the laser oscillator 19 and the laser processing head 22 used in this bonding apparatus will be described. Although the laser beam 23 is branched by the diffraction grating 21, one of the beams will be described assuming that the beam intensity is the same although the laser intensity is different.

電池外装缶5の板厚は通常0.2〜0.5mmであり、負極集電タブ12の板厚は通常0.1〜0.2mm程度である。このような薄板の重ね合わせレーザ接合に対して、特許文献1〜3では、パルスYAGレーザなどを用いてパルス的にポイント的にレーザ溶接されている。パルスYAGレーザのスポット径はφ0.6mm程度であり、電池外装缶5の板厚より大きく、熱伝導型のレーザ溶接になっている。   The plate thickness of the battery outer can 5 is usually 0.2 to 0.5 mm, and the plate thickness of the negative electrode current collecting tab 12 is usually about 0.1 to 0.2 mm. In Patent Documents 1 to 3, laser welding is performed in a pointwise manner using a pulsed YAG laser or the like, for such a thin plate overlapping laser joining. The spot diameter of the pulse YAG laser is about φ0.6 mm, which is larger than the plate thickness of the battery outer can 5 and is heat conduction type laser welding.

(従来のパルスYAGレーザによる接合方法の課題)
図4は、電池外装缶5に対しての従来のパルスYAGレーザによる接合方法を示す図である。レーザビーム23は、電池外装缶5の上表面に照射され、まず、電池外装缶5の上表面が溶融して、溶融部13が形成される(図4(a)参照)。
(Problems of bonding method using conventional pulsed YAG laser)
FIG. 4 is a view showing a conventional method of joining the battery outer can 5 with a pulsed YAG laser. The laser beam 23 is irradiated on the upper surface of the battery outer can 5, and first, the upper surface of the battery outer can 5 is melted to form a melting portion 13 (see FIG. 4A).

次に、レーザビーム23が照射され続けると、溶融部13が熱伝導的に拡がっていくが、電池外装缶5と負極集電タブ12との間には空気層があり、熱伝導的に分断されている。このため、一時的に、溶融部13は、電池外装缶5のみに留まり、負極集電タブ12が溶融していない状態が発生する(図4(b)参照)。   Next, when the laser beam 23 continues to be irradiated, the melted portion 13 spreads in a heat conductive manner, but there is an air layer between the battery outer can 5 and the negative electrode current collecting tab 12, and the heat conduction is divided. Has been. For this reason, the melting part 13 temporarily stays only in the battery outer can 5 and the negative electrode current collecting tab 12 is not melted (see FIG. 4B).

更に、レーザビーム23が照射され続け、電池外装缶5と負極集電タブ12とが密着されていると、溶融部13の熱エネルギが負極集電タブ12に伝わり、負極集電タブ12が溶融して負極集電タブ12と電池外装缶5とが接合される(図4(c)参照)。このときの溶融部13の電池外装缶5上の表面溶融サイズは、熱伝導で拡がっているため、レーザビーム23のスポット径φ0.6mmより大きく、一例としてφ1mm程度となる。   Furthermore, when the laser beam 23 continues to be irradiated and the battery outer can 5 and the negative electrode current collecting tab 12 are in close contact with each other, the thermal energy of the melting portion 13 is transmitted to the negative electrode current collecting tab 12 and the negative electrode current collecting tab 12 is melted. Then, the negative electrode current collecting tab 12 and the battery outer can 5 are joined (see FIG. 4C). Since the surface melt size on the battery outer can 5 of the melting part 13 at this time is expanded by heat conduction, it is larger than the spot diameter φ0.6 mm of the laser beam 23, and is about φ1 mm as an example.

一方、一例として、各々の密閉型電池の各電極を連結するためのワイヤボンドの線径はφ0.2mmであり、その先端接合部は約0.4mmである。このワイヤボンドの先端接合サイズより、前記溶融部13の表面溶融サイズがかなり大きいため、その溶融部でのワイヤボンドの接合信頼性が低下する。   On the other hand, as an example, the diameter of the wire bond for connecting each electrode of each sealed battery is φ0.2 mm, and the tip joint portion is about 0.4 mm. Since the surface melt size of the melted portion 13 is considerably larger than the wire bond tip joining size, the bonding reliability of the wire bond at the melted portion is lowered.

また、電池外装缶5より負極集電タブ12の方が、板厚が薄く熱容量が小さいため、負極集電タブ12に熱エネルギが伝わりやすく、負極集電タブ12を直ぐに貫通溶融してしまう場合もある(図4(d)参照)。溶融部13が負極集電タブ12を貫通溶融すると、電池内部にスパッタが混入し短絡又は発火不良につながり、不良となる。   Further, since the negative electrode current collecting tab 12 is thinner than the battery outer can 5 and has a smaller heat capacity, heat energy is easily transmitted to the negative electrode current collecting tab 12 and the negative electrode current collecting tab 12 is immediately penetrated and melted. (See FIG. 4 (d)). When the melting part 13 penetrates and melts the negative electrode current collecting tab 12, spatter is mixed inside the battery, leading to a short circuit or poor ignition, resulting in a failure.

一方、図4(b)において、投入レーザパワーが強すぎると、レーザビーム23のスポット径が大きく、電池外装缶5の板厚が薄いため、電池外装缶5の溶融部13に穴あき25が発生し(図4(b’)参照)、更には、負極集電タブ12にも穴あき25が発生し(図4(d’)参照)、電池の漏液不良となる。   On the other hand, in FIG. 4B, if the input laser power is too strong, the spot diameter of the laser beam 23 is large and the plate thickness of the battery outer can 5 is thin. (See FIG. 4 (b ′)), and further, a hole 25 is formed in the negative electrode current collecting tab 12 (see FIG. 4 (d ′)), resulting in battery leakage failure.

そのため、熱伝導型のレーザ溶接ではなく、深溶け込み型のレーザ溶接(キーホール溶接)ができれば、表面溶融面積が微小になるため、ワイヤボンドの接合信頼性が確保でき、また、貫通溶接及び穴あき25の防止が可能になる。例えば、ファイバーレーザは従来のパルスYAGレーザよりはるかにレーザビーム品質に優れているため、スポット径を例えばφ0.02mm程度に非常に小さくすることができる。そのため、集光点のパワー密度を非常に強くすることができる。   Therefore, if deep penetration type laser welding (keyhole welding) can be performed instead of heat conduction type laser welding, the surface melting area becomes small, so that the bonding reliability of wire bonds can be ensured, and through welding and hole welding are possible. Aperture 25 can be prevented. For example, since the fiber laser is far superior in laser beam quality to the conventional pulse YAG laser, the spot diameter can be made very small, for example, about φ0.02 mm. Therefore, the power density at the condensing point can be made very strong.

(実施形態におけるファイバーレーザによる接合方法)
図5は、本発明の実施形態に用いられるファイバーレーザによる接合方法を示す図である。
(Joint method using fiber laser in the embodiment)
FIG. 5 is a diagram showing a bonding method using a fiber laser used in the embodiment of the present invention.

まず、ファイバーレーザから出たレーザビーム23Bは、電池外装缶5の上表面に局所的に照射されて、電池外装缶5に溶融部13Bが形成されると共に、レーザ照射部のパワー密度が高いために溶融部13Bの中央部で気化し、その金属蒸気の蒸発反発力によりキーホール26が形成される(図5(a)参照)。   First, the laser beam 23B emitted from the fiber laser is locally irradiated on the upper surface of the battery outer can 5 to form the melted portion 13B in the battery outer can 5 and the power density of the laser irradiated portion is high. Vaporizes at the center of the melting portion 13B, and the keyhole 26 is formed by the evaporation repulsion force of the metal vapor (see FIG. 5A).

次に、そのキーホール26の内部にレーザビーム23Bが入射していくと、キーホール26の内面でレーザビーム23Bが反射して、キーホール26が深く成長していく(図5(b)参照)。   Next, when the laser beam 23B enters the keyhole 26, the laser beam 23B is reflected from the inner surface of the keyhole 26, and the keyhole 26 grows deeply (see FIG. 5B). ).

更に、レーザビーム25Bを照射し続けると、キーホール26が深く成長し、溶融部13Bも負極集電タブ12まで達する(図5(c)参照)。   Further, when the laser beam 25B is continuously irradiated, the keyhole 26 grows deeply, and the molten portion 13B reaches the negative electrode current collecting tab 12 (see FIG. 5C).

次いで、レーザ照射が停止すると(図5(d)参照)、キーホール26が消滅して溶融部13Bが凝固し、電池外装缶5と負極集電タブ12とが接合される。一例として、ファイバーレーザのスポット径はφ0.02〜0.05mmと小さく、溶融部13Bの溶融径又は溶融幅も約0.1mmと小さくなる。この表面溶融サイズは、ワイヤボンドの先端接合部サイズよりかなり小さいため、その溶融部13Bでのワイヤボンドの接合信頼性は確保できる。   Next, when the laser irradiation is stopped (see FIG. 5D), the keyhole 26 disappears, the molten portion 13B is solidified, and the battery outer can 5 and the negative electrode current collecting tab 12 are joined. As an example, the spot diameter of the fiber laser is as small as φ0.02 to 0.05 mm, and the melt diameter or melt width of the melted part 13B is also as small as about 0.1 mm. Since this surface melt size is considerably smaller than the wire bond tip joint size, wire bond joint reliability at the melt portion 13B can be ensured.

(キーホール溶接の原理)
図6は、キーホール溶接の原理を説明するための概念図である。図6は、厚みhの板状部材27に、レーザビーム28を照射することによって、直径Xのキーホール29が生成された状態を示している。キーホール29は、溶融した板状部材27の金属蒸気の蒸発反発力Paと、溶融した板状部材27の表面張力Psとが均衡することによって維持される。
(Keyhole welding principle)
FIG. 6 is a conceptual diagram for explaining the principle of keyhole welding. FIG. 6 shows a state where a keyhole 29 having a diameter X is generated by irradiating a plate-shaped member 27 having a thickness h with a laser beam 28. The keyhole 29 is maintained by balancing the evaporation repulsion force Pa of the metal vapor of the molten plate member 27 and the surface tension Ps of the molten plate member 27.

このとき、キーホール29の表面エネルギE(X)は、一般に、以下の式(1)で表される(例えば、宮本勇「シングルモードファイバーレーザによる金属フォイルの微細高速溶接」;第58回レーザ加工学会論文集;2003年3月を参照)。   At this time, the surface energy E (X) of the keyhole 29 is generally expressed by the following formula (1) (for example, Isamu Miyamoto “Fine High-Speed Welding of Metal Foil Using Single Mode Fiber Laser”; 58th Laser (See Processing Society Proceedings; March 2003).

E(X)=πG[hX+1/2(D−X)]・・・式(1)
ここで、Gは、板状部材27の液体金属の表面エネルギで、Dは溶融領域30の直径である。
E (X) = πG [hX + 1/2 (D 2 −X 2 )] (1)
Here, G is the surface energy of the liquid metal of the plate-like member 27, and D is the diameter of the melting region 30.

式(1)から、以下の式(2)が得られる。   From the equation (1), the following equation (2) is obtained.

dE/dX=πG(h−X)・・・式(2)
式(2)から、X>hの場合、dE/dX<0となり、キーホール29の直径Xの増大(dX)により、表面エネルギEは減少(dE)するため、キーホール29は穴あきとなる。一方、X<hの場合、dE/dX>0となり、キーホール29の直径Xの増大(dX)により、表面エネルギEは増大(dE)するため、キーホール29の直径Xは収縮して、蒸発反発力Paと均衡する。
dE / dX = πG (h−X) (2)
From Equation (2), when X> h, dE / dX <0, and the surface energy E decreases (dE) due to the increase in the diameter X of the keyhole 29 (dX). Become. On the other hand, in the case of X <h, dE / dX> 0, and the surface energy E increases (dE) due to the increase in the diameter X of the keyhole 29 (dX), so the diameter X of the keyhole 29 contracts, Equilibrium with evaporation repulsion force Pa.

従って、板状部材27の厚みhより小さいスポット径dを有するレーザビーム28を用いれば、安定したキーホール溶接を行うことができる。更には、板状部材27の厚みhより、キーホール溶接により形成された溶融領域30の直径Dを小さくすることで、より安定したキーホール溶接を行うことができる。   Therefore, if the laser beam 28 having the spot diameter d smaller than the thickness h of the plate member 27 is used, stable keyhole welding can be performed. Furthermore, by reducing the diameter D of the melting region 30 formed by keyhole welding from the thickness h of the plate-like member 27, more stable keyhole welding can be performed.

(表面溶融サイズが小さく、加工パワーが少し変化しても溶融幅に変化が少ない接合方法)
図5及び図6で示したように、本発明の実施形態で用いているキーホール溶接では、溶け込み深さに対し、表面溶融サイズが小さく、加工パワーが少し変化しても溶融幅に変化が少ないことが考えられる。
(Joint method with small surface melt size and little change in melt width even if processing power changes slightly)
As shown in FIGS. 5 and 6, in the keyhole welding used in the embodiment of the present invention, the surface melt size is small with respect to the penetration depth, and the melt width changes even if the machining power slightly changes. There may be few.

また、その説明を、図7A〜図7Dを用いて、再度、説明する。   The description will be described again with reference to FIGS. 7A to 7D.

図7Aは、キーホール溶接でのレーザ強度と溶融深さとの関係を示したグラフである。接合に必要な溶融深さが、許容溶融深さ39の範囲とした場合、レーザ強度のばらつきは、レーザ強度範囲31に入っていることが必要である。但し、実際に電池外装缶5に照射されているレーザ強度は不明である。   FIG. 7A is a graph showing the relationship between laser intensity and melting depth in keyhole welding. When the melting depth necessary for joining is within the range of the allowable melting depth 39, the variation in laser intensity needs to be within the laser intensity range 31. However, the laser intensity actually irradiated to the battery outer can 5 is unknown.

図7Bは、同じ加工時の溶融幅と溶融深さとの関係を示したグラフである。外観から判定出来る溶融部13の幅でレーザ強度を確認したいと考えた場合、許容溶融深さ39に当たる溶融幅32は、大変狭いものになっている。   FIG. 7B is a graph showing the relationship between the melt width and the melt depth during the same processing. When it is desired to confirm the laser intensity with the width of the melted portion 13 that can be determined from the appearance, the melt width 32 corresponding to the allowable melt depth 39 is very narrow.

図7C及び図7Dに、溶融深さが良品(接合良品)と不良品(接合不良品)との実際の写真をそれぞれ示す。図2Aでは溶融部13を点で示しているが、図7C及び図7Dの写真は実プロセスのものであり、電池外装缶5上の溶融部13は線で示されている。溶融幅33,34は、図7C及び図7Dを見てもわかるようにほぼ同じ幅であり、その状態を図7Bで示すと、それぞれ、矢印の先の黒丸の部分になる。   FIG. 7C and FIG. 7D show actual photographs of a non-defective product (joint good product) and a defective product (joint defective product), respectively. In FIG. 2A, the melting part 13 is indicated by a dot, but the photographs in FIGS. 7C and 7D are actual processes, and the melting part 13 on the battery outer can 5 is indicated by a line. The melt widths 33 and 34 are substantially the same width as can be seen from FIGS. 7C and 7D, and when this state is shown in FIG.

図7Bよりわかるように、溶融深さが変化しても、溶融幅は大きく変化しない。よって、本溶接工法では、電池外装缶5の外観に現れている溶融部13にて、レーザ強度の変化を確認することは困難であると言える。   As can be seen from FIG. 7B, the melt width does not change greatly even if the melt depth changes. Therefore, in this welding method, it can be said that it is difficult to confirm the change in the laser intensity at the melting part 13 appearing on the outer appearance of the battery outer can 5.

(レーザ強度の変化の確認)
次に、図8A〜図8Fを用いて、電池外装缶5の外観観察にて、前記レーザ強度の変化を確認する本発明の実施形態についてさらに詳しく述べる。ここからは、より実プロセスに近づけて説明する為に、溶融部13の形状を線状として示す。溶融部13の形状を点から線にする手段としては、レーザ加工時に被加工物(本発明の実施形態の場合は電池外装缶5など)を、公知のガルパノミラーの使用により照射角度を変化させて、一方向に移動させる方法が取られるが、そのような公知の構成については、説明を省略する。
(Confirmation of changes in laser intensity)
Next, with reference to FIGS. 8A to 8F, an embodiment of the present invention for confirming the change in the laser intensity by observing the appearance of the battery outer can 5 will be described in more detail. From here, the shape of the melted part 13 is shown as a line in order to describe it closer to the actual process. As a means for making the shape of the melted portion 13 from a point to a line, an irradiation angle of a workpiece (such as a battery outer can 5 in the embodiment of the present invention) during laser processing is changed by using a known galvano mirror. Although a method of moving in one direction is taken, description of such a known configuration is omitted.

そして、今回は、レーザ強度の異なる3種のテスト加工部14(14a,14b,14c)を施した場合について説明するが、より精度良くレーザ強度の変化を確認するためには、レーザ強度の異なるテスト加工部14をより多段に施すことが必要とされるが、本明細書では、代表例として3段のテスト加工部14(14a,14b,14c)で説明する。   And this time, the case where three types of test processing parts 14 (14a, 14b, 14c) with different laser intensities are applied will be described. In order to confirm the change in the laser intensity more accurately, the laser intensities are different. Although it is necessary to apply the test processing units 14 in multiple stages, in this specification, the test processing units 14 (14a, 14b, 14c) of three stages will be described as a representative example.

図8A及び図8Bは、図2A及び図2Bと同様のものであるが、理解し易い為、図8A及び図8Bとして再記載している。   8A and 8B are similar to FIGS. 2A and 2B, but are re-described as FIGS. 8A and 8B for ease of understanding.

図8Cは、図2Cのテスト加工部14に照射されたレーザ強度14Sを拡大して示したものであり、テスト加工部14のレーザ強度14Sの一例としては、3種の異なるレーザ強度35−1、35−2、35−3を有するテスト加工部14a,14b,14cが存在する。なお、レーザ強度35−1は、溶融部13のレーザ強度13Sの1/100以下であるため、レーザ強度13Sの上端の図示を省略している。今回の場合、レーザ強度35−1、レーザ強度35−2、レーザ強度35−3の順で、レーザ強度を低下させている。レーザ強度比の一例としては、例えば、13S:35−1:35−2:35−3=500:50:30:10などと成る。ただし、13Sとは、電池外装缶5の外側底面の溶融部(レーザ溶融部)13で電池外装缶5と負極集電タブ12とをレーザ接合するときの最低限必要なレーザ強度である。   FIG. 8C is an enlarged view of the laser intensity 14S irradiated to the test processing unit 14 in FIG. 2C. As an example of the laser intensity 14S of the test processing unit 14, three different laser intensities 35-1 are shown. , 35-2, and 35-3, there are test processing portions 14a, 14b, and 14c. Since the laser intensity 35-1 is 1/100 or less of the laser intensity 13S of the melting part 13, the upper end of the laser intensity 13S is not shown. In this case, the laser intensity is decreased in the order of the laser intensity 35-1, the laser intensity 35-2, and the laser intensity 35-3. An example of the laser intensity ratio is, for example, 13S: 35-1: 35-2: 35-3 = 500: 50: 30: 10. However, 13S is the minimum laser intensity required when the battery outer can 5 and the negative electrode current collecting tab 12 are laser-bonded by the melting portion (laser melting portion) 13 on the outer bottom surface of the battery outer can 5.

そして、このレーザ加工プロファイルにて、加工した場合の溶融痕の状態を図8D〜図8Fに示す。   And the state of the melt mark at the time of processing with this laser processing profile is shown in FIGS. 8D to 8F.

なお、このレーザプロファイルを実現する為には、図3に記載している回折格子21など、レーザビームを所定のレーザ強度に分解する手段が必要であるが、回折格子21を用いたレーザ分岐方法については、公知の構成を使用することができる。   In order to realize this laser profile, means for decomposing the laser beam into a predetermined laser intensity, such as the diffraction grating 21 shown in FIG. 3, is necessary. A laser branching method using the diffraction grating 21 A well-known structure can be used for.

図8Dは、所定よりもレーザ強度が強い状態で加工された場合であり、テスト加工部14a,14b,14cの中でテスト加工部14a,14b,14cすなわちレーザ強度35−1〜35−3の3本とも加工線の加工痕が確認される。   FIG. 8D shows a case in which the laser intensity is higher than a predetermined level, and among the test processed parts 14a, 14b, 14c, the test processed parts 14a, 14b, 14c, that is, the laser intensity 35-1 to 35-3. The processing trace of the processing line is confirmed in all three.

図8Eは、所定のレーザ強度状態のものであり、テスト加工部14a,14b,14cの中でレーザ強度35−3が弱いテスト加工部14cの加工線の加工痕が消えていることが確認出来る。   FIG. 8E shows a state of a predetermined laser intensity, and it can be confirmed that the processing trace of the processing line of the test processing portion 14c having a weak laser intensity 35-3 in the test processing portions 14a, 14b, and 14c has disappeared. .

図8Fは、所定よりもレーザ強度が弱い場合であり、テスト加工部14a,14b,14cの中で一番レーザ強度35−1が高いテスト加工部14aでのみの加工線の加工痕を確認することが出来る。   FIG. 8F shows a case where the laser intensity is weaker than a predetermined value, and the processing trace of the processing line is confirmed only in the test processing section 14a having the highest laser intensity 35-1 among the test processing sections 14a, 14b, and 14c. I can do it.

つまり、レーザ強度35−1〜35−3の加工線のうちレーザ強度35−1と35−2の加工線の加工痕が確認出来る図8Eの場合が良品(接合良品)であり、レーザ強度35−1の加工線の加工痕のみの図8F、及び、レーザ強度35−1〜35−3の3本の加工線の加工痕が確認出来る図8Dの場合は、不良(接合不良品)と見なすことが出来る。よって、電池外装缶加工部に照射されたレーザ強度を、溶融面の断面を観察することなく、テスト加工部14a,14b,14cの加工線の加工痕の状態把握により確認して、溶接の良否判定をすることが出来る。   That is, the case of FIG. 8E in which the processing traces of the processing lines with the laser intensities 35-1 and 35-2 among the processing lines with the laser intensities 35-1 to 35-3 can be confirmed is a non-defective product (bonding non-defective product). 8F with only the processing trace of the processing line of -1 and FIG. 8D in which the processing traces of the three processing lines with the laser intensities 35-1 to 35-3 can be confirmed are regarded as defective (joint defective products). I can do it. Therefore, the laser intensity irradiated to the battery outer can processing part is confirmed by grasping the state of the processing marks of the processing lines of the test processing parts 14a, 14b, and 14c without observing the cross section of the molten surface, and whether or not the welding is good. Judgment can be made.

今回、テスト加工部14としてレーザ強度35−1〜35−3の3本の加工線の加工痕の状態での判定を記載したが、テスト加工部14を溶融部13とレーザ強度35−1、35−2の2種の加工線の加工痕の状態で、良否判定することも出来る。   In this example, the test processing unit 14 is described as being in the state of processing traces of three processing lines with laser intensities 35-1 to 35-3. It is also possible to determine whether or not the product is good with the state of the processing traces of the two types of processing lines 35-2.

本例によれば、通常、溶接状態の良否には、破壊試験による接合面の観察、又は、超音波などを用いた非破壊検査が必要になるが、前記したように2種又は3種などの加工線の加工痕の状態で良否判定が出来る。このように構成すれば、溶接直後の外観検査のみで済み、設備投資又は検査工程の追加が不要になる。さらに、全数検査も実施が出来、より高いレベルで品質管理が出来る。   According to this example, usually, the quality of the welded state requires observation of the joint surface by a destructive test, or nondestructive inspection using ultrasonic waves, but as described above, two or three types, etc. It is possible to make a pass / fail judgment based on the state of the machining trace of the machining line. If comprised in this way, only the external appearance test | inspection immediately after welding will be sufficient, and an installation investment or the addition of an inspection process becomes unnecessary. In addition, 100% inspection can be performed and quality control can be performed at a higher level.

この場合、良品はレーザ強度35−1の加工線の加工痕が所望の形状(直線)の場合で、不良は、レーザ強度35−1、35−2の2本が確認、あるいはレーザ強度35−1のみが見えかつレーザ強度35−1が所望の形状以外(断線)の場合である。   In this case, the non-defective product is a case where the processing trace of the processing line of the laser intensity 35-1 has a desired shape (straight line), and the defect is confirmed by two laser intensity 35-1 and 35-2, or the laser intensity 35- This is a case where only 1 is visible and the laser intensity 35-1 is other than the desired shape (disconnection).

前記の方法にて、レーザ強度が適正範囲内であることを確認が出来るが、実際の加工条件に合わせ、13S:35−1:35−2:35−3のレーザパワー比の設定を適切にすることが重要である。その比の決定は、回折格子21の設計に左右される。   Although it can be confirmed by the above method that the laser intensity is within an appropriate range, the laser power ratio of 13S: 35-1: 35-2: 35-3 is appropriately set according to the actual processing conditions. It is important to. The determination of the ratio depends on the design of the diffraction grating 21.

なお、今回、溶接の良否判定は、テスト加工部14の加工痕のそれぞれの形状(存在の有無及び存在するときの状態)で判定しているが、それぞれのラインの途中でかすれなどが発生した場合は、その時点で不良と判定するかは、そのプロセスにより、判定されるものとする。   In addition, this time, the quality of welding is determined by the shape of each processing mark of the test processing unit 14 (presence / absence and state when it exists). However, fading occurred in the middle of each line. In such a case, it is determined by the process whether to determine the defect at that time.

なお、テスト加工部14の加工痕のそれぞれの形状(存在の有無及び存在するときの状態)での判定は、カメラなどの撮像装置と、制御部とを備えれば、実施することができる。例えば、カメラなどの撮像装置で溶融部13及びテスト加工部14を撮像し、撮像した画像情報を制御部の2値化部で2値化処理したのち、制御部の画像処理部での画像処理したのち、制御部の判定部で判定することができる。   Note that the determination of each shape (the presence / absence and state of presence) of the processing marks of the test processing unit 14 can be performed if an imaging device such as a camera and a control unit are provided. For example, after the fusing unit 13 and the test processing unit 14 are imaged with an imaging device such as a camera, the imaged image information is binarized with the binarizing unit of the control unit, and then image processing with the image processing unit of the control unit After that, it can be determined by the determination unit of the control unit.

図9A及び図9Bでは、図8Aの類似例を示している。   9A and 9B show a similar example of FIG. 8A.

図9Aは、溶融部13が3本であり、テスト加工部14としても、3種類の異なるレーザ強度36−1〜36−3の3本のテスト加工部14a,14b,14cの場合を示している。レーザ強度36−1〜36−3では、レーザ強度36−1、レーザ強度36−2、レーザ強度36−3の順番でレーザ強度を小さくしている例で示している。   FIG. 9A shows a case where there are three melted portions 13 and three test processed portions 14a, 14b and 14c having three different laser intensities 36-1 to 36-3 as the test processed portion 14. Yes. In the laser intensity 36-1 to 36-3, the laser intensity is decreased in the order of the laser intensity 36-1, the laser intensity 36-2, and the laser intensity 36-3.

このように、図9Aに示すように複数の溶融部13すなわち複数個所を同時加工する場合でも、図8Aの場合と同じ方法で良否判定が可能になる。   As described above, even when a plurality of melted portions 13, that is, a plurality of places are simultaneously processed as shown in FIG. 9A, it is possible to determine whether the product is good or bad by the same method as in FIG.

図9Bは、溶融部13の両側にテスト加工部14がある場合を示しており、前記同様にレーザ強度36−1〜36−3の加工線の加工痕がある場合である。この場合、両側それぞれ別々に良否判定を行う。   FIG. 9B shows a case where there are test processing portions 14 on both sides of the melting portion 13, and a case where there are processing traces of processing lines with laser intensities 36-1 to 36-3 as described above. In this case, the pass / fail judgment is performed separately on both sides.

このような構成によれば、片側にのみテスト加工部14が存在している図8B及び図9Aの場合と比較して、図9Bにおける溶融部13の左右での判定結果を参考にすることが出来る為、テスト加工部14の状態(加工線の加工痕の有無及び形状など)をより精度良く確認することが出来る例である。   According to such a configuration, it is possible to refer to the determination results on the left and right sides of the melted portion 13 in FIG. 9B as compared to the case of FIGS. 8B and 9A where the test processing portion 14 exists only on one side. Since this is possible, this is an example in which the state of the test processing unit 14 (such as the presence or absence of the processing trace of the processing line and the shape) can be confirmed with higher accuracy.

前記においても、図8Aのときと同様に、レーザ強度36−1〜36−3のテスト加工部14a,14b,14c、又は溶融部13を使用し、溶融部13、そして36−1、36−2の3種の加工線の加工痕の状態より、例えば、レーザ強度36−1、36−2の加工線の加工痕が確認出来る場合を良品とし、レーザ強度36−1のみ、又はレーザ強度36−1〜36−3の3本の加工線の加工痕が確認出来る場合は不良とする、などと判定することが出来る。   Also in the above, similarly to the case of FIG. 8A, the test processed portions 14a, 14b, 14c having the laser intensities 36-1 to 36-3 or the melting portion 13 are used, the melting portion 13, and 36-1, 36- For example, if the processing traces of the processing lines with the laser intensity 36-1 and 36-2 can be confirmed from the state of the processing traces of the three types of processing lines 2), the laser intensity 36-1 alone or the laser intensity 36 is determined. When the processing traces of the three processing lines -1 to 36-3 can be confirmed, it can be determined that the processing is defective.

図9Bでは、図8Aと比較して、メイン加工部である溶融部13の両側に良否判定用のテスト加工部14a,14b,14cを設けることで、両側の溶接結果から良否を判定出来る為、より高い精度で、判定が出来る。   In FIG. 9B, compared with FIG. 8A, it is possible to determine pass / fail from the welding results on both sides by providing test processing portions 14a, 14b, 14c for determining pass / fail on both sides of the melted portion 13 which is the main processed portion. Judgment can be made with higher accuracy.

次に、本発明に係わる実施形態について、図面を参照しながら説明する。   Next, embodiments according to the present invention will be described with reference to the drawings.

図10Aは、図3と同様なレーザ加工装置を示している。異なる点としては、電池外装缶5の外側底面に対してレーザ照射を斜めに照射している点である。   FIG. 10A shows a laser processing apparatus similar to FIG. The difference is that laser irradiation is obliquely applied to the outer bottom surface of the battery outer can 5.

図10Bは、図10Aの状態にて、加工した場合の加工部分の断面イメージである。集光レーザビーム23は、電池外装缶5の外側底面に対して斜めに当たっている為、溶融部13の溶融向きは斜めになる。また、レーザビーム(第1のレーザビーム)23より分岐したレーザビーム(第2〜第4のレーザビーム)23a,23b,23cで形成されるテスト加工部14(14a,14b,14c)も、同様に斜めになる。但し、レーザビーム23a,23b,23cを斜めに照射しているので、溶融深さは、図8の場合よりも浅い状態になる。   FIG. 10B is a cross-sectional image of the processed part when processed in the state of FIG. 10A. Since the focused laser beam 23 is obliquely applied to the outer bottom surface of the battery outer can 5, the melting direction of the melting part 13 is oblique. The same applies to the test processing portions 14 (14a, 14b, 14c) formed by the laser beams (second to fourth laser beams) 23a, 23b, 23c branched from the laser beam (first laser beam) 23. It becomes slanted. However, since the laser beams 23a, 23b, and 23c are obliquely irradiated, the melting depth is shallower than in the case of FIG.

図10Cは、図10Bを電池外装缶5の表面(外側底面)より溶融部(第1の加工痕)13及びテスト加工部14を見た図である。図10Cよりわかるように、溶融部13及びテスト加工部14、そしてテスト加工部14内のテスト加工部14a,14b,14cの加工線の加工痕(第2〜第4の加工痕)は、図8Aと同様に見える。テスト加工部14a,14b,14cにおいても、レーザ強度37−1〜37−3をテスト加工部14aからテスト加工部14cに向けて順番に低減させた場合として示している。   FIG. 10C is a view of FIG. 10B as seen from the surface (outer bottom surface) of the battery outer can 5 with the melted portion (first processing trace) 13 and the test processing portion 14. As can be seen from FIG. 10C, the processing traces (second to fourth processing traces) of the melted portion 13, the test processing portion 14, and the test processing portions 14 a, 14 b, 14 c in the test processing portion 14 are shown in FIG. Looks like 8A. Also in the test processing parts 14a, 14b, 14c, the laser intensity 37-1 to 37-3 is shown as a case where the laser intensity is decreased in order from the test processing part 14a to the test processing part 14c.

接合良否の判定方法としては、図8Aの場合の判定方法と同様、レーザ強度37−1、37−2の加工線の加工痕が確認出来る場合は良品とみなし、レーザ強度37−1の加工痕のみ、又はレーザ強度37−1〜37−3の3本の加工線の加工痕が確認出来る場合は不良とみなすことが出来、またテスト加工14として、テスト加工部14a,14bの2本の加工線の加工痕の見え方でも良否判定が出来、図10Aのような加工方法でも、本発明の効果が得られることが理解出来る。   As a method for determining whether or not the bonding is good, as in the case of the determination method in FIG. 8A, if the processing traces of the processing lines with the laser intensities 37-1 and 37-2 can be confirmed, it is regarded as a non-defective product. If the processing traces of the three processing lines having the laser intensities 37-1 to 37-3 can be confirmed, it can be regarded as defective, and as the test processing 14, the two processing of the test processing portions 14a and 14b It can be understood that the quality of the processing marks on the line can be judged, and that the effect of the present invention can be obtained even with the processing method as shown in FIG. 10A.

図10Aに示すように、斜め加工することで、垂直加工時よりもビーム照射幅が広がる。このような場合でも、他の例と同様に、加工線の加工痕の見え方で良否判定を行うことができる。   As shown in FIG. 10A, the beam irradiation width is widened by performing the oblique processing as compared with the vertical processing. Even in such a case, it is possible to make a pass / fail judgment based on how the machining traces of the machining line are visible, as in the other examples.

次に、本発明に係わる実施形態について、図面を参照しながら説明する。   Next, embodiments according to the present invention will be described with reference to the drawings.

図11Aは、図10Aと同様なレーザ加工装置を示している。異なる点としては、電池外装缶5が集光点24を通る回転中心(レーザ加工中心)52周りにに回転するモータなどの回転機構51も備えていることである。この方法で加工している目的は、溶融部13の電池外装缶5の外側底面の溶融部13の面積を最小にはするが、溶融部13として溶けている部分を最大にしたい為、このようなプロセス及び構成を採用している。   FIG. 11A shows a laser processing apparatus similar to FIG. 10A. The difference is that the battery outer can 5 also includes a rotation mechanism 51 such as a motor that rotates around a rotation center (laser processing center) 52 that passes through the condensing point 24. The purpose of processing by this method is to minimize the area of the melted portion 13 on the outer bottom surface of the battery outer can 5 of the melted portion 13, but to maximize the melted portion as the melted portion 13. Adopting a simple process and configuration.

図11Bは、図11Aの状態にて、加工した場合の加工部分の断面イメージ図である。この例では、集光レーザビーム23は、電池外装缶5の外側底面に対して斜めに当たっている為、加工痕も斜めになる。   FIG. 11B is a cross-sectional image diagram of a processed portion when processed in the state of FIG. 11A. In this example, the focused laser beam 23 is obliquely applied to the outer bottom surface of the battery outer can 5, so that the processing trace is also oblique.

レーザビーム23より分岐したレーザビーム23a,23b,23cで形成されるテスト加工部37は、テスト加工部37a,37b,37cとする。   Test processing portions 37 formed by the laser beams 23a, 23b, and 23c branched from the laser beam 23 are referred to as test processing portions 37a, 37b, and 37c.

電池外装缶5は回転しているので、テスト加工部37a,37b,37cは、溶融部13を中心に円環形状に存在する形になり、断面として見た場合、溶融部13の両側に存在した形になる。   Since the battery outer can 5 is rotating, the test processing portions 37a, 37b, and 37c are present in an annular shape around the melting portion 13, and are present on both sides of the melting portion 13 when viewed as a cross section. It becomes a shape.

図11Cは、図11Bを電池外装缶5の外側底面より溶融部13及びテスト加工部37a,37b,37cを見た図である。図11Cよりわかるように、溶融部13は小さな円形の点であり、溶融部13の外観面積は小さくなる。また、テスト加工部37a,37b,37cは回転させていることで、溶融部13の周りに円環形状に見える。テスト加工部37a,37b,37cは、図10A〜図10Cのときと同様、レーザ強度38−1〜38−3での3種のレーザ加工線として存在する場合を示しており、レーザ強度38−1〜38−3の順番にレーザ強度を下げているので、加工痕の太さも順に細くなる。   11C is a view of FIG. 11B as seen from the outer bottom surface of the battery outer can 5 with the melting portion 13 and the test processing portions 37a, 37b, and 37c. As can be seen from FIG. 11C, the melting part 13 is a small circular point, and the appearance area of the melting part 13 is reduced. Further, the test processing portions 37a, 37b, and 37c are rotated, so that they appear to have an annular shape around the melting portion 13. Similarly to the case of FIG. 10A to FIG. 10C, the test processing portions 37a, 37b, and 37c are shown as cases where there are three types of laser processing lines at the laser intensities 38-1 to 38-3. Since the laser intensity is decreased in the order of 1 to 38-3, the thickness of the processing mark is also gradually reduced.

そして、このレーザ加工プロセスにおけるレーザ強度のバラつきは、前記図8A〜10Cで示したときと同様に、レーザ強度38−1〜38−3の加工痕の有無、又は溶融部13、そしてレーザ強度38−1,38−2の見え方により、良否判定が出来る。例えば、レーザ強度38−1、38−2での加工痕が見える場合は良品、レーザ強度38−1の加工痕のみ、又はレーザ強度38−1〜38−3の加工痕のすべてが見える場合はNGなどとすることができる。溶融部13及び2種類のレーザ強度38−1、38−2のテスト加工部37a,37bを用いた場合は、溶融部13とレーザ強度38−1の加工痕が見える場合は良品、溶融部13のみ、又は溶融部13、レーザ強度38−1、38−2の加工痕のすべてが見える場合は不良と見なすなどが出来る。   The variation in the laser intensity in this laser processing process is similar to the case shown in FIGS. 8A to 10C. The presence or absence of processing traces of the laser intensity 38-1 to 38-3, the melted portion 13, and the laser intensity 38 The pass / fail judgment can be made based on the visibility of −1 and 38-2. For example, when processing traces with laser intensities 38-1 and 38-2 are visible, good products, only processing traces with laser intensity 38-1, or all processing traces with laser intensities 38-1 to 38-3 are visible. NG or the like. When the melted part 13 and the test processing parts 37a and 37b having two kinds of laser intensities 38-1 and 38-2 are used, if the processing marks of the melted part 13 and the laser intensity 38-1 are visible, the good part, the melted part 13 If all of the processing marks of the melted part 13 and the laser intensity 38-1, 38-2 are visible, it can be regarded as defective.

この例では、溶融部13が小さな円形の点であり、溶融部13の外観面積は小さいため、溶融部13のみでは接合判定ができない。このような場合でも、テスト加工部37a,37b,37c又はテスト加工部37a,37bの円環状の加工痕の外観観察のみで溶融部13での接合良否の判定を行うことができる。なお、このように溶融部13を小さな円形の点とするのは、溶接部上にはワイヤーボンディングが出来ないなどの課題もある為、表面に現れる溶接部面積を可能な限り小さくして、次工程で使用可能な領域の面積を増やしたいという要求に応えるためである。本例によれば、このような要求に応えつつ、前記したように、外観検査のみで接合良否判定を行うことができる。   In this example, the melting part 13 is a small circular point, and the appearance area of the melting part 13 is small. Even in such a case, it is possible to determine the quality of the joining at the melting portion 13 only by observing the appearance of the annular processing marks of the test processing portions 37a, 37b, 37c or the test processing portions 37a, 37b. In addition, since there exists a subject that a wire bonding cannot be performed on a welded part, the melted part 13 is set to a small circular point in this way. This is to meet the demand to increase the area of the region usable in the process. According to the present example, as described above, it is possible to perform the bonding quality determination only by the appearance inspection while responding to such a request.

以上、説明してきたように、前記実施形態にかかるレーザ溶接良否判定方法によれば、電池外装缶5と集電タブ12との溶融部13での溶接の実施と同時に、接合に影響が及ばない低いレーザ強度14Sにて加工表面にテスト加工部14を設けている。このように構成することにより、溶融面の断面を観察することなく、テスト加工部14の外観観察のみで、電池外装缶5と集電タブ12の接合における溶融部13でのレーザ接合の良否を判定することが出来る。すなわち、電池外装缶5の外観のみの観察、言い換えれば、テスト加工部14の加工痕の状態(レーザ溶接時の加工変化)把握により、溶融部13へ照射されたレーザ強度13Sが適切な接合強度であるか否かを判定することができ、接合不良の製品を後工程へ流すこともなくなる。   As described above, according to the laser welding quality determination method according to the embodiment, the welding is not affected at the same time as the welding of the battery outer can 5 and the current collecting tab 12 at the melting portion 13. A test processing portion 14 is provided on the processing surface with a low laser intensity 14S. By configuring in this way, it is possible to determine whether the laser joining at the melting part 13 in the joining of the battery outer can 5 and the current collecting tab 12 is good or bad by only observing the appearance of the test processing part 14 without observing the cross section of the melting surface. It can be judged. That is, by observing only the appearance of the battery outer can 5, in other words, by grasping the state of the processing trace of the test processing unit 14 (processing change at the time of laser welding), the laser intensity 13 S irradiated to the melted part 13 is appropriate bonding strength. It is possible to determine whether or not the product is defective.

なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ又は実施例同士の組み合わせ又は実施形態と実施例との組み合わせが可能であると共に、異なる実施形態又は実施例の中の特徴同士の組み合わせも可能である。   In addition, it can be made to show the effect which each has by combining arbitrary embodiment or modification of the said various embodiment or modification suitably. In addition, combinations of the embodiments, combinations of the examples, or combinations of the embodiments and examples are possible, and combinations of features in different embodiments or examples are also possible.

本発明のレーザ溶接物及び電池のレーザ溶接良否判定方法は、接合手段であるレーザビームのレーザ強度変動を外観で確認出来る手段であり、接合不良品を後工程に流すという品質不良を無くすという効果を有し、電池などばかりでなく、レーザ溶接を用いる他の分野にも適用が出来る。なお、本発明が適用されるレーザ溶接物の一例としての密閉型電池は、その種類に特に制限はなく、リチウムイオン二次電池の他、ニッケル水素電池、ニッカド電池などにも適用することができる。また、本発明は、円筒型二次電池に限らず、角形二次電池、一次電池にも適用し得る。更に、レーザ溶接物の例としては、正極板及び負極板はセパレータを介して捲回された電極群に限らず、複数層に積層された部材でも良い。   The laser welded product and battery laser welding quality determination method of the present invention is a means for visually confirming the laser intensity fluctuation of a laser beam as a joining means, and the effect of eliminating a quality defect that a poorly joined product is passed to a subsequent process. It can be applied not only to batteries, but also to other fields using laser welding. The type of the sealed battery as an example of the laser welded product to which the present invention is applied is not particularly limited, and can be applied to a nickel hydride battery, a nickel cadmium battery, and the like in addition to a lithium ion secondary battery. . Further, the present invention is not limited to a cylindrical secondary battery, but can also be applied to a square secondary battery and a primary battery. Furthermore, as an example of the laser welded material, the positive electrode plate and the negative electrode plate are not limited to the electrode group wound through the separator, but may be a member laminated in a plurality of layers.

1 正極板
2 負極板
3 セパレータ
4 巻取体
5 電池外装缶
6 ガスケット
7 上部絶縁板
8 下部絶縁板
9 溶融部
10 封口板
11 正極集電タブ
12 負極集電タブ
13 溶融部
13S レーザ強度
14,14a,14b,14c テスト加工部
14S レーザ強度
19 レーザ発振器
20 レーザ平行光
21 回折格子
22 レーザ加工ヘッド
23,23a,23b,23c レーザビーム
24 集光点
25 穴あき
26 キーホール
27 板状部材
28 レーザビーム
29 キーホール
30 溶融領域
31 レーザ強度範囲
32 溶融幅
33,34 溶融幅
35−1〜35−3 レーザ強度
36−1〜36−3 レーザ強度
37a,37b,37c テスト加工部
38−1〜38−3 レーザ強度
39 許容溶融深さ
51 回転機構
52 回転中心
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Winding body 5 Battery outer can 6 Gasket 7 Upper insulating plate 8 Lower insulating plate 9 Melting part 10 Sealing plate 11 Positive electrode current collection tab 12 Negative electrode current collection tab 13 Melting part 13S Laser intensity 14, 14a, 14b, 14c Test processing part 14S Laser intensity 19 Laser oscillator 20 Laser parallel light 21 Diffraction grating 22 Laser processing head 23, 23a, 23b, 23c Laser beam 24 Condensing point 25 Perforated hole 26 Keyhole 27 Plate-shaped member 28 Laser Beam 29 Keyhole 30 Melting area 31 Laser intensity range 32 Melting width 33, 34 Melting width 35-1 to 35-3 Laser intensity 36-1 to 36-3 Laser intensity 37a, 37b, 37c Test processing parts 38-1 to 38 -3 Laser intensity 39 Allowable melting depth 51 Rotating mechanism 52 Center of rotation

Claims (6)

電池の集電タブを電池外装缶に溶融部で溶接して接合した電池のレーザ溶接良否判定方法であって、
前記集電タブの平面を前記電池外装缶の内面底面部に当接させる工程と、
前記電池外装缶の板厚より小さいスポット径を有する第1のレーザビームを前記電池外装缶の外側底面に照射して前記第1のレーザビームによる前記溶融部の第1の加工痕を形成する照射工程とを有し、
前記照射工程において、前記電池外装缶と前記集電タブとを前記溶融部で接合するレーザ強度の前記第1のレーザビームを前記電池外装缶の外側底面に照射させると同時に、前記第1のレーザビームの前記レーザ強度よりレーザ強度の低い第2のレーザビームの照射と、前記第2のレーザビームよりレーザ強度の低い第3のレーザビームの照射とを同時に前記電池外装缶へ照射させ、
前記照射工程後、第2のレーザビームの第2の加工痕の形状及び前記第3のレーザビームの第3の加工痕の形状により接合不良の判定を行う判定工程をさらに備える、電池のレーザ溶接良否判定方法。
A battery laser welding quality determination method in which a current collecting tab of a battery is welded and joined to a battery outer can at a melting portion,
Contacting the flat surface of the current collecting tab with the bottom surface of the inner surface of the battery outer can;
Irradiation that irradiates the outer bottom surface of the battery outer can with a first laser beam having a spot diameter smaller than the plate thickness of the battery outer can to form a first processing mark of the melted portion by the first laser beam. A process,
In the irradiation step, the first laser beam having the laser intensity for joining the battery outer can and the current collecting tab at the melting portion is irradiated to the outer bottom surface of the battery outer can, and at the same time, the first laser Irradiating the battery outer can simultaneously with irradiation of a second laser beam having a laser intensity lower than the laser intensity of the beam and irradiation of a third laser beam having a laser intensity lower than that of the second laser beam;
After the irradiation step, the battery laser welding further includes a determination step of determining a bonding failure based on a shape of the second processing mark of the second laser beam and a shape of the third processing mark of the third laser beam. Pass / fail judgment method.
前記判定工程において、第2の加工痕が確認出来る場合を接合良品とし、前記第3の加工痕が確認出来るか、又は前記第2の加工痕の少なくとも一部が確認出来ない場合は、接合不良と判定する、請求項1に記載の電池のレーザ溶接良否判定方法。   In the determination step, a case where the second machining trace can be confirmed is regarded as a non-defective product, and if the third machining trace can be confirmed, or at least a part of the second machining trace cannot be confirmed, the bonding failure The battery laser welding quality determination method according to claim 1, wherein: 前記照射工程において、前記第1〜前記第3のレーザビームを、前記電池外装缶の前記外側底面に対して斜めに照射する、請求項1又は2に記載の電池のレーザ溶接良否判定方法。   The battery laser welding quality determination method according to claim 1 or 2, wherein, in the irradiation step, the first to third laser beams are obliquely irradiated to the outer bottom surface of the battery outer can. 前記照射工程において、前記電池外装缶をレーザ加工中心周りに回転させて、前記溶融部は円形となるとともに、他の加工痕は円環形状となる、請求項1〜3のいずれか1つに記載の電池のレーザ溶接良否判定方法。   In the irradiation step, the battery outer can is rotated around a laser processing center, the melted portion becomes circular, and other processing traces have an annular shape. A method for determining the quality of laser welding of the battery according to the description. 第1被溶接物と第2被溶接物とを重ね合わせてレーザ溶接したレーザ溶接物において、
レーザビームの照射により、前記第1被溶接物と前記第2被溶接物の重ね合わせ面をレーザ溶接した、前記第1被溶接物のレーザビーム照射面の第1の加工痕と、
前記第1被溶接物を貫通せずに前記第1被溶接物のレーザビーム照射面のみをレーザ溶融した第2の加工痕と、
前記第2の加工痕よりも低いレーザ強度にて、前記第1被溶接物を貫通せずに前記第1被溶接物のレーザビーム照射面のみをレーザ溶融した第3の加工痕と、
を有する、レーザ溶接物。
In the laser welded product obtained by superposing the first work piece and the second work piece and performing laser welding,
A first processing mark on the laser beam irradiation surface of the first workpiece, wherein the overlapped surface of the first workpiece and the second workpiece is laser welded by laser beam irradiation;
A second machining trace obtained by laser melting only the laser beam irradiation surface of the first workpiece without penetrating the first workpiece;
A third processing mark obtained by laser melting only a laser beam irradiation surface of the first workpiece without penetrating the first workpiece with a laser intensity lower than that of the second processing mark;
A laser welded article.
前記レーザ溶接物は電池であり、
前記第1被溶接物は前記電池の電池外装缶であり、
前記第2被溶接物は前記電池の集電タブである、
前記集電タブを前記電池外装缶に溶接した、請求項5に記載のレーザ溶接物。
The laser weld is a battery;
The first workpiece is a battery outer can of the battery,
The second workpiece is a current collecting tab of the battery;
The laser welded product according to claim 5, wherein the current collecting tab is welded to the battery outer can.
JP2015086794A 2015-04-21 2015-04-21 Laser processing apparatus and laser welding quality determination method for battery Active JP6512474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015086794A JP6512474B2 (en) 2015-04-21 2015-04-21 Laser processing apparatus and laser welding quality determination method for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015086794A JP6512474B2 (en) 2015-04-21 2015-04-21 Laser processing apparatus and laser welding quality determination method for battery

Publications (2)

Publication Number Publication Date
JP2016207412A true JP2016207412A (en) 2016-12-08
JP6512474B2 JP6512474B2 (en) 2019-05-15

Family

ID=57490584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015086794A Active JP6512474B2 (en) 2015-04-21 2015-04-21 Laser processing apparatus and laser welding quality determination method for battery

Country Status (1)

Country Link
JP (1) JP6512474B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199552A (en) * 2016-04-27 2017-11-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN108695484A (en) * 2017-03-31 2018-10-23 松下知识产权经营株式会社 Welding structural body and its manufacturing method
WO2019039744A1 (en) * 2017-08-22 2019-02-28 주식회사 엘지화학 Battery pack and automobile comprising same
JP2019149251A (en) * 2018-02-26 2019-09-05 パナソニック株式会社 Battery manufacturing method of battery, and battery
JP2019160751A (en) * 2018-03-16 2019-09-19 三洋電機株式会社 Manufacturing method of sealed battery, and sealed battery
CN110800131A (en) * 2017-06-28 2020-02-14 三洋电机株式会社 Battery and method for manufacturing same
CN111052453A (en) * 2017-08-30 2020-04-21 三洋电机株式会社 Sealed battery and method for manufacturing same
USD920901S1 (en) 2018-12-27 2021-06-01 Sanyo Electric Co., Ltd. Battery
USD920902S1 (en) 2018-12-27 2021-06-01 Sanyo Electric Co., Ltd. Battery
USD920900S1 (en) 2018-12-27 2021-06-01 Sanyo Electric Co., Ltd. Battery
JP7434695B2 (en) 2020-09-25 2024-02-21 エルジー エナジー ソリューション リミテッド button type secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230953A (en) * 1991-05-23 1992-08-19 Sanyo Electric Co Ltd Manufacture of battery
JPH08293299A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Manufacture of battery
JP2001317912A (en) * 2000-05-10 2001-11-16 Sony Corp Production method of electronic component
JP2005044691A (en) * 2003-07-24 2005-02-17 Sanyo Electric Co Ltd Cell and its manufacturing method
WO2007105491A1 (en) * 2006-03-10 2007-09-20 Matsushita Electric Industrial Co., Ltd. Method and apparatus for welding electrode collectors and terminals of battery element
WO2012124255A1 (en) * 2011-03-14 2012-09-20 パナソニック株式会社 Laser-bonded component and production method for same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230953A (en) * 1991-05-23 1992-08-19 Sanyo Electric Co Ltd Manufacture of battery
JPH08293299A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Manufacture of battery
JP2001317912A (en) * 2000-05-10 2001-11-16 Sony Corp Production method of electronic component
JP2005044691A (en) * 2003-07-24 2005-02-17 Sanyo Electric Co Ltd Cell and its manufacturing method
WO2007105491A1 (en) * 2006-03-10 2007-09-20 Matsushita Electric Industrial Co., Ltd. Method and apparatus for welding electrode collectors and terminals of battery element
WO2012124255A1 (en) * 2011-03-14 2012-09-20 パナソニック株式会社 Laser-bonded component and production method for same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199552A (en) * 2016-04-27 2017-11-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN108695484A (en) * 2017-03-31 2018-10-23 松下知识产权经营株式会社 Welding structural body and its manufacturing method
CN108695484B (en) * 2017-03-31 2022-07-05 松下知识产权经营株式会社 Welded structure and method for manufacturing same
US11456513B2 (en) 2017-06-28 2022-09-27 Sanyo Electric Co., Ltd. Battery and method for producing the same
CN110800131A (en) * 2017-06-28 2020-02-14 三洋电机株式会社 Battery and method for manufacturing same
US11050104B2 (en) 2017-08-22 2021-06-29 Lg Chem, Ltd. Battery pack and automobile comprising same
WO2019039744A1 (en) * 2017-08-22 2019-02-28 주식회사 엘지화학 Battery pack and automobile comprising same
KR20190021008A (en) * 2017-08-22 2019-03-05 주식회사 엘지화학 Battery pack and vehicle comprising the same
JP7038948B2 (en) 2017-08-22 2022-03-22 エルジー エナジー ソリューション リミテッド Battery pack and cars containing it
JP2020514984A (en) * 2017-08-22 2020-05-21 エルジー・ケム・リミテッド Battery pack and car including it
KR102175940B1 (en) * 2017-08-22 2020-11-06 주식회사 엘지화학 Battery pack and vehicle comprising the same
US11139519B2 (en) 2017-08-30 2021-10-05 Sanyo Electric Co., Ltd. Sealed cell and method for manufacturing same
CN111052453A (en) * 2017-08-30 2020-04-21 三洋电机株式会社 Sealed battery and method for manufacturing same
JP2019149251A (en) * 2018-02-26 2019-09-05 パナソニック株式会社 Battery manufacturing method of battery, and battery
JP7009271B2 (en) 2018-03-16 2022-01-25 三洋電機株式会社 Manufacturing method of closed battery and closed battery
WO2019177081A1 (en) * 2018-03-16 2019-09-19 三洋電機株式会社 Manufacturing method for sealed battery, and sealed battery
JP2019160751A (en) * 2018-03-16 2019-09-19 三洋電機株式会社 Manufacturing method of sealed battery, and sealed battery
USD920902S1 (en) 2018-12-27 2021-06-01 Sanyo Electric Co., Ltd. Battery
USD920900S1 (en) 2018-12-27 2021-06-01 Sanyo Electric Co., Ltd. Battery
USD920901S1 (en) 2018-12-27 2021-06-01 Sanyo Electric Co., Ltd. Battery
JP7434695B2 (en) 2020-09-25 2024-02-21 エルジー エナジー ソリューション リミテッド button type secondary battery

Also Published As

Publication number Publication date
JP6512474B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP6512474B2 (en) Laser processing apparatus and laser welding quality determination method for battery
JP5479024B2 (en) Joining method and joining apparatus
Grabmann et al. Laser welding of current collector foil stacks in battery production–mechanical properties of joints welded with a green high-power disk laser
JP5947741B2 (en) Welded part inspection device and inspection method
US11065718B2 (en) Laser welding method and laser welding apparatus
KR101418899B1 (en) Method for jointing metal foils in a superposed way and joint structure
WO2013186862A1 (en) Welding device, welding method, and method for producing cell
JP6071010B2 (en) Welding method
JP6155183B2 (en) Narrow groove laser welding method
EP3868509B1 (en) Laser welding method and laser welding monitoring system for a secondary battery
JP2019149251A (en) Battery manufacturing method of battery, and battery
JP2016173972A (en) Sealed battery and manufacturing method for the same
Grabmann et al. Laser beam welding of copper foil stacks using a green high power disk laser
JP2014136242A (en) Lap-welding method and welding structure
JP4739063B2 (en) Laser bonding method
Mohseni et al. A novel approach for welding metallic foils using pulsed laser radiation in the field of battery production
JP2019129126A (en) Method for manufacturing battery
Olowinsky et al. Laser‐Based Joining of Electrode Stacks for Automated Large‐Scale Production of Li‐Ion Battery Cells
US11123817B2 (en) Method of welding laminated metal foils
JP6420994B2 (en) Laser welding method
JP4210560B2 (en) Laser welding monitoring method and laser welding monitoring apparatus
US20220040793A1 (en) Laser processing method and laser processing device and sealed type battery
JP6765080B2 (en) Sealed battery and its manufacturing method
JP2003048086A (en) Energy beam machining device and its method
JP2015011785A (en) Power storage device and method of manufacturing power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190328

R151 Written notification of patent or utility model registration

Ref document number: 6512474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151