JP2008251192A - Battery manufacturing method - Google Patents

Battery manufacturing method Download PDF

Info

Publication number
JP2008251192A
JP2008251192A JP2007087368A JP2007087368A JP2008251192A JP 2008251192 A JP2008251192 A JP 2008251192A JP 2007087368 A JP2007087368 A JP 2007087368A JP 2007087368 A JP2007087368 A JP 2007087368A JP 2008251192 A JP2008251192 A JP 2008251192A
Authority
JP
Japan
Prior art keywords
welding
plating
laser
nickel
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007087368A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inoue
博之 井上
Takuya Okamoto
拓也 岡本
Masahiro Hosoda
正弘 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007087368A priority Critical patent/JP2008251192A/en
Publication of JP2008251192A publication Critical patent/JP2008251192A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent peeling of plating occurring around a welding laser irradiation part when welding a post-plating exterior can, formed by plating the surface of an exterior can with nickel by barrel plating or the like after processing a steel plate into an exterior-can shape, and a collector, mounted to an electrode body composed by combining positive/negative electrodes, while irradiating them with a welding laser beam. <P>SOLUTION: Before welding by welding laser irradiation, a part in an exterior can receiving the welding laser irradiation and its surrounding are irradiated with a laser beam having a lower energy density than that of a welding laser beam so as to impart ductility to nickel plating by applying heat treatment to the part and its surrounding. Consequently, it is possible to prevent peeling of plating. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はニッケル・カドミウム蓄電池、ニッケル・水素蓄電池などの電池の製造方法に関する。   The present invention relates to a method for manufacturing a battery such as a nickel / cadmium storage battery or a nickel / hydrogen storage battery.

ニッケル・カドミウム蓄電池やニッケル・水素蓄電池などのアルカリ蓄電池用の外装缶としては、鋼板表面にニッケルメッキが施されたものが用いられている。これは、アルカリ蓄電池が水酸化カリウムなどのアルカリ電解液を用いているため鋼板の電解液による腐蝕を防止するためと、外部環境の水分による錆びを防止するためである。   As an outer can for an alkaline storage battery such as a nickel / cadmium storage battery or a nickel / hydrogen storage battery, a steel plate whose surface is nickel-plated is used. This is because the alkaline storage battery uses an alkaline electrolyte such as potassium hydroxide to prevent corrosion of the steel sheet by the electrolyte and to prevent rust due to moisture in the external environment.

なお上述の外装缶の製法としては、例えば特許文献1に記載されるように、鋼板をプレス加工により外装缶の形状に加工してからバレルメッキにより鋼板表面にニッケルメッキを施す、いわゆる後メッキによるものと、例えば特許文献2に記載されるように予め表面にニッケルメッキを施した鋼板をプレス加工により外装缶の形状に加工する、いわゆる先メッキによるものがある。   In addition, as a manufacturing method of the above-mentioned exterior can, as described in Patent Document 1, for example, a steel plate is processed into a shape of an exterior can by press working, and then nickel plating is applied to the surface of the steel plate by barrel plating. For example, as described in Patent Document 2, there is a so-called pre-plating method in which a steel plate whose surface is nickel-plated in advance is processed into the shape of an outer can by pressing.

上述の先メッキによる外装缶(先メッキ外装缶)は、メッキが鋼板全体に一様に施されているため品質に優れるという利点がある。一方、ニッケルメッキを施したのみではニッケルメッキのニッケル組織が硬く、後の外装缶への形状に加工する際のプレス加工性に乏しいため、熱処理(アニール処理)を施す必要があるが、前記熱処理により前記ニッケル組織が軟化するためキズがつきやすく、また熱処理を行うことにより製造コストが高くなるという問題がある。   The above-described outer can by pre-plating (pre-plated outer can) has an advantage that it is excellent in quality because the plating is uniformly applied to the entire steel plate. On the other hand, since the nickel structure of the nickel plating is hard only by the nickel plating, and the press workability at the time of processing into the shape of the outer can is poor, it is necessary to perform a heat treatment (annealing treatment). As a result, the nickel structure is softened, so that it is easy to be scratched, and the manufacturing cost increases due to heat treatment.

後メッキによる外装缶(後メッキ外装缶)は、上述のようにメッキ品質において先メッキのものに比べ劣る場合があるものの、上述の熱処理が不要であるため比較的製造コストが低く、またニッケル組織が軟化されていないため、外装缶にキズがつきにくいという利点があり、広く用いられている。   Although an outer can by post plating (post-plated outer can) may be inferior to a pre-plated one in terms of plating quality as described above, the manufacturing cost is relatively low because the above-mentioned heat treatment is unnecessary, and the nickel structure Is not softened, and has the advantage that the outer can is hardly scratched and is widely used.

なお、アルカリ蓄電池は通常以下のようにして作られる。
主に水酸化ニッケルを活物質とする正極板と、水素吸蔵合金や水酸化カドミウムを活物質とする負極板を、セパレータを介して巻回するなどして電極体を作製する。次いで、前記電極体の正負極それぞれに集電体を溶接などにより取り付け、この集電体が取り付けされた電極体を外装缶に挿入する。そして、例えば負極側の集電体を外装缶と溶接して電気的に接続し、一方正極側の集電体を正極端子を兼ねる封口蓋と溶接することにより電気的に接続する。この後、外装缶内にアルカリ電解液を注入し、封口蓋で封止することにより、封口蓋を正極端子とし、外装缶を負極端子とするアルカリ蓄電池が完成する。
In addition, an alkaline storage battery is usually made as follows.
An electrode body is manufactured by winding a positive electrode plate mainly using nickel hydroxide as an active material and a negative electrode plate using hydrogen storage alloy or cadmium hydroxide as an active material through a separator. Next, a current collector is attached to each of the positive and negative electrodes of the electrode body by welding or the like, and the electrode body to which the current collector is attached is inserted into an outer can. For example, the current collector on the negative electrode side is welded and electrically connected to the outer can, while the current collector on the positive electrode side is electrically connected to the sealing lid that also serves as the positive electrode terminal. Thereafter, an alkaline electrolyte is poured into the outer can and sealed with a sealing lid, thereby completing an alkaline storage battery having the sealing lid as a positive electrode terminal and the outer can as a negative electrode terminal.

従来、上記アルカリ蓄電池の製造プロセスにおいて、外装缶と一方の極の集電体の接続は、外装缶内に溶接棒を挿入して行う抵抗溶接により行われてきたが、近年製造プロセスの効率化のため特許文献3に記載されるように外装缶と集電体を接続する部分にレーザーを照射して溶接するレーザー溶接が採用されるようになっている。   Conventionally, in the above alkaline storage battery manufacturing process, the connection between the outer can and the current collector of one electrode has been performed by resistance welding performed by inserting a welding rod into the outer can. Therefore, as described in Patent Document 3, laser welding is performed in which a portion where the outer can and the current collector are connected is irradiated with a laser to be welded.

特開昭57−137500号公報JP 57-137500 A 特開2005−85480号公報JP 2005-85480 A 特開2000−77040号公報JP 2000-77040 A

そこで、上述の後メッキ外装缶と集電体をレーザー溶接により接続しようとしたが、前記溶接後に外装缶のレーザー照射部分を確認すると、レーザー照射した周辺のニッケルメッキが浮いたり剥れたりしているものが見られた。このような剥がれが生じると、外装缶の防錆性が低下するという問題が生ずる。
後メッキ外装缶はメッキ後の熱処理を行っていないため、ニッケルメッキのニッケル組織自体が硬くキズがつきにくいという特性がある一方、延性に乏しいという特性もある。そのため溶接を行う程の高エネルギー密度のレーザー(溶接レーザー)を照射すると、照射部分周辺に熱応力が生じ、延性の乏しいニッケル組織が剥がれたものであると考えられる。
Therefore, we tried to connect the above-mentioned post-plated outer can and current collector by laser welding, but when the laser irradiation part of the outer can was confirmed after the welding, the nickel plating around the laser-irradiated area floated or peeled off. Something was seen. When such peeling occurs, there arises a problem that the rust prevention property of the outer can is lowered.
Since the post-plating outer can is not subjected to heat treatment after plating, the nickel structure of the nickel plating itself has a characteristic that it is hard and hardly scratched, but also has a characteristic that the ductility is poor. Therefore, it is considered that when a laser (welding laser) having a high energy density enough to perform welding is irradiated, thermal stress is generated around the irradiated portion, and the nickel structure having poor ductility is peeled off.

本発明は上記の問題を鑑みてなされたものであって、キズがつきにくい特性をもつ後メッキ外装缶の利点を残しつつ、レーザー溶接を行っても防錆性を低下させることなくアルカリ蓄電池等の電池を製造できる方法を提供するものである。   The present invention has been made in view of the above problems, and retains the advantage of a post-plating outer can having a characteristic that is difficult to be scratched, and does not deteriorate rust prevention even when laser welding is performed, such as an alkaline storage battery. The present invention provides a method capable of manufacturing the battery.

本発明は、外装缶としてニッケルメッキ後の熱処理を未実施である後メッキ缶を用い、前記外装缶中に集電体の取り付けられた電極体を挿入し、前記集電体と前記外装缶を前記外装缶外部からの溶接レーザー照射により溶接する電池の製造方法において、前記溶接レーザー照射による溶接の前に、前記外装缶の前記溶接レーザー照射を受ける部分とその周辺に前記溶接レーザーよりも低エネルギー密度のレーザーを照射して当該部分を熱処理することを特徴とする。   The present invention uses a post-plated can that has not been heat-treated after nickel plating as an outer can, and an electrode body with a current collector attached thereto is inserted into the outer can, and the current collector and the outer can are In the method of manufacturing a battery to be welded by irradiation with a welding laser from the outside of the outer can, before the welding by the welding laser irradiation, the portion of the outer can that receives the welding laser irradiation and its surroundings have lower energy than the welding laser. The portion is heat-treated by irradiation with a laser having a density.

本発明のように、比較的高エネルギー密度の溶接レーザーを照射する前に、溶接レーザーよりも低エネルギー密度のレーザー(熱処理レーザー)を照射して、当該熱処理レーザーを照射した部分のニッケルメッキを熱処理すると、当該部分のニッケル組織が軟化し延性が高まり、前記溶接レーザーを照射した場合でも熱応力を吸収するため、メッキ剥がれを防止することができる。
また、本発明の製造方法では、前記メッキ剥がれが生じやすい部分のみに熱処理を行いその他の部分は熱影響を受けないことから、大部分のメッキ組織は変性しておらず、よってキズがつきにくいという特性を維持することができる。
更に本発明によれば、前記熱処理はアルカリ蓄電池の製造プロセスにおいて外装缶と集電体のレーザー溶接に付随して行うことができるので、予め外装缶に熱処理を施しておくことを必要とせず、製造コストの上昇を抑制することができる。
As in the present invention, before irradiating a welding laser having a relatively high energy density, a laser (heat treatment laser) having a lower energy density than the welding laser is irradiated, and the nickel plating of the portion irradiated with the heat treatment laser is heat treated. Then, the nickel structure of the part is softened and the ductility is increased, and even when the welding laser is irradiated, the thermal stress is absorbed, so that peeling of the plating can be prevented.
Further, in the manufacturing method of the present invention, only the portion where the plating peeling is likely to occur is heat-treated, and the other portions are not affected by heat, so that most of the plating structure is not denatured, and thus is hardly scratched. This characteristic can be maintained.
Furthermore, according to the present invention, since the heat treatment can be performed in conjunction with laser welding of the outer can and the current collector in the alkaline storage battery manufacturing process, it is not necessary to heat the outer can in advance, An increase in manufacturing cost can be suppressed.

以下、本発明の一実施の形態に係るアルカリ蓄電池の製造方法について説明する。
(1)電極体の作製
主として水酸化ニッケルを活物質とする長方形の正極板と、主として水酸化カドミウムを活物質とする長方形の負極板を用意する。この場合、前記正極板はパンチングメタル芯体上にニッケル粉末を焼結させてなる焼結基板中に活物質を充填した焼結式ニッケル正極板や、発泡ニッケル基板中に活物質ペーストを充填してなるペースト式ニッケル正極板を用いることができる。また、前記負極板は焼結基板中に活物質を充填した焼結式カドミウム負極板やパンチングメタルなどの導電芯体に活物質ペーストを塗着してなるペースト式カドミウム負極板を用いることができる。なお、負極板としてカドミウム負極板に代え、水素吸蔵合金負極板を用いることもできる。
ここで、正極板、負極板ともにそれぞれの長辺の一端には、後に集電体を接続するための芯体露出部(ペースト式ニッケル正極板の場合は活物質未充填部)を形成してなる。
Hereinafter, the manufacturing method of the alkaline storage battery which concerns on one embodiment of this invention is demonstrated.
(1) Production of electrode body A rectangular positive electrode plate mainly using nickel hydroxide as an active material and a rectangular negative electrode plate mainly containing cadmium hydroxide as an active material are prepared. In this case, the positive electrode plate is a sintered nickel positive electrode plate in which an active material is filled in a sintered substrate obtained by sintering nickel powder on a punching metal core, or an active material paste is filled in a foamed nickel substrate. A paste type nickel positive electrode plate can be used. The negative electrode plate may be a sintered cadmium negative electrode plate filled with an active material in a sintered substrate or a paste type cadmium negative electrode plate formed by applying an active material paste to a conductive core such as a punching metal. . In addition, it can replace with a cadmium negative electrode plate as a negative electrode plate, and can also use a hydrogen storage alloy negative electrode plate.
Here, a core body exposed portion (in the case of a paste-type nickel positive electrode plate, an active material unfilled portion) is formed at one end of each long side of both the positive electrode plate and the negative electrode plate. Become.

上記の用意した正・負極板を各極板の短辺方向を軸として、間にセパレータを介して巻回し、円筒状の電極体を作製する。なお、各極板の芯体露出部は円筒状の電極体のそれぞれの底面に突出するよう作製される。
次いで、各極板の芯体露出部が突出した円筒状の電極体の各底面に円形状の集電体を抵抗溶接により溶接する。集電体はニッケル板を打ち抜いて作成されたものであり、特に正極側の集電体は後に封口蓋と接続するためのタブ部が設けられている。
このようにして集電体を取り付けた電極体が作製される。
The prepared positive / negative electrode plate is wound with a short side direction of each electrode plate as an axis through a separator therebetween to produce a cylindrical electrode body. The core body exposed portion of each electrode plate is produced so as to protrude from the bottom surface of each cylindrical electrode body.
Next, a circular current collector is welded to each bottom surface of the cylindrical electrode body from which the core exposed portion of each electrode plate protrudes by resistance welding. The current collector is formed by punching a nickel plate, and in particular, the current collector on the positive electrode side is provided with a tab portion for later connection with a sealing lid.
In this way, an electrode body to which the current collector is attached is produced.

(2)アルカリ蓄電池の作製
鋼板をプレス加工により有底円筒の外装缶形状に加工したものに、バレルメッキにより表面にニッケルメッキを施した後メッキ外装缶を用意する。なお、前記後メッキ外装缶はメッキ後の熱処理はなされていない。
この後メッキ外装缶に上述のようにして作製した集電体を取り付けた電極体を挿入する。この時、前記外装缶と負極側の集電体が後に外装缶底で接続されるよう、負極側の集電体が外装缶底に面するよう挿入する。
(2) Production of Alkaline Storage Battery A plated outer can is prepared after nickel plating is applied to the surface by barrel plating on a steel plate processed into a bottomed cylindrical outer can shape by pressing. The post-plated outer can is not subjected to heat treatment after plating.
Thereafter, the electrode body to which the current collector prepared as described above is attached is inserted into the plated outer can. At this time, the negative electrode side current collector is inserted so as to face the outer can bottom so that the outer can and the negative electrode side current collector are connected later on the outer can bottom.

次いで、負極側集電体と外装缶が接続される部分(接続部)とその周辺部の熱処理と、負極側集電体と外装缶の溶接をレーザー照射により行う。
まず、比較的低エネルギー密度のレーザー(熱処理レーザー)を接続部とその周辺部の領域に照射し、熱処理を行う。次いで、前記熱処理レーザーの照射から間隔を置き、比較的高エネルギー密度のレーザー(溶接レーザー)を接続部に照射し負極側集電体と外装缶を接続する。
なお、上記溶接レーザーや熱処理レーザーのエネルギー密度は、外装缶の厚み等により異なるが、概ね熱処理レーザーのエネルギー密度を溶接レーザーのエネルギー密度の半分程度とすることにより、ニッケルメッキの剥がれを防止することができる。
Next, heat treatment is performed on the portion (connecting portion) where the negative electrode side current collector and the outer can are connected and its peripheral portion, and welding of the negative electrode side current collector and the outer can is performed by laser irradiation.
First, a relatively low energy density laser (heat treatment laser) is irradiated to the connection area and its peripheral area to perform heat treatment. Next, a distance from irradiation of the heat treatment laser is applied, and a relatively high energy density laser (welding laser) is applied to the connection portion to connect the negative electrode side current collector and the outer can.
The energy density of the above-mentioned welding laser and heat treatment laser varies depending on the thickness of the outer can, etc., but by preventing the nickel plating from peeling off by making the energy density of the heat treatment laser approximately half of the energy density of the welding laser. Can do.

このように負極側集電体と外装缶を接続した後、正極側集電体のタブ部と封口蓋とを抵抗溶接により接続する。そして外装缶開口部近傍を縮径して溝入れ加工を行った後、アルカリ電解液を注入する。
そして前記封口蓋を前記溝入れ加工により形成した縮径部に封口蓋を載置し、外装缶開口部をかしめ加工することにより封止し、密閉型のアルカリ蓄電池が完成する。なお、封口蓋と外装缶の間には樹脂製のガスケットが挟まれ、封口蓋と外装缶が短絡しないように構成される。
After connecting the negative electrode side current collector and the outer can in this manner, the tab portion of the positive electrode side current collector and the sealing lid are connected by resistance welding. Then, after reducing the diameter of the vicinity of the outer can opening and performing grooving, an alkaline electrolyte is injected.
Then, the sealing lid is placed on the reduced diameter portion formed by the grooving process, and the outer lid opening is sealed by caulking to complete a sealed alkaline storage battery. A resin gasket is sandwiched between the sealing lid and the outer can so that the sealing lid and the outer can are not short-circuited.

ここで、本発明のアルカリ蓄電池について図1の断面図を用いて説明する。本発明の電池は、外装缶1中に電極体2を挿入し、前記外装缶1の開口部を封口蓋3で封止され密閉化される。また、電極体2は正極板4及び負極板5の間にセパレータ6を介して巻回してなるもので、正極芯体露出部4aには正極側集電体7が、負極芯体露出部5aには負極側集電体8がそれぞれ接続されている。正極集電体7は封口蓋3に接続され、これにより封口蓋3は正極端子となる。
負極側集電体8は、外装缶1の缶底部1aにレーザー溶接により接続される。なお、負極集電体8と缶底部1aが接続される接続部1bには、より確実に接続を行うために外装缶1内面に突出する突起が設けられている。溶接レーザーを接続部1bの前記突起と負極側集電体8が接する領域に外装缶1外部より照射することにより、負極側集電体8と接続部1bが溶接され接続される。
なお本発明の電池では、上記溶接レーザーを照射する前に溶接レーザーよりも低エネルギー密度の熱処理レーザーを接続部1bとその周辺に照射する。これにより、外装缶1の缶底部1bの一部のニッケルメッキが熱処理され、引き続いて行われる溶接レーザーによる溶接においてメッキの剥がれを防止することができる。
Here, the alkaline storage battery of the present invention will be described with reference to the cross-sectional view of FIG. In the battery of the present invention, the electrode body 2 is inserted into the outer can 1, and the opening of the outer can 1 is sealed with a sealing lid 3 and sealed. The electrode body 2 is formed by winding a separator 6 between a positive electrode plate 4 and a negative electrode plate 5, and a positive electrode side current collector 7 is provided in the positive electrode core body exposed portion 4a, and a negative electrode core body exposed portion 5a. The negative electrode side current collector 8 is connected to each of the two. The positive electrode current collector 7 is connected to the sealing lid 3, whereby the sealing lid 3 becomes a positive electrode terminal.
The negative electrode side current collector 8 is connected to the can bottom 1a of the outer can 1 by laser welding. In addition, the projection part which protrudes in the inner surface of the armored can 1 is provided in the connection part 1b to which the negative electrode collector 8 and the can bottom part 1a are connected in order to connect more reliably. By irradiating a welding laser from the outside of the outer can 1 to a region where the projection of the connection portion 1b is in contact with the negative electrode side current collector 8, the negative electrode side current collector 8 and the connection portion 1b are welded and connected.
In addition, in the battery of this invention, before irradiating the said welding laser, the heat processing laser of lower energy density than a welding laser is irradiated to the connection part 1b and its periphery. Thereby, the nickel plating of a part of the can bottom 1b of the outer can 1 is heat-treated, and peeling of the plating can be prevented in the subsequent welding by a welding laser.

(実施例)
焼結式ニッケル正極と焼結式カドミウム負極を用いて上述のように電極体を作製し、この電極体にニッケル板を打ち抜いて作製した集電体を正負極ともに取り付けた。
次いで、鋼板素地の表面にニッケルをメッキした円筒形の後メッキ外装缶(鋼鉄素地厚み0.35mm、ニッケルメッキ厚み2.0μmのもの)を用意し、前記外装缶内に電極体を挿入した。なお、当該後メッキ外装缶には集電体との接続を確実とするため、缶底中心部に外装缶内面に突出する突起(直径2.5mm、高さ0.2mm)が設けられている。
そして、前記電極体の負極側集電体と前記外装缶が接続される前記突起に対して、前記外装缶の外部から熱処理のための熱処理レーザー照射(エネルギー密度;6.8J/mm、レーザー照射範囲;前記突起の中心から半径0.75.mmの円内、照射時間;20ms)を行った。
熱処理レーザーを照射後、次に前記突起に対して溶接のための溶接レーザー照射(エネルギー密度;12.7J/mm、レーザー照射範囲;前記突起の中心から半径0.5mmの円内、照射時間;8msを3回)を行い、負極側集電体と外装缶を接続した。
その後、上述のアルカリ蓄電池の製法に従いSCサイズの密閉型アルカリ蓄電池を製造した。これを実施例電池とする。
(Example)
An electrode body was produced as described above using a sintered nickel positive electrode and a sintered cadmium negative electrode, and a current collector produced by punching a nickel plate into this electrode body was attached to both the positive and negative electrodes.
Next, a cylindrical post-plated outer can (with a steel substrate thickness of 0.35 mm and a nickel plating thickness of 2.0 μm) having nickel plated on the surface of the steel plate substrate was prepared, and an electrode body was inserted into the outer can. The post-plated outer can is provided with a protrusion (diameter 2.5 mm, height 0.2 mm) protruding from the inner surface of the outer can at the center of the can bottom in order to ensure the connection with the current collector. .
Then, a heat treatment laser irradiation (energy density: 6.8 J / mm 2 , laser for heat treatment from the outside of the outer can on the protrusion to which the negative electrode side current collector of the electrode body and the outer can are connected is performed. Irradiation range: within a circle having a radius of 0.75 mm from the center of the protrusion, irradiation time: 20 ms).
After irradiation with heat treatment laser, irradiation with welding laser for welding to the protrusions (energy density: 12.7 J / mm 2 , laser irradiation range; within a circle with a radius of 0.5 mm from the center of the protrusions, irradiation time ; 8 ms 3 times) to connect the negative electrode side current collector and the outer can.
Thereafter, an SC-size sealed alkaline storage battery was manufactured according to the above-described alkaline storage battery manufacturing method. This is an example battery.

(比較例)
上記実施例電池の製造プロセスにおいて、熱処理のためのレーザー照射を行わなかった以外は同様にしてSCサイズの密閉型アルカリ蓄電池を製造した。これを比較例電池とする。
(Comparative example)
An SC size sealed alkaline storage battery was manufactured in the same manner except that laser irradiation for heat treatment was not performed in the manufacturing process of the battery of the above example. This is referred to as a comparative battery.

(評価)
上記実施例電池および比較例電池のレーザー照射を受けた部分のメッキ状態を観察した。その状態を図2および図3に示す。なお、実施例電池が図2、比較例電池が図3である。
(Evaluation)
The plating state of the part which received the laser irradiation of the said Example battery and the comparative example battery was observed. The state is shown in FIG. 2 and FIG. In addition, an Example battery is FIG. 2, and a comparative example battery is FIG.

比較例電池の図3においては、レーザー照射による溶接を行ったところ、溶接部周辺のメッキが剥がれ、浮いた状態になっていることが分かる(図中A)。一方、当該部分に溶接の前に熱処理のレーザー照射を行った実施例電池の図2においては、比較例電池で見られたようなメッキの剥がれがなく、良好な状態を維持している。   In FIG. 3 of the comparative example battery, it can be seen that when welding was performed by laser irradiation, the plating around the welded portion was peeled off and floated (A in the figure). On the other hand, in FIG. 2 of the example battery in which the laser irradiation of the heat treatment was performed on the portion before welding, the plating was not peeled off as seen in the comparative example battery, and the good state was maintained.

以上、本発明によれば溶接レーザーを照射する前に当該部分に熱処理レーザーを照射し熱処理を施すことにより、当該部分に発生するメッキの剥がれを防止することができる。また、熱処理を施す部分が外装缶の一部であるため、大部分の外装缶のメッキは熱影響を受けず、キズがつきにくいという特性を維持することができる。   As described above, according to the present invention, it is possible to prevent the peeling of the plating generated in the portion by irradiating the portion with the heat treatment laser and performing the heat treatment before the irradiation with the welding laser. In addition, since the part to be heat-treated is a part of the outer can, the plating of most outer cans is not affected by heat and can maintain the characteristic of being hardly scratched.

なお、本発明の実施の形態については、円筒形のアルカリ蓄電池に基づいて説明したが、本発明は何ら上記実施の形態に限定されるものでは無い。例えば、外形が角形の電池においても円筒形の場合と同様に本発明を適用することが可能である。
また、アルカリ蓄電池に限らず、後メッキ外装缶と集電体をレーザー照射により接続するのであれば、他種の電池、例えばリチウムイオン蓄電池に適用することも可能である。
In addition, although embodiment of this invention was described based on the cylindrical alkaline storage battery, this invention is not limited to the said embodiment at all. For example, the present invention can be applied to a battery having a rectangular outer shape as in the case of a cylindrical shape.
Further, the present invention is not limited to alkaline storage batteries, and can be applied to other types of batteries, such as lithium ion storage batteries, as long as the post-plating outer can and the current collector are connected by laser irradiation.

本発明に係るアルカリ蓄電池の断面図である。It is sectional drawing of the alkaline storage battery which concerns on this invention. 実施例電池のレーザー照射部の状態を示す図である。It is a figure which shows the state of the laser irradiation part of an Example battery. 比較例電池のレーザー照射部の状態を示す図である。It is a figure which shows the state of the laser irradiation part of a comparative example battery.

符号の説明Explanation of symbols

1・・・外装缶、2・・・電極体、3・・・封口蓋、4・・・正極、5・・・負極
6・・・セパレータ、7・・・正極側集電体、8・・・負極側集電体
DESCRIPTION OF SYMBOLS 1 ... Exterior can, 2 ... Electrode body, 3 ... Sealing lid, 4 ... Positive electrode, 5 ... Negative electrode 6 ... Separator, 7 ... Positive electrode side collector, 8. ..Negative electrode current collector

Claims (1)

外装缶としてニッケルメッキ後の熱処理を未実施である後メッキ缶を用い、前記外装缶中に集電体の取り付けられた電極体を挿入し、前記集電体と前記外装缶を前記外装缶外部からの溶接レーザー照射により溶接する電池の製造方法において、
前記溶接レーザー照射による溶接の前に、前記外装缶の前記溶接レーザー照射を受ける部分とその周辺に前記溶接レーザーよりも低エネルギー密度のレーザーを照射して当該部分を熱処理することを特徴とする電池の製造方法。
Using a post-plated can that has not yet been heat-treated after nickel plating as an outer can, an electrode body with a current collector attached is inserted into the outer can, and the current collector and the outer can are placed outside the outer can In the manufacturing method of the battery to be welded by welding laser irradiation from
Before welding by the welding laser irradiation, the battery is characterized in that a portion of the outer can that receives the welding laser irradiation and its periphery are irradiated with a laser having a lower energy density than the welding laser to heat-treat the portion. Manufacturing method.
JP2007087368A 2007-03-29 2007-03-29 Battery manufacturing method Pending JP2008251192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087368A JP2008251192A (en) 2007-03-29 2007-03-29 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087368A JP2008251192A (en) 2007-03-29 2007-03-29 Battery manufacturing method

Publications (1)

Publication Number Publication Date
JP2008251192A true JP2008251192A (en) 2008-10-16

Family

ID=39975927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087368A Pending JP2008251192A (en) 2007-03-29 2007-03-29 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP2008251192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530337A (en) * 2009-06-18 2012-11-29 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Button battery with wound electrode and method for manufacturing the same
US9153835B2 (en) 2009-02-09 2015-10-06 Varta Microbattery Gmbh Button cells and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460950A (en) * 1987-08-31 1989-03-08 Matsushita Electric Ind Co Ltd Manufacture of sealed battery
JPH08293299A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Manufacture of battery
JP2000077040A (en) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd Battery
JP2005044691A (en) * 2003-07-24 2005-02-17 Sanyo Electric Co Ltd Cell and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460950A (en) * 1987-08-31 1989-03-08 Matsushita Electric Ind Co Ltd Manufacture of sealed battery
JPH08293299A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Manufacture of battery
JP2000077040A (en) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd Battery
JP2005044691A (en) * 2003-07-24 2005-02-17 Sanyo Electric Co Ltd Cell and its manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024869B2 (en) 2009-02-09 2021-06-01 Varta Microbattery Gmbh Button cells and method of producing same
US11233265B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11276875B2 (en) 2009-02-09 2022-03-15 Varta Microbattery Gmbh Button cells and method of producing same
US11258092B2 (en) 2009-02-09 2022-02-22 Varta Microbattery Gmbh Button cells and method of producing same
US9799913B2 (en) 2009-02-09 2017-10-24 Varta Microbattery Gmbh Button cells and method of producing same
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US9153835B2 (en) 2009-02-09 2015-10-06 Varta Microbattery Gmbh Button cells and method for producing same
US11233264B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11791493B2 (en) 2009-02-09 2023-10-17 Varta Microbattery Gmbh Button cells and method of producing same
US9496581B2 (en) 2009-02-09 2016-11-15 Varta Microbattery Gmbh Button cells and method of producing same
US10971776B2 (en) 2009-06-18 2021-04-06 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024907B1 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024905B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11158896B2 (en) 2009-06-18 2021-10-26 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11217844B2 (en) 2009-06-18 2022-01-04 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024904B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362385B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
JP2012530337A (en) * 2009-06-18 2012-11-29 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Button battery with wound electrode and method for manufacturing the same
US9799858B2 (en) 2009-06-18 2017-10-24 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362384B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11791512B2 (en) 2009-06-18 2023-10-17 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024906B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof

Similar Documents

Publication Publication Date Title
JP4278222B2 (en) Sealing plate for sealed battery, sealed battery and manufacturing method thereof
JP5449961B2 (en) Secondary battery
JP5121279B2 (en) Manufacturing method of sealed battery
US10079370B2 (en) Secondary battery
US11283140B2 (en) Secondary battery including terminal having first region formed of material with different ionization tendency than material of second region of terminal
JP2006049275A (en) Lithium ion secondary battery
JP5110958B2 (en) Sealed battery
JP5364512B2 (en) Cylindrical battery
JP2010080140A (en) Sealed battery and method of manufacturing the same
JP2008251192A (en) Battery manufacturing method
JP7054454B2 (en) How to manufacture a secondary battery
JP2016058220A (en) Bobbin type lithium primary battery
CN112045307A (en) Laser welding method for soft package lithium ion power battery tab
EP2381504B1 (en) Sealing body for sealed battery and sealed battery using same
KR20200122630A (en) Secondary battery
JP3568387B2 (en) Manufacturing method of sealed battery
KR200207949Y1 (en) Secondary battery
KR100435038B1 (en) Method for forming cathode terminal of Lithium ion secondary battery
KR20210056066A (en) Secondary battery
JP2008065983A (en) Negative electrode current collector for dry cell
JP2011243381A (en) Manufacturing method of battery
JP2010067379A (en) Sealed battery
JP4610395B2 (en) battery
KR20230068730A (en) Cylindrical secondary battery
JP2006260959A (en) Sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731