JP2010080140A - Sealed battery and method of manufacturing the same - Google Patents
Sealed battery and method of manufacturing the same Download PDFInfo
- Publication number
- JP2010080140A JP2010080140A JP2008245063A JP2008245063A JP2010080140A JP 2010080140 A JP2010080140 A JP 2010080140A JP 2008245063 A JP2008245063 A JP 2008245063A JP 2008245063 A JP2008245063 A JP 2008245063A JP 2010080140 A JP2010080140 A JP 2010080140A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- sealed
- injection hole
- lid
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000007789 sealing Methods 0.000 claims abstract description 46
- 239000003792 electrolyte Substances 0.000 claims abstract description 31
- 238000002347 injection Methods 0.000 claims description 71
- 239000007924 injection Substances 0.000 claims description 71
- 238000003466 welding Methods 0.000 claims description 18
- 239000007788 liquid Substances 0.000 abstract description 23
- 229910001416 lithium ion Inorganic materials 0.000 description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 17
- 239000008151 electrolyte solution Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- -1 lithium hexafluorophosphate Chemical compound 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Filling, Topping-Up Batteries (AREA)
Abstract
Description
本発明は、電解液を注入した後に電解液注液孔を封止する密閉型電池及びその製造方法に関するものである。 The present invention relates to a sealed battery for sealing an electrolyte solution injection hole after injecting an electrolyte solution, and a method for manufacturing the same.
携帯用の電子機器は、小型軽量化と共に機能の高度化が進んでいる。その結果、これらの電子機器に使用する電源用の電池には、小型、軽量で、容積あたり容量の大きな電池が求められている。リチウムイオンをドープ、及び脱ドープする正極活物質と負極活物質を用いたリチウムイオン電池は、従来から用いられているニッケルカドミウム電池や鉛電池に比べて、容積あるいは質量当りのエネルギー密度が大きな二次電池として小型の電子機器用の電源として利用されている。 Portable electronic devices are becoming smaller and lighter and have advanced functions. As a result, batteries for power supplies used in these electronic devices are required to be small, lightweight, and have a large capacity per volume. Lithium ion batteries using positive electrode active materials and negative electrode active materials doped and dedoped with lithium ions have a higher energy density per volume or mass than conventional nickel cadmium batteries and lead batteries. As a secondary battery, it is used as a power source for small electronic devices.
リチウムイオン電池は、正極電極と負極電極を、セパレータを介して巻回した電池要素、あるいは積層した電池要素を金属製の電池外装容器に収納する。電池外装容器とは極性が異なり、絶縁性部材で絶縁した電極を備えた蓋体を取り付けて電池外装容器との嵌合部を封止した後に、電解液注液孔から所定の量の電解液を注液し、電解液注液孔に封止栓を装着してレーザ溶接等によって溶接し注液孔を封止している。 In a lithium ion battery, a battery element in which a positive electrode and a negative electrode are wound through a separator or a stacked battery element is stored in a metal battery outer container. After attaching a lid body having an electrode insulated by an insulating member and having a polarity different from that of the battery outer container and sealing the fitting portion with the battery outer container, a predetermined amount of electrolytic solution is supplied from the electrolyte injection hole. The electrolyte injection hole is fitted with a sealing plug and welded by laser welding or the like to seal the injection hole.
図4は従来の密閉型電池を説明する図であり、図4(a)は密閉型電池の平面図、図4(b)は封止栓の断面図、図4(c)は図4(a)のA−A断面図、図4(d)は図4(c)に封止栓を挿入した封止状態を説明する断面図である。 4A and 4B are diagrams for explaining a conventional sealed battery. FIG. 4A is a plan view of the sealed battery, FIG. 4B is a cross-sectional view of the sealing plug, and FIG. 4C is FIG. FIG. 4A is a cross-sectional view illustrating a sealed state in which a sealing plug is inserted into FIG. 4C.
電解液の注液孔7から電解液を注液し、蓋体2の段部4を備えた注液孔7に封止栓1を装着し、封止栓1の外周をレーザ加工で溶接封止している。
The electrolytic solution is injected from the electrolytic
密閉型電池の製造において、電解液を注液した密閉型電池の蓋体の注液孔を封止する為には封止栓の装着が必要不可欠であった。また、封止栓が注液孔に正確に装着されていないと封止が不良となる恐れがある。そこで、封止栓を仮止めしたり、あるいは封止時に照射するレーザの照射方向を調節したりする等の方法が提案されており、密閉型電池は、封止栓を使用して封止するものである。 In the production of a sealed battery, it is indispensable to attach a sealing plug in order to seal the liquid injection hole of the lid of the sealed battery into which an electrolytic solution has been injected. Further, if the sealing plug is not accurately attached to the liquid injection hole, the sealing may be poor. Therefore, methods such as temporarily fixing the sealing plug or adjusting the irradiation direction of the laser irradiated at the time of sealing have been proposed. Sealed batteries are sealed using the sealing plug. Is.
これに対して特許文献1では、蓋体の周囲と電池缶の開口部との会合部の一部に間隙部を形成した状態で封口した後に、間隙部から電解液の注液の後に間隙部を封口した密閉型電池が提案されている。すなわち封止栓を使用せずに電池缶を封止する密閉型電池が提案されており、封止栓に関する工程が不要になるとともに製造原価を削減できる。
On the other hand, in
しかしながら、特許文献1において蓋体の周囲と電池缶の開口部との会合部の一部にある間隙部では、表面張力により電解液が間隙部の溶接部に染み出してきて、局部的に溶接されない封止不良が生じる恐れがある。
However, in
つまり、間隙部における蓋体の周囲の一部は電池缶の内壁と接触しているため、電解液の量が多い場合には、電解液が蓋体の厚さ方向の溶接境界部や電池缶の内壁を通って間隙部の溶接部分に染み出してくる可能性がある。 That is, since a part of the periphery of the lid in the gap is in contact with the inner wall of the battery can, when the amount of the electrolyte is large, the electrolyte is welded in the thickness direction of the lid or the battery can. There is a possibility of oozing out to the welded portion of the gap through the inner wall.
また、間隙部は垂直に設けられているため、間隙部の溶接時にレーザ光が缶内部に入って電池要素を損傷する恐れもある。 Further, since the gap portion is provided vertically, there is a possibility that the laser beam may enter the inside of the can and damage the battery element when the gap portion is welded.
すなわち、本発明の技術的課題は、電解液の注液孔に封止栓を使用せず、且つ、レーザ光が缶内部に入って電池要素を損傷することなくレーザ加工で溶接封止を可能とする密閉型電池及びその製造方法を提供することにある。 That is, the technical problem of the present invention is that a sealing plug is not used for the electrolyte injection hole, and welding sealing can be performed by laser processing without damaging the battery element due to laser light entering the inside of the can. The present invention provides a sealed battery and a manufacturing method thereof.
本発明の密閉型電池は、電池缶の開口部に蓋体を載置して封止した密閉型電池において、電池缶の開口部を封止する蓋体の中央部に、蓋体の表面に対して傾斜して設けられた電解液の注液孔をレーザ加工で溶接封止したことを特徴とする。 The sealed battery of the present invention is a sealed battery in which a lid is placed and sealed in the opening of the battery can, and the lid is sealed at the center of the lid that seals the opening of the battery can. In contrast, the electrolyte injection hole provided at an inclination is weld-sealed by laser processing.
本発明の密閉型電池の製造方法は、電池缶の開口部に蓋体を載置して封止した密閉型電池の製造方法において、前記電池缶の内部に電池要素を収納した後に、前記電池缶の開口部を封止する蓋体の中央部に、蓋体の表面に対して傾斜して設けられた電解液の注液孔から電解液を注液し、次いで注液孔をレーザ加工で溶接封止することを特徴とする。 The method for manufacturing a sealed battery according to the present invention is a method for manufacturing a sealed battery in which a lid is placed and sealed in an opening of the battery can, and after the battery element is housed in the battery can, the battery Electrolyte is injected from the electrolyte injection hole provided at the center of the lid that seals the opening of the can at an angle with respect to the surface of the lid, and then the injection hole is laser processed. It is characterized by welding sealing.
本発明によれば、電解液の注液孔に封止栓を使用せず、且つ、レーザ光が缶内部に入って電池要素を損傷することなくレーザ加工で溶接封止を可能とする密閉型電池及びその製造方法が得られる。 According to the present invention, a hermetically sealed type that does not use a sealing plug in the electrolyte injection hole and enables laser welding without laser beam entering the can and damaging the battery element. A battery and a manufacturing method thereof are obtained.
次に、本発明の実施の形態を、図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
図1は本発明の密閉型電池を説明する図であり、図1(a)は密閉型電池の斜視図、図1(b)は密閉型電池の平面図、図1(c)は図1(b)のA−A断面図、図1(d)は図1(c)の封止状態を説明する断面図である。 FIG. 1 is a diagram for explaining a sealed battery according to the present invention. FIG. 1A is a perspective view of the sealed battery, FIG. 1B is a plan view of the sealed battery, and FIG. (B) AA sectional drawing, FIG.1 (d) is sectional drawing explaining the sealing state of FIG.1 (c).
本発明の密閉型電池は、電池缶5の内部に電池要素を収納した後に、電池缶5の開口部を蓋体2で封止したものであり、蓋体2は中央部に電極端子6を有するとともに電解液の注液孔7を一つ有している。
In the sealed battery of the present invention, the battery element is housed inside the battery can 5 and then the opening of the battery can 5 is sealed with the
電解液の注液孔7より電解液を注入し、その後レーザ加工で溶接することにより注液孔7を封止して密閉型電池が製造される。
The electrolytic solution is injected from the electrolytic
電解液の注液孔は、板状の蓋体を垂直方向から覗いた時に貫通して見えない角度で傾斜して形成されている。注液孔を傾斜して形成するというのは、直線的である必要はなく、レーザ光を垂直方向から照射する場合には、蓋体を垂直方向から覗いた時に貫通して見えない状態であればよい。注液孔を直線的に形成する場合の角度は、蓋体の厚さと注液孔の直径の関係により異なるが、蓋体の表面に対して30度以上、60度以下であるのが製造上好ましい。注液孔はプレス加工等により形成されるのが製造上好ましい。 The electrolyte injection hole is formed so as to be inclined at an angle that cannot be seen through when the plate-like lid is viewed from the vertical direction. It is not necessary that the liquid injection hole is formed in an inclined manner, and when the laser beam is irradiated from the vertical direction, the liquid injection hole should not be seen through when the lid is viewed from the vertical direction. That's fine. The angle for forming the liquid injection hole linearly varies depending on the relationship between the thickness of the lid and the diameter of the liquid injection hole, but is 30 ° or more and 60 ° or less with respect to the surface of the lid. preferable. The injection hole is preferably formed by press working or the like.
垂直方向から注液孔に直接レーザ照射することにより,封止栓を使用せず、且つ、レーザ光が缶内部に入ることなく、蓋体の一部を溶かすことにより注液孔を溶接封止することが出来る。レーザ光が缶内部に入らないので、電池缶内に収納された電池要素を損傷することはない。 By directly irradiating the injection hole with laser from the vertical direction, the injection hole is welded and sealed by melting a part of the lid without using a sealing plug and entering the inside of the can. I can do it. Since the laser beam does not enter the inside of the can, the battery element housed in the battery can is not damaged.
レーザ光が照射される方向が垂直方向でなくとも、レーザ光の照射方向と注液孔の位置関係において、レーザ光が電池缶内部の電池要素を損傷しないような注液孔の形状であればよい。 Even if the direction of laser light irradiation is not vertical, the injection hole shape is such that the laser light does not damage battery elements inside the battery can in the positional relationship between the laser light irradiation direction and the liquid injection hole. Good.
図2は本発明の密閉型電池の別の注液孔を説明する図であり、図2(a)は密閉型電池の平面図、図2(b)は図2(a)のA−A断面図、図2(c)は図2(b)の封止状態を説明する断面図である。 2A and 2B are diagrams for explaining another liquid injection hole of the sealed battery of the present invention. FIG. 2A is a plan view of the sealed battery, and FIG. 2B is AA of FIG. Sectional drawing and FIG.2 (c) are sectional drawings explaining the sealing state of FIG.2 (b).
電解液の注液孔7は、一つではなく複数有している。電解液の注液孔7より電解液を注入し、その後レーザ加工で溶接を行うことにより全ての注液孔7を封止して密閉型電池が製造される。
There are a plurality of
蓋体を垂直方向から覗いた時に貫通して見えない状態であれば、注液孔の数は、複数有してかまわない。電解液を注液する場合、注液孔の数が多いので電解液を注液しやすく、注液時間を短縮でき、生産性を向上させることができる。 As long as the lid is not seen through when viewed from the vertical direction, a plurality of liquid injection holes may be provided. When injecting an electrolytic solution, the number of injection holes is large, so that the electrolytic solution can be easily injected, the injection time can be shortened, and productivity can be improved.
図3は本発明の密閉型電池のさらに別の注液孔を説明する図であり、図3(a)は密閉型電池の平面図、図3(b)は図3(a)のA−A断面図、図3(c)は図3(b)の封止状態を説明する断面図である。 FIG. 3 is a view for explaining another liquid injection hole of the sealed battery of the present invention, FIG. 3 (a) is a plan view of the sealed battery, and FIG. 3 (b) is an A- FIG. 3A is a cross-sectional view illustrating the sealed state of FIG. 3B.
電解液の注液孔7は円柱状ではなく直方体状の形状をしている。電解液の注液孔7より電解液を注入し、その後レーザ加工で溶接を行うことにより注液孔7を封止して密閉型電池が製造される。
The
蓋体を垂直方向から覗いた時に貫通して見えない状態であれば、注液孔の形状は、どのような形状でもかまわない。電解液を丸い管を通して注液する場合には、直方体状の注液孔の周囲である角部が、電池缶内の空気を排気する役目を果たすので、注液時間を短縮でき、生産性を向上させることができる。 The shape of the liquid injection hole may be any shape as long as the lid is not seen through when viewed from the vertical direction. When the electrolyte is injected through a round tube, the corners around the rectangular parallelepiped injection hole serve to exhaust the air in the battery can, reducing the injection time and increasing productivity. Can be improved.
以下に、本発明の実施例を詳述する。 Examples of the present invention are described in detail below.
(実施例1)
本発明の実施例1として密閉型電池について図1を参照して説明する。幅30mm、高さ48mm、厚さ4mmのアルミニウム合金(A3003)製の電池缶5に電池要素を収納した。その後、直径0.3mm、蓋体2の表面に対して40度傾斜して貫通する注液孔7を設けた厚さ1mmのアルミニウム合金(A3003)製の蓋体2を電池缶5に嵌合し溶接した。電解液を注液孔7から注液し、レーザ加工で溶接封止してリチウムイオン電池を作製した。
Example 1
A sealed battery will be described as Example 1 of the present invention with reference to FIG. The battery element was housed in a battery can 5 made of an aluminum alloy (A3003) having a width of 30 mm, a height of 48 mm, and a thickness of 4 mm. Thereafter, the
正極電極は、正極活物質であるLiCoO2、導電助剤およびバインダーをN−メチル−2−ピロリドン(以下NMPと表記)に混合分散し、スラリー状にしたものをアルミ箔上に両面塗布し、乾燥させて作製した。 For the positive electrode, LiCoO 2 as a positive electrode active material, a conductive additive and a binder are mixed and dispersed in N-methyl-2-pyrrolidone (hereinafter referred to as NMP), and a slurry is applied on both sides of an aluminum foil Made by drying.
負極電極は、Liイオンが層間挿入・脱挿入できる負極活物質である炭素、導電助剤およびバインダーをNMPに混合分散し、スラリー状にしたものを銅箔上に両面塗布し、乾燥させて作製した。 The negative electrode is made by mixing and dispersing carbon, which is a negative electrode active material capable of intercalating and deintercalating Li ions, a conductive additive and a binder in NMP, applying a slurry to both sides of the copper foil, and drying. did.
電極幅は、負極集電体の幅が正極集電体の幅よりも約2mm広くなるようにスリットした。正極電極と負極電極を、セパレータを介して巻回して電池要素を作製した。 The electrode width was slit so that the width of the negative electrode current collector was about 2 mm wider than the width of the positive electrode current collector. A positive electrode and a negative electrode were wound through a separator to produce a battery element.
電解液は、六フッ化燐酸リチウムを電解質として、ジエチルカーボネート(DEC)とエチレンカーボネート(EC)の混合溶媒に溶解したものを使用した。注液孔から電解液を注液した後、注液孔にレーザビーム径Φ0.6mmのレーザを垂直方向から照射し溶接封止した。 The electrolytic solution used was lithium hexafluorophosphate as an electrolyte and dissolved in a mixed solvent of diethyl carbonate (DEC) and ethylene carbonate (EC). After injecting the electrolyte from the injection hole, the injection hole was irradiated with a laser having a laser beam diameter of Φ0.6 mm from the vertical direction and sealed by welding.
作製した500個のリチウムイオン電池について、レーザ加工で溶接後の封止状態を確認したところ、不良の発生はなかった。また、電池缶を分解し電池要素を確認したがレーザ光による損傷はなかった。 About the produced 500 lithium ion battery, when the sealing state after welding was confirmed by laser processing, there was no generation | occurrence | production of a defect. Further, the battery can was disassembled and the battery element was confirmed, but there was no damage by the laser beam.
(実施例2)
蓋体の構造において注液孔を3個有する以外は実施例1と同様にリチウムイオン電池を作製した。図2に示すように、直径0.3mm、蓋体2の表面に対して40度傾斜して貫通する注液孔7を3個設けた厚さ1mmのアルミニウム合金(A3003)製の蓋体2を電池缶に嵌合し溶接した。電解液を注液孔7から注液し、レーザ加工で溶接封止してリチウムイオン電池を作製した。
(Example 2)
A lithium ion battery was produced in the same manner as in Example 1 except that the lid structure had three injection holes. As shown in FIG. 2, a
作製した500個のリチウムイオン電池について、レーザ加工で溶接後の封止状態を確認したところ、不良の発生はなかった。また、電池缶を分解し電池要素を確認したがレーザ光による損傷はなかった。 About the produced 500 lithium ion battery, when the sealing state after welding was confirmed by laser processing, there was no generation | occurrence | production of a defect. Further, the battery can was disassembled and the battery element was confirmed, but there was no damage by the laser beam.
(実施例3)
蓋体の構造において注液孔を直方体状にした以外は実施例1と同様にリチウムイオン電池を作製した。図3に示すように、長さ2mm、幅0.3mm、蓋体2の表面に対して40度傾斜して貫通する注液孔7を設けた厚さ1mmのアルミニウム合金(A3003)製の蓋体2を電池缶に嵌合し溶接した。電解液を注液孔7から注液し、レーザ加工で溶接封止してリチウムイオン電池を作製した。
(Example 3)
A lithium ion battery was produced in the same manner as in Example 1 except that the injection hole was a rectangular parallelepiped in the structure of the lid. As shown in FIG. 3, a lid made of aluminum alloy (A3003) having a thickness of 2 mm, a width of 0.3 mm, and a thickness of 1 mm provided with a
作製した500個のリチウムイオン電池について、レーザ加工で溶接後の封止状態を確認したところ、不良の発生はなかった。また、電池缶を分解し電池要素を確認したがレーザ光による損傷はなかった。 About the produced 500 lithium ion battery, when the sealing state after welding was confirmed by laser processing, there was no generation | occurrence | production of a defect. Further, the battery can was disassembled and the battery element was confirmed, but there was no damage by the laser beam.
(比較例1)
蓋体の構造において注液孔が蓋体の表面に対して90度傾斜して垂直に設けられている以外は実施例1と同様にリチウムイオン電池を作製した。
(Comparative Example 1)
A lithium ion battery was produced in the same manner as in Example 1 except that the injection hole was provided perpendicularly with an inclination of 90 degrees with respect to the surface of the lid in the lid structure.
図5は注液孔が垂直に設けられ封止栓を使用しない密閉型電池を説明する図であり、図5(a)は密閉型電池の平面図、図5(b)は図5(a)のA−A断面図、図5(c)は図5(b)の封止状態を説明する断面図である。直径0.3mm、蓋体2の表面に対して90度傾斜して垂直に貫通する注液孔7を設けた厚さ1mmのアルミニウム合金(A3003)製の蓋体2を電池缶に嵌合し溶接した。電解液を注液孔7から注液し、レーザ加工で溶接封止してリチウムイオン電池を作製した。
FIG. 5 is a diagram for explaining a sealed battery in which liquid injection holes are provided vertically and does not use a sealing plug. FIG. 5 (a) is a plan view of the sealed battery, and FIG. 5 (b) is a diagram of FIG. ) Of FIG. 5A is a cross-sectional view, and FIG. 5C is a cross-sectional view illustrating the sealed state of FIG. A
作製した10個のリチウムイオン電池について、レーザ加工で溶接後の封止状態を確認したところ、ピンホールによる溶接不良が10個発生した。レーザ光が缶内部に入り電解液が急激にガス化して注液孔から噴出し、封止自体ができない結果となった。また、電池缶を分解し電池要素を確認したところ、レーザ光による損傷が10個発生した。 About ten produced lithium ion batteries, when the sealing state after welding was confirmed by laser processing, ten welding defects by a pinhole generate | occur | produced. The laser beam entered the inside of the can and the electrolyte was rapidly gasified and ejected from the injection hole, resulting in a failure to seal itself. Further, when the battery can was disassembled and the battery element was confirmed, ten damages due to the laser beam occurred.
(比較例2)
注液孔が蓋体の表面に対して90度傾斜して垂直に設けられ、封止栓を使用して注液孔を封止した以外は実施例1と同様にリチウムイオン電池を作製した。図4に示すように、段部4の直径2.0mm深さ0.5mmで中心に直径1.2mm、深さ0.5mmの貫通孔を有した注液孔7を設けた厚さ1mmのアルミニウム合金(A3003)製の蓋体2を電池缶に嵌合し溶接した。電解液を注液孔7から注液し、フランジ部3の直径2.0mm、厚さ0.5mmの封止栓1を注液孔7に圧入し、レーザ溶接により封止してリチウムイオン電池を作製した。
(Comparative Example 2)
A lithium ion battery was produced in the same manner as in Example 1 except that the liquid injection hole was provided 90 degrees perpendicular to the surface of the lid, and the liquid injection hole was sealed using a sealing plug. As shown in FIG. 4, the
作製した500個のリチウムイオン電池について、レーザ加工で溶接後の封止状態を確認したところ、ピンホールによる溶接不良が3個発生した。また、電池缶を分解し電池要素を確認したがレーザ光による損傷はなかった。 About 500 produced lithium ion batteries, when the sealing state after welding was confirmed by laser processing, three welding defects by a pinhole generate | occur | produced. Further, the battery can was disassembled and the battery element was confirmed, but there was no damage by the laser beam.
実施例1〜3と比較例2より、電解液の注液孔に封止栓を使用せずにレーザ加工で溶接による封止が可能であり、溶接不良に関して封止栓を使用するよりも品質上優れている密閉型電池を得ることができることがわかった。また、その製造方法も見出すことができた。 From Examples 1 to 3 and Comparative Example 2, it is possible to seal by welding by laser processing without using a sealing plug in the electrolyte injection hole, and quality is higher than using a sealing plug for poor welding. It was found that an excellent sealed battery could be obtained. Moreover, the manufacturing method was also found.
実施例1と比較例1より、蓋体の表面に対して傾斜して貫通する注液孔を設けることにより、レーザ光が電池缶内部に入って電池要素を損傷することなく封止することが可能であることがわかった。 From Example 1 and Comparative Example 1, it is possible to seal the laser element without damaging the battery element by entering the inside of the battery can by providing a liquid injection hole that is inclined and penetrates the surface of the lid. I found it possible.
実施例の結果を総合して考慮すれば、注液孔を蓋体の表面に対して傾斜して設けることによって電解液の注液孔に封止栓を使用せず、且つ、レーザ光が缶内部に入って電池要素を損傷することなくレーザ加工で溶接封止を可能とする密閉型電池が得られ、その製造方法も提供できることがわかった。 Considering the results of the examples in total, by providing the liquid injection hole with an inclination with respect to the surface of the lid, a sealing plug is not used for the liquid injection hole, and the laser light can be It was found that a sealed battery capable of being welded and sealed by laser processing without entering the inside and damaging the battery element can be obtained, and a manufacturing method thereof can also be provided.
以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。 The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.
1 封止栓
2 蓋体
3 フランジ部
4 段部
5 電池缶
6 電極端子
7 注液孔
8 レーザ溶接部
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008245063A JP2010080140A (en) | 2008-09-25 | 2008-09-25 | Sealed battery and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008245063A JP2010080140A (en) | 2008-09-25 | 2008-09-25 | Sealed battery and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010080140A true JP2010080140A (en) | 2010-04-08 |
Family
ID=42210353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008245063A Withdrawn JP2010080140A (en) | 2008-09-25 | 2008-09-25 | Sealed battery and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010080140A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120107677A1 (en) * | 2010-10-28 | 2012-05-03 | Medtronic, Inc. | Energy storage device fluid aperature |
JP2013157293A (en) * | 2012-01-31 | 2013-08-15 | Gs Yuasa Corp | Power storage element and storage container member |
WO2013124982A1 (en) * | 2012-02-22 | 2013-08-29 | 日立ビークルエナジー株式会社 | Rectangular secondary cell |
CN104145354A (en) * | 2012-03-08 | 2014-11-12 | 丰田自动车株式会社 | Sealed cell and method for manufacturing same |
US9147865B2 (en) | 2012-09-06 | 2015-09-29 | Johnson Controls Technology Llc | System and method for closing a battery fill hole |
CN114614170A (en) * | 2022-03-09 | 2022-06-10 | 贵州中瑞丰泰新能源科技有限公司 | Button battery and processing method thereof |
-
2008
- 2008-09-25 JP JP2008245063A patent/JP2010080140A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120107677A1 (en) * | 2010-10-28 | 2012-05-03 | Medtronic, Inc. | Energy storage device fluid aperature |
WO2012057855A1 (en) * | 2010-10-28 | 2012-05-03 | Medtronic, Inc. | Energy storage device fluid aperature |
JP2013157293A (en) * | 2012-01-31 | 2013-08-15 | Gs Yuasa Corp | Power storage element and storage container member |
WO2013124982A1 (en) * | 2012-02-22 | 2013-08-29 | 日立ビークルエナジー株式会社 | Rectangular secondary cell |
JP5336023B1 (en) * | 2012-02-22 | 2013-11-06 | 日立ビークルエナジー株式会社 | Prismatic secondary battery |
CN104094450A (en) * | 2012-02-22 | 2014-10-08 | 日立汽车系统株式会社 | Rectangular secondary cell |
CN104145354A (en) * | 2012-03-08 | 2014-11-12 | 丰田自动车株式会社 | Sealed cell and method for manufacturing same |
US9147865B2 (en) | 2012-09-06 | 2015-09-29 | Johnson Controls Technology Llc | System and method for closing a battery fill hole |
CN114614170A (en) * | 2022-03-09 | 2022-06-10 | 贵州中瑞丰泰新能源科技有限公司 | Button battery and processing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5121279B2 (en) | Manufacturing method of sealed battery | |
KR101222336B1 (en) | Rechargeable battery | |
KR101139097B1 (en) | Secondary cell and its manufacturing method | |
JP5207046B2 (en) | Sealed battery and manufacturing method thereof | |
KR101675623B1 (en) | Secondary Battery and Manufacturing Method Thereof | |
US9559339B2 (en) | Secondary battery | |
JP5305428B2 (en) | Sealed battery | |
JP2007018915A (en) | Sealed battery | |
JP2010080140A (en) | Sealed battery and method of manufacturing the same | |
KR101116533B1 (en) | Secondary battery and method of manufacturing the same | |
JP2007066600A (en) | Sealed battery | |
JP2007103286A (en) | Sealed battery and its manufacturing method | |
JP2008147069A (en) | Sealed battery | |
JP2012169064A (en) | Rectangular secondary battery, and method of manufacturing the same | |
JP2010176989A (en) | Method of manufacturing battery, and battery | |
JP2010080081A (en) | Secondary battery | |
KR101222415B1 (en) | Secondary battery | |
JP2007035343A (en) | Sealed battery | |
JP2015011948A (en) | Battery, and method for manufacturing battery | |
KR100571237B1 (en) | Can type secondary battery | |
JP2007134156A (en) | Sealed battery | |
JP2008243704A (en) | Cylindrical type nonaqueous electrolyte battery | |
JP2007294308A (en) | Manufacturing method of sealed battery | |
JP2011034761A (en) | Sealed battery | |
JP5248210B2 (en) | Lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100701 |
|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20111206 |