JPH08293299A - Manufacture of battery - Google Patents

Manufacture of battery

Info

Publication number
JPH08293299A
JPH08293299A JP7098274A JP9827495A JPH08293299A JP H08293299 A JPH08293299 A JP H08293299A JP 7098274 A JP7098274 A JP 7098274A JP 9827495 A JP9827495 A JP 9827495A JP H08293299 A JPH08293299 A JP H08293299A
Authority
JP
Japan
Prior art keywords
lead
welded
electrode
laser
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7098274A
Other languages
Japanese (ja)
Inventor
Satoshi Ogawa
聡 小川
Fumio Oo
文夫 大尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7098274A priority Critical patent/JPH08293299A/en
Publication of JPH08293299A publication Critical patent/JPH08293299A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE: To hold constant the strength at which leads are welded to the inner bottom surface of an outer can by applying a solid-generated laser beam to the welded portions of the laser-beam lead and the inner bottom surface of the outer can after testing the laser once or more. CONSTITUTION: A sheet-shaped positive electrode 1 and negative electrode 2 are wound into a spiral shape with separators 3 between to fabricate a group of electrodes 5 having a center space 4, from which electrode leads are extended. Next, a laser beam is oscillated from a YAG laser oscillator 8, is passed through an optical fiber 9, focused by a convex lens 10, and irradiated to the center 7a of the bottom of an outer can 7 from outside so that the negative lead 2a is welded in place using a predetermined welding energy. In this case, the laser beam is irradiated to the welded part after one test or more. Then the positive lead 1a is welded to a sealing cover, an electrolyte is injected into the outer can 7, and then the sealing cover is mounted on the upper opening of the outer can 7 to seal the can to fabricate a lithium battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池の製造法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery manufacturing method.

【0002】[0002]

【従来の技術】ニッケル水素蓄電池、ニッケルカドミウ
ム電池、リチウム電池やリチウムイオン電池等の電池
は、正負極をセパレータを介在して渦巻状に巻回した電
極群を外装缶内に収納することによって高容量化が図ら
れている。この種の電池は次のように製造されている。
まず、シート状の正負極間にセパレータを介在させ、こ
れらを巻芯を有した治具で渦巻状に巻回した電極群を作
製する。次いで、この電極群を外装缶内に収納すると共
に、該電極群の一方の電極から導出されたリードを前記
外装缶の底部内面に溶接し、かつ他方の電極から導出さ
れたリードを封口蓋に溶接する。次いで、電解液を前記
外装缶内に注入した後、外装缶の開口部に前記封口蓋を
取りつけて密封口することにより電池を製造する。
2. Description of the Related Art Batteries such as nickel-hydrogen storage batteries, nickel-cadmium batteries, lithium batteries and lithium-ion batteries have a high capacity by housing a spirally wound electrode group with a separator interposed between them in an outer can. The capacity is being increased. This type of battery is manufactured as follows.
First, a separator is interposed between sheet-shaped positive and negative electrodes, and these are spirally wound with a jig having a winding core to produce an electrode group. Next, while accommodating this electrode group in an outer can, a lead derived from one electrode of the electrode group is welded to the inner surface of the bottom of the outer can, and a lead derived from the other electrode is used as a sealing lid. Weld. Next, a battery is manufactured by injecting an electrolytic solution into the outer can, and then attaching the sealing lid to the opening of the outer can and sealing it.

【0003】ところで、前記リードと前記外装缶の底部
内面との溶接は、従来より溶接用電極棒を用いて行われ
ている。即ち、この方法は、前記電極群の作製後に前記
巻芯を抜き取ることにより形成される中央部の空間に溶
接用電極棒を挿入し、前記リードを前記外装缶内の底部
内面に抵抗溶接するものである。
By the way, welding of the lead and the inner surface of the bottom of the outer can has been conventionally performed using a welding electrode rod. That is, this method is one in which a welding electrode rod is inserted into the central space formed by extracting the winding core after the electrode group is produced, and the lead is resistance-welded to the inner surface of the bottom of the outer can. Is.

【0004】しかしながら、前記電極群の中央部空間
は、容積効率を高める観点から小さいことが望まれると
共に巻芯に充分な強度を持たせるためにその直径の下限
が規制されることから3mm〜5mm径程度となること
が多い。しかも、この空間には巻回始めのセパレータが
空間を左右で二分するように横断している。これらのこ
とから前記空間に溶接用電極棒を挿入するのが困難とな
る。更に、前記電極群によって中央部空間の位置が変動
するため、製品毎にその中央部空間の位置を確認し、そ
の位置に合わせて溶接用電極棒を挿入する必要がある。
However, the central space of the electrode group is desired to be small from the viewpoint of enhancing the volumetric efficiency, and the lower limit of the diameter thereof is regulated in order to provide the core with sufficient strength. Often about the diameter. Moreover, a separator at the beginning of winding crosses the space so as to divide the space into left and right parts. For these reasons, it becomes difficult to insert the welding electrode rod into the space. Further, since the position of the central space varies depending on the electrode group, it is necessary to confirm the position of the central space for each product and insert the welding electrode rod according to the position.

【0005】このようなことから、特開平4−2309
53号公報記載のように電極群の中央部空間からレーザ
光を照射して前記リードを外装缶の底部内面に溶接する
方法、あるいは特開平4−162351号公報記載のよ
うに、前記リードを外装缶の底面と接触させ、外側から
レーザ光を照射して、前記リードを外装缶の底部内面に
溶接する方法が提案されている。
From the above, Japanese Patent Laid-Open No. 4-2309
No. 53, a method of irradiating the lead from the central space of the electrode group with laser light to weld the lead to the inner surface of the bottom of the outer can; or, as described in JP-A-4-162351, the lead is covered with the outer casing. A method has been proposed in which the lead is welded to the inner surface of the bottom of the outer can by bringing it into contact with the bottom of the can and irradiating it with laser light from the outside.

【0006】[0006]

【発明が解決しようとする課題】このような方法によれ
ば、溶接用電極棒の挿入性の問題は解消される。しかし
ながら、前記の方法では、固体発信レーザ、例えばNd
−イットリウム・アルミニウム・ガーネットレーザ(以
後YAGレーザと称す)は、図4に示すように、YAG
ロッド(Y3Al512)11に励起光を集光して光レー
ザを得るものである。この固体レーザの特徴として発光
の初期の状態として光レーザは図4(A)のような微小
な開き角θをもって発射されるが、発光が開始されると
ほぼ同時にロッド11は熱膨張し、開き角θはθ+dθ
に変化して安定化する。このため図4(B)に示すよう
に、この光レーザを対物レンズ12によってワーク面
(電池とリード端子の溶接面)に集光すると、初期にお
いて溶接設定位置がfにあったものが、f+dxに移動
する。このため、当初、溶接強度が最大の位置でワーク
の溶接作業を設定していても、作業開始時の電池の溶接
点の溶接強度と作業開始後の溶接点の溶接強度とでは当
初の設定位置から外れた位置で溶接作業を行っているこ
ととなり、その結果として1日に生産した電池のロット
のなかに数個、リードと外装缶内底面における溶接強度
が他のものに比べて弱いものが生産されることがあっ
た。
According to such a method, the problem of insertability of the welding electrode rod is solved. However, in the above method, a solid-state emission laser, such as Nd, is used.
-Yttrium-Aluminum-Garnet laser (hereinafter referred to as YAG laser), as shown in FIG.
The excitation light is focused on the rod (Y 3 Al 5 O 12 ) 11 to obtain an optical laser. A characteristic of this solid-state laser is that the optical laser is emitted with a minute opening angle θ as shown in FIG. 4A in the initial state of light emission, but at the same time when the light emission is started, the rod 11 thermally expands and opens. The angle θ is θ + dθ
Changes to and stabilizes. Therefore, as shown in FIG. 4B, when this optical laser is focused on the work surface (the welding surface of the battery and the lead terminal) by the objective lens 12, the welding setting position at the initial stage is f + dx. Move to. Therefore, even if the welding work of the workpiece is initially set at the position where the welding strength is the maximum, the welding strength of the welding point of the battery at the start of the work and the welding strength of the welding point after the start of the work are set at the initial setting position. As a result, welding work is performed at a position outside the above range, and as a result, some of the battery lots produced on a daily basis have weaker welding strength on the leads and the inner bottom surface of the outer can than other products. It was sometimes produced.

【0007】[0007]

【課題を解決するための手段】本発明はこれらの問題点
を解決するもので、固体発信レーザの発光初期のレーザ
光をワーク面に照射せずに空打ち状態で発光させ、ロッ
ドを安定化させた状態とした後にワーク面にレーザ光を
照射することで解決するものである。
The present invention solves these problems, and stabilizes the rod by causing the solid-state oscillation laser to emit light in an idle state without irradiating the work surface with the laser beam at the initial stage of light emission. The problem is solved by irradiating the work surface with a laser beam after the state is set.

【0008】[0008]

【作用】以上の方法を採ることにより、常にエネルギー
密度が安定した状態でワーク面にレーザ光が照射でき、
生産されるすべての電池において溶接強度が強く、かつ
バラツキの少ない溶接状態を実現できるものである。
[Operation] By adopting the above method, it is possible to irradiate the work surface with a laser beam in a state where the energy density is always stable,
It is possible to realize a welded state with high welding strength and little variation in all the batteries produced.

【0009】[0009]

【実施例】以下、本発明の一実施例を図とともに説明す
る。実施例としては、リードと外装缶の底部内面との溶
接を、外装缶の底部外面にYAGレーザ光を照射して行
った例でもって説明する。図1に示すように、二酸化マ
ンガンを主活物質とするシート状の正極1と金属リチウ
ムからなるシート状の負極2とをポリプロピレン製のマ
イクロポーラスフィルムからなるセパレータ3を介して
渦巻状に巻回し、この巻回に用いた巻芯を抜き取って中
央部空間4を有する電極群5を作製する。なお、前記電
極群5の上側には、正極1から正極リード1aが導出さ
れている。前記電極群5の下側には、前記負極2の金属
リチウムに一端が圧着された厚さ0.1mmのニッケル
板からなる負極リード2aが導出されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. An example will be described with an example in which the lead and the inner surface of the bottom of the outer can are welded by irradiating the outer surface of the bottom of the outer can with YAG laser light. As shown in FIG. 1, a sheet-shaped positive electrode 1 whose main active material is manganese dioxide and a sheet-shaped negative electrode 2 which is made of metallic lithium are spirally wound via a separator 3 made of a polypropylene microporous film. Then, the winding core used for this winding is extracted to produce the electrode group 5 having the central space 4. A positive electrode lead 1 a is led out from the positive electrode 1 on the upper side of the electrode group 5. On the lower side of the electrode group 5, a negative electrode lead 2a made of a nickel plate having a thickness of 0.1 mm and having one end pressure-bonded to the metallic lithium of the negative electrode 2 is led out.

【0010】次いで、前記電極群5の底面に絶縁板6を
配置し、前記負極リード2aを前記絶縁板6の下面に沿
って折り曲げた後、上方が開口した有底円筒形の外装缶
7内に前記電極群5を、図2に示すように前記負極リー
ド2aが外装缶7底部の中心部分7aを横切るように収
納する。なお、外装缶7は厚さ0.3mmの鉄板製とし
た。
Next, an insulating plate 6 is placed on the bottom surface of the electrode group 5, the negative electrode lead 2a is bent along the lower surface of the insulating plate 6, and then, inside a bottomed cylindrical outer can 7 having an opening at the top. Then, the electrode group 5 is housed so that the negative electrode lead 2a crosses the central portion 7a of the bottom of the outer can 7, as shown in FIG. The outer can 7 was made of an iron plate having a thickness of 0.3 mm.

【0011】次いで、図3に示すように、YAGレーザ
発振器8からレーザ光を発振させ、このレーザ光を直径
0.6mmの光ファイバ9に通して凸レンズ10で集光
して前記外装缶7底部の中心部分7aに外側から照射す
ることにより、前記負極リード2aを外装缶7底部の中
心部7aに5ジュールの溶接エネルギーで溶接して固定
する。この時レーザ光は1回以上空打ちを行った後溶接
部分に照射している。この後、前記正極リード1aは封
口蓋(図示せず)に溶接し、さらに前記外装缶7内に電
解液を注液した後、前記封口蓋を外装缶7の上方開口部
に取り付けて缶を密封口することによりリチウム電池を
製造する。
Next, as shown in FIG. 3, a laser beam is oscillated from a YAG laser oscillator 8, the laser beam is passed through an optical fiber 9 having a diameter of 0.6 mm, and is condensed by a convex lens 10 to form a bottom portion of the outer can 7. The negative electrode lead 2a is welded and fixed to the central portion 7a of the bottom of the outer can 7 with a welding energy of 5 joules by irradiating the central portion 7a of the above from the outside. At this time, the laser beam is applied to the welded portion after performing blanking once or more. After that, the positive electrode lead 1a is welded to a sealing lid (not shown), and an electrolytic solution is further injected into the outer can 7, and then the sealing lid is attached to an upper opening of the outer can 7 to form a can. A lithium battery is manufactured by sealing.

【0012】次に、本発明の製造方法によって得られた
電池のリードと外装缶内底面の溶接強度を、従来の溶接
用電極棒を挿入してリードと外装缶内底面を抵抗溶接に
よって得られたものとを比較した。その結果を(表1)
に示す。表中の数字は電池の生産数15000個を1ロ
ットとして3ロット生産し、3mの高さからコンクリー
ト面に自然落下させた後、電池電圧が0Vを示したもの
の数、即ち落下衝撃によって、リード溶接部が外装缶内
底面から外れた数を示す。
Next, the welding strength of the lead of the battery and the inner bottom surface of the outer can obtained by the manufacturing method of the present invention was obtained by resistance welding the lead and the inner bottom surface of the outer can by inserting a conventional welding electrode rod. Compared with the one. The results (Table 1)
Shown in The numbers in the table are 3 lots with 15,000 battery production as 1 lot, and the number of batteries showed 0V after being naturally dropped from the height of 3m onto the concrete surface, that is, the impact due to the drop Indicates the number of welded parts that have deviated from the bottom surface of the outer can.

【0013】[0013]

【表1】 [Table 1]

【0014】また(表2)は本発明のYAGレーザ光を
照射し、リードを外装缶の内底面に溶接した方法の例の
うち、レーザの空打ち回数による溶接強度の比較を上記
と同じ方法で比較したものである。テスト方法、テスト
回数も同様に実施した。
Further, (Table 2) is a method of irradiating the YAG laser beam of the present invention and welding the leads to the inner bottom surface of the outer can, comparing the welding strength depending on the number of blank shots of the laser by the same method as above. It is compared with. The test method and the number of tests were also performed in the same manner.

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】以上、(表1)、(表2)から明らかな
ように本発明の方法で製造された電池は、リードと外装
缶内底面における溶接強度が一定した溶接状態を実現で
き、また生産性においても従来の抵抗溶接による方法よ
り30〜40%生産効率の向上が図れる。また上記で
は、YAGレーザ光を外装缶の底部外面方向より照射し
たもので示したが、この他にYAGレーザ光を外装缶の
内側より電極群の中央部空間を通過させて底部内面に照
射する方法でも同様の効果が得られることが実験により
判明しているものである。
As apparent from (Table 1) and (Table 2), the battery manufactured by the method of the present invention can realize a welding state in which the welding strength is constant between the lead and the inner bottom surface of the outer can. In terms of productivity, the production efficiency can be improved by 30 to 40% as compared with the conventional resistance welding method. Further, in the above, the YAG laser light is shown as being irradiated from the outer surface direction of the bottom of the outer can, but in addition to this, the YAG laser light is irradiated from the inner side of the outer can through the central space of the electrode group to the inner surface of the bottom. Experiments have shown that the same effect can be obtained by the method.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における電極群を示す断面図FIG. 1 is a cross-sectional view showing an electrode group in an example.

【図2】同電極群を外装缶内に収納した断面図FIG. 2 is a sectional view of the electrode group housed in an outer can.

【図3】実施例におけるレーザ光の照射を示す説明図FIG. 3 is an explanatory view showing irradiation of laser light in the example.

【図4】(A) 固体発信レーザの発光初期におけるレ
ーザ光の軌跡の説明図 (B) 固体発信レーザの安定状態におけるレーザ光の
軌跡の説明図
FIG. 4A is an explanatory diagram of a locus of laser light in the initial stage of light emission of the solid-state emission laser.

【符号の説明】[Explanation of symbols]

1 正極板 1a 正極リード 2 負極板 2a 負極リード 3 セパレータ 4 電極群の中空部 5 電極群 6 絶縁板 7 外装缶 7a 外装缶底部の中心部分 8 YAGレーザ発振器 9 光ファイバ 10 凸レンズ 11 ロッド 12 対物レンズ(凸レンズ) DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode lead 2 Negative electrode plate 2a Negative lead 3 Separator 4 Hollow part of electrode group 5 Electrode group 6 Insulating plate 7 Outer can 7a Central part of the outer can bottom 8 YAG laser oscillator 9 Optical fiber 10 Convex lens 11 Rod 12 Objective lens (convex lens)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と負極とをセパレータを介して渦巻状
に巻回した電極群を外装缶内に収納すると共に、前記電
極群のいずれか一方の電極から導出されたリードを前記
外装缶の底部内面に接触するように配置した後、前記リ
ードと外装缶の底部内面とを溶接する電池の製造法にお
いて、前記リードと外装缶の底部内面との溶接を該外装
缶の底部外面に固体発信レーザ光を照射することにより
行う方法であって、前記固体発信レーザを一回以上空打
ちさせた後、リードと外装缶の底部内面の接触面にレー
ザを照射することを特徴とする電池の製造法。
1. An electrode group in which a positive electrode and a negative electrode are spirally wound via a separator is housed in an outer can, and a lead led out from any one electrode of the electrode group is attached to the outer can. In a method for manufacturing a battery, in which the lead and the bottom inner surface of the outer can are welded after being arranged so as to contact the inner surface of the bottom, the welding of the lead and the inner bottom surface of the outer can is transmitted to the bottom outer surface of the outer can by solid welding. A method of irradiating with a laser beam, wherein the solid-state oscillation laser is blanked once or more, and then the contact surface between the lead and the bottom inner surface of the outer can is irradiated with the laser. Law.
【請求項2】正極と負極とをセパレータを介して渦巻状
に巻回した電極群を外装缶内に収納すると共に、前記電
極群のいずれか一方の電極から導出されたリードを前記
外装缶の底部内面に接触するように配置した後、前記リ
ードと外装缶の底部内面とを溶接する電池の製造法にお
いて、前記リードと外装缶の底部内面との溶接を渦巻状
電極群の中央部空間より外装缶の底部内面に固体発信レ
ーザ光を照射することにより行う方法であって、前記固
体発信レーザを一回以上空打ちさせた後、リードと外装
缶の底部内面の接触面にレーザを照射することを特徴と
する電池の製造法。
2. An electrode group in which a positive electrode and a negative electrode are spirally wound via a separator is housed in an outer can, and a lead led out from any one electrode of the electrode group is attached to the outer can. In the method for producing a battery, in which the lead and the bottom inner surface of the outer can are welded after being arranged so as to be in contact with the bottom inner surface, the lead and the bottom inner surface of the outer can are welded from the central space of the spiral electrode group. A method of performing by irradiating a solid emission laser beam on the inner surface of the bottom of an outer can, after irradiating the solid emission laser at least once, and then irradiating the contact surface between the lead and the inner surface of the bottom of the outer can with laser. A method of manufacturing a battery characterized by the above.
JP7098274A 1995-04-24 1995-04-24 Manufacture of battery Pending JPH08293299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7098274A JPH08293299A (en) 1995-04-24 1995-04-24 Manufacture of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7098274A JPH08293299A (en) 1995-04-24 1995-04-24 Manufacture of battery

Publications (1)

Publication Number Publication Date
JPH08293299A true JPH08293299A (en) 1996-11-05

Family

ID=14215369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7098274A Pending JPH08293299A (en) 1995-04-24 1995-04-24 Manufacture of battery

Country Status (1)

Country Link
JP (1) JPH08293299A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299099A (en) * 1999-04-13 2000-10-24 Matsushita Electric Ind Co Ltd Manufacture of battery
EP1134820A1 (en) * 2000-03-16 2001-09-19 Alcatel Method of joining the electrode lugs with a terminal of an electrochemical generator and generator
US6379839B1 (en) 1998-08-31 2002-04-30 Sanyo Electric Co., Ltd. Battery having welded lead plate
JP2004158318A (en) * 2002-11-07 2004-06-03 Matsushita Electric Ind Co Ltd Cylindrical battery and its manufacturing method
US6960408B1 (en) * 1999-10-28 2005-11-01 The Furukawa Battery Co., Ltd. Method of producing lead storage batteries and jig for production thereof
JP2006012787A (en) * 2004-06-25 2006-01-12 Samsung Sdi Co Ltd Secondary battery and its manufacturing method
CN100413118C (en) * 2003-11-14 2008-08-20 三洋电机株式会社 Prismatic sealed secondary battery and method for manufacturing the same
JP2008251192A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Battery manufacturing method
US7470487B2 (en) 2003-07-24 2008-12-30 Sanyo Electric Co., Ltd. Battery and battery manufacturing method
JP2010003686A (en) * 2008-06-20 2010-01-07 Samsung Sdi Co Ltd Secondary battery and its manufacturing method
CN102804473A (en) * 2009-06-18 2012-11-28 瓦尔达微电池有限责任公司 Button cell having winding electrode and method for the production thereof
US9153835B2 (en) 2009-02-09 2015-10-06 Varta Microbattery Gmbh Button cells and method for producing same
JP2016207412A (en) * 2015-04-21 2016-12-08 パナソニックIpマネジメント株式会社 Laser weldment and laser welding quality determination method for battery
CN108857067A (en) * 2018-07-25 2018-11-23 大连中比动力电池有限公司 A kind of cylindrical steel case lithium ion battery point back welding device and point back welding method
CN109860448A (en) * 2019-01-03 2019-06-07 王生义 A kind of cap assemblies and battery for battery

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379839B1 (en) 1998-08-31 2002-04-30 Sanyo Electric Co., Ltd. Battery having welded lead plate
JP2000299099A (en) * 1999-04-13 2000-10-24 Matsushita Electric Ind Co Ltd Manufacture of battery
US6960408B1 (en) * 1999-10-28 2005-11-01 The Furukawa Battery Co., Ltd. Method of producing lead storage batteries and jig for production thereof
EP1134820A1 (en) * 2000-03-16 2001-09-19 Alcatel Method of joining the electrode lugs with a terminal of an electrochemical generator and generator
FR2806532A1 (en) * 2000-03-16 2001-09-21 Cit Alcatel METHOD FOR CONNECTING THE SLIDES OF AN ELECTRODE TO A TERMINAL OF AN ELECTROCHEMICAL GENERATOR AND GENERATOR THEREFROM
US6569565B2 (en) 2000-03-16 2003-05-27 Alcatel Method of connecting plates of an electrode to a terminal of a storage cell, and the resulting cell
JP4547855B2 (en) * 2002-11-07 2010-09-22 パナソニック株式会社 Method for manufacturing cylindrical battery
JP2004158318A (en) * 2002-11-07 2004-06-03 Matsushita Electric Ind Co Ltd Cylindrical battery and its manufacturing method
US7470487B2 (en) 2003-07-24 2008-12-30 Sanyo Electric Co., Ltd. Battery and battery manufacturing method
CN100413118C (en) * 2003-11-14 2008-08-20 三洋电机株式会社 Prismatic sealed secondary battery and method for manufacturing the same
JP2006012787A (en) * 2004-06-25 2006-01-12 Samsung Sdi Co Ltd Secondary battery and its manufacturing method
JP2008251192A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Battery manufacturing method
US8703327B2 (en) 2008-06-20 2014-04-22 Samsung Sdi Co., Ltd. Rechargeable battery and manufacturing method thereof
KR101296944B1 (en) * 2008-06-20 2013-08-14 삼성에스디아이 주식회사 Rechargeable battery and manufacturing method thereof
JP2010003686A (en) * 2008-06-20 2010-01-07 Samsung Sdi Co Ltd Secondary battery and its manufacturing method
US11791493B2 (en) 2009-02-09 2023-10-17 Varta Microbattery Gmbh Button cells and method of producing same
US11024869B2 (en) 2009-02-09 2021-06-01 Varta Microbattery Gmbh Button cells and method of producing same
US9153835B2 (en) 2009-02-09 2015-10-06 Varta Microbattery Gmbh Button cells and method for producing same
US9496581B2 (en) 2009-02-09 2016-11-15 Varta Microbattery Gmbh Button cells and method of producing same
US11276875B2 (en) 2009-02-09 2022-03-15 Varta Microbattery Gmbh Button cells and method of producing same
US9799913B2 (en) 2009-02-09 2017-10-24 Varta Microbattery Gmbh Button cells and method of producing same
US11258092B2 (en) 2009-02-09 2022-02-22 Varta Microbattery Gmbh Button cells and method of producing same
US11233265B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US11233264B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US9799858B2 (en) 2009-06-18 2017-10-24 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362384B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024906B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024905B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024904B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024907B1 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11158896B2 (en) 2009-06-18 2021-10-26 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11217844B2 (en) 2009-06-18 2022-01-04 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
CN102804473A (en) * 2009-06-18 2012-11-28 瓦尔达微电池有限责任公司 Button cell having winding electrode and method for the production thereof
US11791512B2 (en) 2009-06-18 2023-10-17 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10971776B2 (en) 2009-06-18 2021-04-06 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362385B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
JP2016207412A (en) * 2015-04-21 2016-12-08 パナソニックIpマネジメント株式会社 Laser weldment and laser welding quality determination method for battery
CN108857067A (en) * 2018-07-25 2018-11-23 大连中比动力电池有限公司 A kind of cylindrical steel case lithium ion battery point back welding device and point back welding method
CN108857067B (en) * 2018-07-25 2023-11-10 大连中比动力电池有限公司 Point bottom welding device and point bottom welding method for cylindrical steel shell lithium ion battery
CN109860448A (en) * 2019-01-03 2019-06-07 王生义 A kind of cap assemblies and battery for battery

Similar Documents

Publication Publication Date Title
JPH08293299A (en) Manufacture of battery
KR101943675B1 (en) Electricity storage device and method for manufacturing electricity storage device
KR100571229B1 (en) Sealed battery suited to production in a slim rectangular form
JP5137918B2 (en) Secondary battery manufacturing method and secondary battery
JP4929606B2 (en) Sealed power storage device and manufacturing method thereof
EP2859986A1 (en) Welding device, welding method, and method for producing cell
JP2011076867A (en) Secondary battery
JP2008192315A (en) Secondary battery and its manufacturing method
JPH1177347A (en) Laser welding method of aluminum sheet, manufacture of enclosed cell, and enclosed cell itself
JP2014004619A (en) Laser joining method and joining component
JP6593304B2 (en) Electric storage device and method for manufacturing electric storage device
JP2937456B2 (en) Manufacturing method of cylindrical battery
JP5869435B2 (en) Square battery and method for manufacturing square battery
JP2001155698A (en) Encapsulated type battery
JPH097560A (en) Sealing mouth welding method for sealed battery
JP4547855B2 (en) Method for manufacturing cylindrical battery
JP2019160751A (en) Manufacturing method of sealed battery, and sealed battery
KR101826389B1 (en) Secondary Battery
JP2004296195A (en) Sealed battery
JP6108545B2 (en) Square secondary battery and battery pack
JP3568387B2 (en) Manufacturing method of sealed battery
JP4954806B2 (en) Capacitor and capacitor manufacturing method
CN105960722B (en) Electrical storage device and electrical storage device manufacturing method
JPH03291846A (en) Manufacture of battery with lead terminal
EP4333142A1 (en) Cylindrical secondary battery to which laser welding is applied and fabricating method thereof, battery pack and vehicle comprising same