JP2009266695A - Manufacturing method of battery, and battery pack - Google Patents

Manufacturing method of battery, and battery pack Download PDF

Info

Publication number
JP2009266695A
JP2009266695A JP2008116236A JP2008116236A JP2009266695A JP 2009266695 A JP2009266695 A JP 2009266695A JP 2008116236 A JP2008116236 A JP 2008116236A JP 2008116236 A JP2008116236 A JP 2008116236A JP 2009266695 A JP2009266695 A JP 2009266695A
Authority
JP
Japan
Prior art keywords
unwelded
welding
battery
case
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008116236A
Other languages
Japanese (ja)
Inventor
Satoru Suzuki
哲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008116236A priority Critical patent/JP2009266695A/en
Publication of JP2009266695A publication Critical patent/JP2009266695A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a high-reliability battery prevented in the generation of a sputter in a battery case, and the occurrence of the partial burnout of a power generation element or the like while welding an unwelded case body to an unwelded sealing member by using an energy beam. <P>SOLUTION: This manufacturing method of a battery 1 provided with a power generation element 40 and a metallic battery case 10 includes: an abutting process of making a first welding-planned part 21 of an unwelded case body 20B having an opening 25 and a second welding-planned part 31 of an unwelded sealing member 30B sealing the opening abut on each other; and a welding process of forming the battery case 10 by emitting an energy beam EB from a direction DB orthogonal to an overlapping direction DA. The second welding-planned part includes a projection 34 projecting toward the facing first welding-planned part, and the abutting process brings the projection into press-contact with the first welding-planned part throughout the whole circumference. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、開口部を有する未溶接ケース本体と、この開口部を封口する未溶接封口部材とを溶接してなる電池ケースを備える電池の製造方法、及び、このような電池を複数備える組電池に関する。   The present invention relates to a battery manufacturing method including a battery case formed by welding an unwelded case main body having an opening and an unwelded sealing member that seals the opening, and an assembled battery including a plurality of such batteries. About.

近年、携帯電話、ノート型パソコン、ビデオカムコーダなどのポータブル電子機器やハイブリッド電気自動車等の車両の普及により、これらの駆動用電源に用いられる電池の需要は増大している。
このような電池の中には、開口部を有する未溶接ケース本体と、この未溶接ケース本体の開口部を封口可能な未溶接封口部材とを溶接してなる電池ケースで構成された電池がある。なお、電池ケースは、その内側に発電要素を収容可能な形態を有する。
この電池において、未溶接ケース本体の開口部を未溶接封口部材で封口する溶接手段としては、例えば、未溶接封口部材と未溶接ケース本体とが互いに当接する部位にレーザビーム等のエネルギビームを照射するエネルギビーム溶接が挙げられる。そこで例えば、特許文献1では、封口板(未溶接封口部材)の周縁部のうち角形ケース側に、角形ケース(未溶接ケース本体)の内径とほぼ同寸法の凹形段差を設けて、封口板と角形ケースとを当接させてレーザ溶接を行った電池が挙げられている。
In recent years, with the spread of portable electronic devices such as mobile phones, notebook computers, and video camcorders and vehicles such as hybrid electric vehicles, the demand for batteries used for these driving power sources is increasing.
Among such batteries, there is a battery composed of a battery case formed by welding an unwelded case body having an opening and an unwelded sealing member capable of sealing the opening of the unwelded case body. . The battery case has a form capable of accommodating the power generation element inside thereof.
In this battery, as a welding means for sealing the opening of the unwelded case main body with an unwelded sealing member, for example, an energy beam such as a laser beam is irradiated to a portion where the unwelded sealing member and the unwelded case main body contact each other. Energy beam welding. Therefore, for example, in Patent Document 1, a concave step having substantially the same size as the inner diameter of the square case (unwelded case body) is provided on the square case side in the peripheral portion of the seal plate (unwelded seal member). And a battery in which laser welding is performed by bringing a rectangular case into contact with each other.

特開平11−339737号公報JP 11-339737 A

しかしながら、特許文献1に記載の電池の製造過程では、未溶接ケース本体及び未溶接封口部材の寸法公差やゆがみによって、未溶接ケース本体と未溶接封口部材とを当接させた際に、これらの間に一部、隙間が生じてしまうことがある。この隙間にレーザビーム等のエネルギビームが照射されると、このエネルギビームは隙間を通じて、未溶接ケース本体と未溶接封口部材とで囲まれる電池ケースの内部に入射することがある。すると、例えば、このエネルギービームが未溶接封口部材の凹形段差に当たり、電池ケース内でスパッタ(金属微粒子)を発生させる不具合が起こる虞がある。また、例えば、そのエネルギビームが、凹形段差や電池ケースの内側で反射して、発電要素(セパレータ、電極板)等に当たり、セパレータの一部を焼損する虞もある。   However, in the battery manufacturing process described in Patent Document 1, when the unwelded case body and the unwelded sealing member are brought into contact with each other due to the dimensional tolerance or distortion of the unwelded case body and the unwelded sealing member, There may be some gaps between them. When this gap is irradiated with an energy beam such as a laser beam, the energy beam may enter the inside of the battery case surrounded by the unwelded case body and the unwelded sealing member through the gap. Then, for example, the energy beam hits a concave step of the unwelded sealing member, and there is a possibility that a problem of generating spatter (metal fine particles) in the battery case may occur. Further, for example, the energy beam may be reflected at the concave step or the inside of the battery case, hit the power generation element (separator, electrode plate), etc., and burn out a part of the separator.

本発明は、かかる問題に鑑みてなされたものであって、未溶接ケース本体と未溶接封口部材とをエネルギビームを用いて溶接しながらも、電池ケース内でスパッタの発生や発電要素の一部焼損等の発生を防止した、信頼性の高い電池の製造方法を提供することを目的とする。また、このような電池を用いてなる信頼性の高い組電池を提供することを目的とする。   The present invention has been made in view of such a problem, and while splicing an unwelded case body and an unwelded sealing member using an energy beam, spatter is generated in the battery case and a part of the power generation element is present. An object of the present invention is to provide a highly reliable battery manufacturing method that prevents the occurrence of burning and the like. It is another object of the present invention to provide a highly reliable assembled battery using such a battery.

そして、その解決手段は、発電要素と、この発電要素を内部に収容した金属製の電池ケースとを備える電池の製造方法であって、上記発電要素を内部に収容してなり、開口を有する未溶接ケース本体のうち、上記開口の周縁に位置する環状の第1溶接予定部と、上記未溶接ケース本体の上記開口を封口する未溶接封口部材のうち、上記第1溶接予定部と対向する環状の第2溶接予定部とを、互いに当接させる当接工程と、上記第1溶接予定部と上記第2溶接予定部とが重なる重なり方向に直交する方向からエネルギビームを照射して、当接した状態の上記第1溶接予定部と上記第2溶接予定部とを溶融させて、上記未溶接ケース本体と未溶接封口部材とを溶接して上記電池ケースを形成する溶接工程と、を備え、上記未溶接ケース本体の上記第1溶接予定部、及び、上記未溶接封口部材の上記第2溶接予定部のうち、少なくともいずれかは、上記第1溶接予定部と上記第2溶接予定部とを対向させた状態において、上記開口の周方向に延びて上記開口を囲む環状をなし、対向する相手方の溶接予定部に向けて突出した形態を有する突条部を含んでなり、上記当接工程は、上記突条部を、その全周にわたり、上記相手方の溶接予定部に圧接させる電池の製造方法である。   The solution is a method for manufacturing a battery comprising a power generation element and a metal battery case in which the power generation element is housed. The power generation element is housed in the battery and has an opening. Of the welding case main body, an annular first welding planned portion located at the periphery of the opening and an unwelded sealing member that seals the opening of the non-welding case main body, the annular facing the first welding planned portion. A contact step of bringing the second welding scheduled portion into contact with each other, and irradiating with an energy beam from a direction perpendicular to the overlapping direction in which the first welding scheduled portion and the second welding scheduled portion overlap each other Welding the first welding planned portion and the second welding planned portion in a state of being made, and welding the unwelded case body and the unwelded sealing member to form the battery case, Above of the unwelded case body At least one of the first welding planned portion and the second welding planned portion of the unwelded sealing member is the opening in the state where the first welding planned portion and the second welding planned portion are opposed to each other. And extending in the circumferential direction to form an annular shape surrounding the opening, and including a protrusion having a shape protruding toward the opposite welding target portion, and the contact step includes the protrusion. This is a method for manufacturing a battery that is press-contacted to the above-mentioned welding planned portion of the other party over the entire circumference.

本発明の電池の製造方法では、未溶接ケース本体の第1溶接予定部、及び、未溶接封口部材の第2溶接予定部のうち、少なくともいずれかが、上述の突条部を有している。そして、当接工程では、この突条部を、その全周にわたり、相手方の溶接予定部に圧接させる。つまり、突条部と相手方の溶接予定部との間には、全周にわたり隙間が無い状態とする。   In the battery manufacturing method of the present invention, at least one of the first welding scheduled portion of the unwelded case main body and the second welding scheduled portion of the unwelded sealing member has the above-described protrusion. . And in a contact process, this protrusion part is press-contacted to the other party planned welding part over the perimeter. That is, there is no gap around the entire circumference between the protruding portion and the counterpart welding planned portion.

このため、溶接工程で、当接した状態の第1溶接予定部と第2溶接予定部とに、エネルギビームを照射した場合に、この第1溶接予定部と第2溶接予定部との間に生じた隙間を通じて、エネルギビームが電池ケースの内部に直接照射されることがない。かくして、電池ケースの内部に入射したエネルギビームが、直接または各所に反射して、電池ケース、あるいは、発電要素(セパレータ、電極板)など電池ケース内の部材に当たり、スパッタを生じさせたり、あるいは、セパレータの一部を焼損したりする不具合の発生を防止することができる。これにより、信頼性の高い電池を製造することができる。   For this reason, when an energy beam is irradiated to the 1st welding scheduled part and the 2nd welding scheduled part in the state which contact | abutted at the welding process, between this 1st welding scheduled part and the 2nd welding scheduled part The energy beam is not directly irradiated into the battery case through the generated gap. Thus, the energy beam incident on the inside of the battery case is reflected directly or at various places, hits the battery case or a member in the battery case such as a power generation element (separator, electrode plate), or causes spatter, or It is possible to prevent the occurrence of problems such as burning part of the separator. Thereby, a highly reliable battery can be manufactured.

なお、電池ケースとしては、上述の要件を満たすものであれば良いが、例えば、円筒状、角柱状、角板状等の形態が挙げられる。また、未溶接ケース本体の開口としては、例えば、発電要素を未溶接ケース本体に収容する際に、これを挿通する挿通口が挙げられるが、安全弁の取り付け孔など他の開口でも良い。
また、エネルギビーム溶接としては、例えば、レーザビームによる溶接、電子ビームによる溶接、イオンビームによる溶接が挙げられる。
また、エネルギビームを照射する方向としては、第1溶接予定部と第2溶接予定部とが重なる重なり方向に直交する方向であれば良い。例えば、この重なり方向に直交する方向のうち、電池ケースをなす壁面に対し直交する方向でも斜め方向でも良い。
The battery case may be any battery case that satisfies the above-described requirements. Examples of the battery case include a cylindrical shape, a prismatic shape, and a square plate shape. Moreover, as an opening of an unwelded case main body, when accommodating a power generation element in an unwelded case main body, the insertion port which penetrates this is mentioned, For example, Other openings, such as an attachment hole of a safety valve, may be sufficient.
Examples of energy beam welding include laser beam welding, electron beam welding, and ion beam welding.
Moreover, as a direction which irradiates an energy beam, what is necessary is just the direction orthogonal to the overlapping direction where a 1st welding plan part and a 2nd welding plan part overlap. For example, among the directions orthogonal to the overlapping direction, the direction orthogonal to the wall surface forming the battery case or an oblique direction may be used.

また、突条部としては、上述の要件を満たすものであれば良い。突条部をなす材質は、この突条部の基礎をなす未溶接ケース本体あるいは未溶接封口部材と、同じ材質としても良く、具体的には、一体に形成しても良い。
また、これとは異なる材質としても良い。但し、前述したように、一般に、未溶接ケース本体及び未溶接封口部材には、寸法公差やゆがみが生じる。未溶接ケース本体の第1溶接予定部と、未溶接封口部材の第2溶接予定部とを、当接させようとした場合に、圧力が高まった部位で押し潰されるなど容易に変形して、第1溶接予定部と第2溶接予定部とが、全周にわたって容易に圧接するように、突条部の基礎をなす未溶接ケース本体あるいは未溶接封口部材よりも柔らかい材質とすると良い。
また、突条部としては、当接工程で、圧力を受けたときに容易に変形できるように、突出方向先端側ほど幅細となる形状、例えばくさび状、半球状などの形状とするのが好ましい。
また、突条部は、突条を一条有する一重の環状としても、突条を二条以上有する二重以上の環状としても良い。
Moreover, what is necessary is just to satisfy | fill the above-mentioned requirements as a protrusion part. The material forming the ridge portion may be the same material as the unwelded case main body or the unwelded sealing member forming the basis of the ridge portion, and specifically, may be formed integrally.
Further, a different material may be used. However, as described above, generally, dimensional tolerance and distortion occur in the unwelded case body and the unwelded sealing member. When trying to contact the first weld planned portion of the unwelded case body and the second weld planned portion of the unwelded sealing member, it is easily deformed such as being crushed at a site where pressure has increased, The first welding scheduled portion and the second welding scheduled portion may be made of a material softer than the unwelded case main body or the unwelded sealing member that forms the basis of the protruding portion so that the first welding scheduled portion and the second welding scheduled portion are easily press-contacted over the entire circumference.
In addition, the protrusions may have a shape that becomes narrower toward the front end in the protruding direction, such as a wedge shape or a hemispherical shape, so that it can be easily deformed when subjected to pressure in the contact process. preferable.
Further, the ridge portion may be a single ring having one ridge, or a double or more ring having two or more ridges.

さらに、上述の電池の製造方法であって、前記未溶接封口部材は、環状の前記第2溶接予定部の内側に、この第2溶接予定部に沿って形成された環状で、上記第2溶接予定部を前記未溶接ケース本体の前記第1溶接予定部に重ねたとき、上記第2溶接予定部よりも上記未溶接ケース本体側にまで、前記重なり方向に突出する形態の環状突出壁面を有してなる電池の製造方法とすると良い。   Further, in the battery manufacturing method described above, the unwelded sealing member is an annular shape formed along the second welding planned portion inside the annular second welding planned portion, and the second welding is performed. When the planned portion is overlapped with the first weld planned portion of the unwelded case body, an annular projecting wall surface that protrudes in the overlapping direction from the second weld planned portion to the unwelded case body side is provided. It is preferable to use a battery manufacturing method.

電池において、未溶接封口部材に、上述の形態の環状突出壁面を設ける場合がある。このような環状突出壁面をなす部位が、リブの役割を果たして、未溶接封口部材の強度を向上させる効果を有するためである。
ところで、未溶接封口部材が、このような形態の環状突出壁面を有する場合において、もし、第1溶接予定部と第2溶接予定部との間に生じた隙間を通じて、エネルギビームが電池ケースの内部に直接入射した場合、エネルギビームは、隙間から比較的近い距離で、この環状突出壁面に当たる。このため、この環状突出壁面のエネルギビーム照射部分が溶融し、さらにはスパッタ(金属微粒子)が生じて、異物として、電池の性能に影響したり、高温のスパッタの接触によりセパレータが焦げるなどの不具合を生じやすい。
In the battery, the unwelded sealing member may be provided with the annular protruding wall surface of the above-described form. This is because the part forming such an annular protruding wall surface plays the role of a rib and has an effect of improving the strength of the unwelded sealing member.
By the way, in the case where the unwelded sealing member has such an annular protruding wall surface, the energy beam passes through the gap formed between the first welding planned portion and the second welding planned portion and the inside of the battery case. When directly incident on the energy beam, the energy beam strikes the annular protruding wall surface at a relatively close distance from the gap. For this reason, the energy beam irradiated portion of the annular protruding wall is melted, and spatter (metal fine particles) is generated, which affects the performance of the battery as a foreign substance, and the separator burns due to contact with high-temperature spatter. It is easy to produce.

しかるに、本発明の電池の製造方法では、前述のように、第1溶接予定部及び第2溶接予定部の少なくともいずれかに、突条部を設け、当接工程において、この突条部の全周にわたり、相手の溶接予定部に圧接させているので、第1溶接予定部と第2溶接予定部との間に隙間が生じることがなく、エネルギビームが電池ケースの内部に直接照射されることがない。
このため、環状突出壁面を有する未溶接封口部材を用いる電池においても、確実に不具合を防止して信頼性の高い電池を製造することができる。
However, in the battery manufacturing method according to the present invention, as described above, at least one of the first welding scheduled portion and the second welding scheduled portion is provided with a protruding portion, and in the contacting step, all of the protruding portion is provided. Since it is press-contacted to the other part of the planned welding area, there is no gap between the first welding planned part and the second welding planned part, and the energy beam is directly irradiated to the inside of the battery case. There is no.
For this reason, even in a battery using an unwelded sealing member having an annular protruding wall surface, it is possible to reliably prevent problems and manufacture a highly reliable battery.

なお、環状突出壁面としては、例えば、環状の第2溶接予定部の内側において、重なり方向に突出する筒形壁状の部位のうち、第2溶接予定部側に向いた側面や、環状の第2溶接予定部の内側の部位を、重なり方向に凸状に突出させてなる部位のうち、第2溶接予定部に向いた側面が挙げられる。   In addition, as the annular projecting wall surface, for example, on the inner side of the annular second planned welding portion, the side surface facing the second welding planned portion side among the cylindrical wall-shaped portions projecting in the overlapping direction, The side surface which faced the 2nd scheduled welding part is mentioned among the site | parts which make the site | part inside the 2 scheduled welding part protrude in convex shape in the overlapping direction.

さらに、上述のいずれかの電池の製造方法であって、前記未溶接封口部材は、板状の未溶接封口板であり、上記未溶接封口板は、自身の前記第2溶接予定部に、前記突条部を有する電池の製造方法とすると良い。   Furthermore, in any one of the above-described battery manufacturing methods, the unwelded sealing member is a plate-shaped unwelded sealing plate, and the unwelded sealing plate is attached to the second welding scheduled portion thereof. A method for manufacturing a battery having a protrusion is preferable.

本発明の電池の製造方法では、未溶接封口板が第2溶接予定部に突条部を有する。発電要素を内部に収容する未溶接ケース本体の第1未溶接部に突条部を設けるのに比して、板状の未溶接封口板の第2溶接予定部に突条部を設けるのは、プレス等を用いて比較的容易にでき、かつ、高い精度で突条部を形成できる。
従って、安価で、より信頼性の高い電池を製造することができる。
In the battery manufacturing method of the present invention, the unwelded sealing plate has a protrusion on the second welding scheduled portion. Compared to providing a ridge on the first unwelded portion of the unwelded case main body that houses the power generation element, the ridge is provided on the second welding scheduled portion of the plate-like unwelded sealing plate. The protrusions can be formed relatively easily using a press or the like, and the ridges can be formed with high accuracy.
Therefore, an inexpensive and more reliable battery can be manufactured.

さらに、他の解決手段は、発電要素と、この発電要素を内部に収容した金属製の電池ケースとを備え、同一形態を有する複数の電池からなる組電池であって、上記電池の上記電池ケースは、いずれも、上記発電要素を内部に収容してなり、開口を有する未溶接ケース本体のうち、上記開口の周縁に位置する環状の第1溶接予定部と、上記未溶接ケース本体の上記開口を封口する未溶接封口部材のうち、上記第1溶接予定部と対向する環状の第2溶接予定部とを、上記第1溶接予定部と上記第2溶接予定部とが重なる重なり方向に直交する方向からエネルギビームを照射して、これらを溶融させ、上記未溶接ケース本体と未溶接封口部材とを溶接してなり、上記電池ケースに用いた上記未溶接封口部材は、環状の上記第2溶接予定部の内側に、この第2溶接予定部に沿って形成された環状で、上記第2溶接予定部を上記未溶接ケース本体の上記第1溶接予定部に重ねたとき、上記第2溶接予定部よりも上記未溶接ケース本体側にまで突出する形態の環状突出壁面を有してなり、上記電池ケースの上記環状突出壁面は、全周にわたり、溶接前の表面状態を保持してなる組電池である。   Furthermore, another solution is an assembled battery comprising a plurality of batteries having the same configuration, the battery case including the power generation element and a metal battery case housing the power generation element therein, wherein the battery case of the battery Each of which includes the power generation element therein, and among the unwelded case main body having an opening, an annular first welding planned portion positioned at the periphery of the opening and the opening of the unwelded case main body. Among the unwelded sealing members that seal the ring, the annular second welding scheduled portion facing the first welding scheduled portion is orthogonal to the overlapping direction in which the first welding scheduled portion and the second welding scheduled portion overlap. An energy beam is irradiated from the direction to melt them, and the unwelded case main body and the unwelded sealing member are welded. The unwelded sealing member used for the battery case is an annular second weld Inside the planned part, When the second welding scheduled portion is overlapped with the first welding scheduled portion of the unwelded case body in an annular shape formed along the second welding planned portion, the unwelded portion is more than the second welding planned portion. The battery case has an annular protruding wall surface that protrudes to the case body side, and the annular protruding wall surface of the battery case is an assembled battery that maintains the surface state before welding over the entire circumference.

本発明の組電池は、複数の同一形態の電池からなっている。しかも、これらの電池のいずれにおいても、電池ケースの環状突出壁面は、全周にわたり、溶接前の表面状態を保持してなる。つまり、この電池群は、エネルギビームによる溶接において、第1溶接予定部と第2溶接予定部との間に生じた隙間を通じて、エネルギビームが電池ケースの内部の環状突出壁面に直接照射されることがなかった電池ばかりで構成されている。このため、エネルギビームが電池ケースの内部の環状突出壁面に直接照射されることに伴って発生やすいスパッタが電池ケース内に混入するなどの、不具合を防止できており、個々の電池としてみても、また組電池全体としても、信頼性の高い組電池となっている。   The assembled battery of the present invention is composed of a plurality of batteries having the same form. Moreover, in any of these batteries, the annular protruding wall surface of the battery case maintains the surface state before welding over the entire circumference. That is, in this battery group, in the welding by the energy beam, the energy beam is directly irradiated to the annular projecting wall inside the battery case through the gap generated between the first welding scheduled portion and the second welding scheduled portion. It is composed only of batteries that did not exist. For this reason, it is possible to prevent problems such as spatter that is likely to occur when the energy beam is directly irradiated to the annular projecting wall surface inside the battery case, and even if it is viewed as an individual battery, Further, the assembled battery as a whole is a highly reliable assembled battery.

なお組電池としては、各電池を直列、並列、直並列、並直列等に接続した組電池が挙げられる。
また、電池ケースの環状突出壁面が、溶接前の表面状態を保持しているとは、環状突出壁面の表面に、エネルギビームが照射された痕跡、例えば、照射により溶融した痕跡がない状態を溶接後も保持していることを言う。
In addition, as an assembled battery, the assembled battery which connected each battery in series, parallel, series-parallel, parallel series, etc. is mentioned.
In addition, the annular protruding wall surface of the battery case maintains the surface state before welding means that the surface of the annular protruding wall surface is welded in a state where there is no trace irradiated with an energy beam, for example, a trace melted by irradiation. Say that you hold on.

(実施形態1)
次に、本発明の実施形態1について、図面を参照しつつ説明する。
まず、本実施形態1にかかる電池1について説明する。図1に電池1の斜視図を、図2に電池1の部分破断断面図を、図3に電池1の断面図(図2のA−A断面)を示す。
本実施形態1にかかる電池1は、矩形箱形の電池ケース10及び発電要素40を備える捲回形のリチウムイオン二次電池である。
(Embodiment 1)
Next, Embodiment 1 of the present invention will be described with reference to the drawings.
First, the battery 1 according to the first embodiment will be described. 1 is a perspective view of the battery 1, FIG. 2 is a partially cutaway sectional view of the battery 1, and FIG. 3 is a sectional view of the battery 1 (cross section AA in FIG. 2).
The battery 1 according to the first embodiment is a wound lithium ion secondary battery including a rectangular box-shaped battery case 10 and a power generation element 40.

このうち、発電要素40は、帯状の正極板41および負極板42が、ポリエチレンからなる帯状のセパレータ43を介して扁平形状に捲回されてなる(図3参照)。なお、この発電要素40の正極板41および負極板42はそれぞれ、クランク状に屈曲した板状の正極集電部材71または負極集電部材72と接合されている。具体的には、図2に示すように、正極板41のうち、セパレータ43の第1端部43Aから突出し、アルミニウム箔からなる正極リード部41fのおよそ半分(図2中、上方)が、正極集電部材71に密着して溶接されている。なお、負極板42の負極リード部42fも同様にして、負極集電部材72と溶接されている。   Among them, the power generating element 40 is formed by winding a belt-like positive electrode plate 41 and a negative electrode plate 42 into a flat shape via a belt-like separator 43 made of polyethylene (see FIG. 3). The positive electrode plate 41 and the negative electrode plate 42 of the power generation element 40 are joined to a plate-like positive electrode current collecting member 71 or a negative electrode current collector member 72 bent in a crank shape, respectively. Specifically, as shown in FIG. 2, in the positive electrode plate 41, approximately half (upward in FIG. 2) of the positive electrode lead portion 41f that protrudes from the first end 43A of the separator 43 and is made of aluminum foil is the positive electrode. The current collecting member 71 is in close contact and welded. Similarly, the negative electrode lead portion 42 f of the negative electrode plate 42 is welded to the negative electrode current collecting member 72.

正極板41は、帯状のアルミニウム箔のうち、一方辺に沿う正極リード部41fを残して、その両面に図示しない正極活物質層を担持してなる。この正極活物質層には、正極活物質のニッケル酸リチウム(LiNiO2)、導電剤のアセチレンブラック、および、結着剤のポリテトラフルオロエチレン(PTFE)、カルボキシルメチルセルロース(CMC)が含まれる。なお、正極活物質層におけるこれらの質量比は、LiNiO2が90wt%、アセチレンブラックが7wt%、PTFEが1wt%、CMCが2wt%である。
また、負極板42は、帯状の銅箔のうち、一方辺に沿う負極リード部42fを残して、その両面に図示しない負極活物質層を担持してなる。この負極活物質層には、グラファイトおよび結着剤が含まれる。
The positive electrode plate 41 carries a positive electrode active material layer (not shown) on both surfaces of the strip-shaped aluminum foil, leaving a positive electrode lead portion 41f along one side. This positive electrode active material layer includes lithium nickel oxide (LiNiO 2 ) as a positive electrode active material, acetylene black as a conductive agent, and polytetrafluoroethylene (PTFE) and carboxymethyl cellulose (CMC) as a binder. These mass ratios in the positive electrode active material layer are 90 wt% for LiNiO 2 , 7 wt% for acetylene black, 1 wt% for PTFE, and 2 wt% for CMC.
Moreover, the negative electrode plate 42 carries the negative electrode active material layer which is not shown in figure on both surfaces, leaving the negative electrode lead part 42f along one side among strip | belt-shaped copper foil. This negative electrode active material layer contains graphite and a binder.

また、図示しない電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、体積比でEC:EMC=3:7に調整した混合有機溶媒に、溶質としてLiPF6を添加し、リチウムイオンを1mol/lの濃度とした有機電解液である。 Further, the electrolytic solution (not shown), ethylene carbonate (EC) and ethyl methyl carbonate (EMC), EC volume ratio: EMC = 3: a mixed organic solvent 7 adjusted to, by adding LiPF 6 as a solute, lithium It is an organic electrolyte having a concentration of 1 mol / l of ions.

また、電池ケース10は、共にアルミニウム製の電池ケース本体20と封口板30とを後述するレーザビーム溶接により溶接してなる。具体的には、電池ケース本体20と封口板30とは、電池ケース10の全周にわたり、溶接部PXを介して溶接してなる。
このうち、有底矩形箱形の電池ケース本体20は、その内部に上述した発電要素40及び図示しない電解液を収容している。また、この電池ケース本体20は、図2中、上方に向けて開口する開口25を有する。なお、この電池ケース本体20の内側全面には、漏電防止のため、図示しない樹脂からなる絶縁フィルムを貼付している。
The battery case 10 is formed by welding a battery case body 20 made of aluminum and a sealing plate 30 by laser beam welding described later. Specifically, the battery case body 20 and the sealing plate 30 are welded through the welded portion PX over the entire circumference of the battery case 10.
Among these, the bottomed rectangular box-shaped battery case body 20 accommodates the above-described power generation element 40 and an electrolyte (not shown) therein. The battery case main body 20 has an opening 25 that opens upward in FIG. 2. Note that an insulating film made of resin (not shown) is attached to the entire inner surface of the battery case body 20 to prevent leakage.

また、封口板30は、平面視すると矩形板形状であるが、図2,3に示すように、その周縁が全周にわたりクランク状に屈曲してなり、周縁部31とこれから電池ケース10内側に向けて凸状に突出して、電池ケース本体20の開口25に挿入される挿入部35とを有する。この封口板30では、挿入部35が周縁部31に対しリブの役割を果たすので、封口板30の強度が高くなっている。   Further, the sealing plate 30 has a rectangular plate shape in plan view, but as shown in FIGS. 2 and 3, the periphery thereof is bent in a crank shape over the entire periphery, and the periphery 31 and the inside of the battery case 10 from now on. And an insertion portion 35 that protrudes in a convex shape and is inserted into the opening 25 of the battery case body 20. In the sealing plate 30, the insertion portion 35 plays a role of a rib with respect to the peripheral edge portion 31, so that the strength of the sealing plate 30 is high.

この封口板30は、電池ケース本体20の開口25を封口している。さらに、この封口板30には、発電要素40と接続している正極集電部材71及び負極集電部材72が貫通している。具体的には、これら正極集電部材71及び負極集電部材72のそれぞれ先端に位置する正極端子部71A及び負極端子部72Aが、封口板30のうち、図1中、上方に面する第1表面37から突出している。なお、これら正極端子部71A(正極集電部材71)及び負極端子部72A(負極集電部材72)と封口板30との間には、それぞれ樹脂製の絶縁部材75が介在され、互いが絶縁されている。
また、封口板30には矩形板状の安全弁77が封着されている。
The sealing plate 30 seals the opening 25 of the battery case body 20. Further, a positive electrode current collecting member 71 and a negative electrode current collecting member 72 connected to the power generation element 40 pass through the sealing plate 30. Specifically, the positive electrode terminal portion 71A and the negative electrode terminal portion 72A located at the respective tips of the positive electrode current collecting member 71 and the negative electrode current collecting member 72 are the first facing the upper side in FIG. Projecting from the surface 37. A resin insulating member 75 is interposed between the positive electrode terminal portion 71A (the positive electrode current collecting member 71) and the negative electrode terminal portion 72A (the negative electrode current collecting member 72) and the sealing plate 30 to insulate each other. Has been.
A rectangular plate-shaped safety valve 77 is sealed to the sealing plate 30.

封口板30の周縁部31は、電池ケース本体20の開口25を囲む開口端部21と、全周にわたって溶接により接合されている(図2,3参照)。
また挿入部35は、周縁部31から第1方向DA(電池ケース本体20の開口25の深さ方向,図2,3中、下方)に突出しており、この挿入部35の周囲は、この第1方向DAに延びる環状の環状突出壁面36となっている(図2参照)。この環状突出壁面36は、全周にわたって、レーザビームが照射された痕跡(例えば溶融跡)が無く、溶接前の封口板(後述する未溶接封口板30B)における環状突出壁面36の表面状態を、溶接した後もそのまま保持している。このようになっているのは、本実施形態1の環状突出壁面36が、溶接時にレーザビームに直接照射されなかったためであり、溶接時に後述する未溶接ケース本体20Bと未溶接封口板30Bとの間に隙間が生じていなかったからである。
The peripheral edge 31 of the sealing plate 30 is joined to the opening end 21 surrounding the opening 25 of the battery case body 20 by welding over the entire circumference (see FIGS. 2 and 3).
The insertion portion 35 protrudes from the peripheral edge portion 31 in the first direction DA (the depth direction of the opening 25 of the battery case body 20, downward in FIGS. 2 and 3). It is an annular projecting wall surface 36 extending in one direction DA (see FIG. 2). This annular protruding wall surface 36 has no trace (for example, melted mark) irradiated with the laser beam over the entire circumference, and the surface state of the annular protruding wall surface 36 in the sealing plate before welding (unwelded sealing plate 30B described later) Even after welding, it is held as it is. This is because the annular protruding wall surface 36 of the first embodiment is not directly irradiated with the laser beam during welding, and an unwelded case body 20B and an unwelded sealing plate 30B, which will be described later, are formed during welding. This is because there was no gap between them.

次いで、本実施形態1にかかる電池1の製造方法について、図面を参照しつつ説明する。
まず、電池1の製造方法のうち当接工程について説明する。外形寸法が150×30×100mmで板厚が1mmのアルミニウム製で矩形箱形状の未溶接ケース本体20Bと、外形寸法が150×30×1.5mmで板厚が1mmのアルミニウム製の未溶接封口板30Bとを用意する(図6参照)。このうち、未溶接ケース本体20Bは、第1方向DAの逆方向(図4中、上方)に開口する開口25を囲む環状の開口端部21を有する。なお、開口端部21は、開口25の周縁に位置し、後述する溶接工程において未溶接封口板30B(後述する周縁部31)に溶接される第1溶接予定部である。
Next, a method for manufacturing the battery 1 according to the first embodiment will be described with reference to the drawings.
First, the contact process in the manufacturing method of the battery 1 will be described. An unwelded case body 20B made of aluminum having an outer dimension of 150 × 30 × 100 mm and a plate thickness of 1 mm and a rectangular box shape, and an unwelded seal made of aluminum having an outer dimension of 150 × 30 × 1.5 mm and a plate thickness of 1 mm A plate 30B is prepared (see FIG. 6). Among these, the unwelded case main body 20B has an annular opening end portion 21 that surrounds an opening 25 that opens in a direction opposite to the first direction DA (upward in FIG. 4). In addition, the opening edge part 21 is located in the periphery of the opening 25, and is a 1st scheduled welding part welded to the unwelded sealing board 30B (peripheral part 31 mentioned later) in the welding process mentioned later.

また、未溶接封口板30Bは、平面視すると矩形板形状であるが、図4に示すように、その周縁が全周にわたりクランク状に屈曲してなり、環状の周縁部31とこれから電池ケース10内側に向けて凸状に突出して、上述の未溶接ケース本体20Bの開口25に挿入される挿入部35とを有する。
この未溶接封口板30Bには、発電要素40と接続している正極集電部材71及び負極集電部材72が貫通している。つまり、この未溶接封口板30Bは、予め、セパレータ43を介して正極板41と負極板42とを捲回してなり、正極集電部材71及び負極集電部材72にそれぞれ溶接された発電要素40を保持している。なお、これら正極集電部材71及び負極集電部材72と未溶接封口板30Bとの間には、それぞれ樹脂製の絶縁部材75が介在され、互いが絶縁されている。
Further, the unwelded sealing plate 30B has a rectangular plate shape in plan view, but as shown in FIG. 4, its peripheral edge is bent into a crank shape over the entire circumference, and the annular peripheral portion 31 and the battery case 10 from now on. It has an insertion portion 35 that protrudes inwardly and is inserted into the opening 25 of the unwelded case body 20B described above.
The unwelded sealing plate 30B is penetrated by a positive current collector 71 and a negative current collector 72 connected to the power generation element 40. That is, the unwelded sealing plate 30 </ b> B is formed by winding the positive electrode plate 41 and the negative electrode plate 42 in advance via the separator 43 and is welded to the positive electrode current collector 71 and the negative electrode current collector 72, respectively. Holding. A resin insulating member 75 is interposed between the positive electrode current collecting member 71 and the negative electrode current collecting member 72 and the unwelded sealing plate 30B, and is insulated from each other.

未溶接封口板30Bの挿入部35は、周縁部31から第1方向DA(図4中、下方)に突出しており、この挿入部35の周囲は、この第1方向DAに延びる環状の環状突出壁面36となっている(図4参照)。具体的には、この環状突出壁面36は、環状の周縁部31の内側に位置し、この周縁部31に沿って形成された環状である。そして、周縁部31を未溶接ケース本体20Bの開口端部21に重ねたとき、周縁部31よりも未溶接ケース本体20B側にまで、第1方向DAに突出する形態を有している。
この未溶接封口板30Bでは、挿入部35(環状突出壁面36)が周縁部31に対しリブの役割を果たすので、未溶接封口板30Bの強度が高くなっている。
The insertion portion 35 of the unwelded sealing plate 30B protrudes from the peripheral portion 31 in the first direction DA (downward in FIG. 4), and the periphery of the insertion portion 35 is an annular annular protrusion extending in the first direction DA. It is a wall surface 36 (see FIG. 4). Specifically, the annular projecting wall surface 36 is located inside the annular peripheral edge portion 31 and is an annular shape formed along the peripheral edge portion 31. And when the peripheral part 31 is piled up on the opening end part 21 of the unwelded case main body 20B, it has the form which protrudes in the 1st direction DA from the peripheral part 31 to the unwelded case main body 20B side.
In this unwelded sealing plate 30B, the insertion portion 35 (annular projecting wall surface 36) plays a role of a rib with respect to the peripheral portion 31, so the strength of the unwelded sealing plate 30B is high.

また周縁部31は、未溶接ケース本体20Bの開口端部21と対向して配置され、この開口端部21と溶接される第2溶接予定部である。この周縁部31は、溶接の際、溶融して溶接の主体となる環状の周縁溶接本体部33と、この周縁溶接本体部33に沿って延びる環状で、この周縁溶接本体部33から第1方向DAに向けて隆起してなり、頂部が鋭角に形成された蓋側突条部34とを含む(図5,6参照)。周縁部31は、後述する溶接工程において、未溶接ケース本体20Bの開口端部21と共に、レーザビームEBで溶融されて互いに混じり合い、溶接部PXをなす。
また蓋側突条部34は、図4に示す開口端部21と周縁部31とを対向させた状態において、未溶接ケース本体20Bの開口25の周方向に延びて開口25を囲む環状をなして、開口端部21に向けて突出した形態を有する。
Further, the peripheral edge 31 is a second welding scheduled portion that is arranged to face the open end 21 of the unwelded case main body 20 </ b> B and is welded to the open end 21. The peripheral edge 31 is an annular peripheral weld main body 33 that melts and becomes the main body of welding during welding, and an annular extending along the peripheral weld main body 33, and the peripheral weld 31 is a first direction from the peripheral weld main body 33. It includes a lid-side ridge 34 that protrudes toward the DA and has an apex formed at an acute angle (see FIGS. 5 and 6). In the welding process to be described later, the peripheral edge portion 31 is melted by the laser beam EB and mixed with each other together with the open end portion 21 of the unwelded case main body 20B to form a welded portion PX.
In addition, the lid-side protrusion 34 has an annular shape that extends in the circumferential direction of the opening 25 of the unwelded case body 20B and surrounds the opening 25 in a state where the opening end 21 and the peripheral edge 31 shown in FIG. And has a form protruding toward the open end 21.

未溶接ケース本体20Bの開口端部21に突条部を設ける場合に比して、板状の未溶接封口板30Bの周縁部31に蓋側突条部34を設ける方が、プレス等を用いて比較的容易にでき、かつ、高い精度で未溶接封口板30Bに蓋側突条部34を形成できる。このため、安価で、より信頼性の高い電池1を製造することができる。   Compared with the case where a ridge is provided at the open end 21 of the unwelded case main body 20B, the use of a press or the like is to provide the lid-side ridge 34 on the peripheral edge 31 of the plate-like unwelded sealing plate 30B. The lid-side ridge 34 can be formed on the unwelded sealing plate 30B with high accuracy. For this reason, it is possible to manufacture a battery 1 that is inexpensive and more reliable.

本実施形態1の当接工程では、上述した未溶接ケース本体20Bに未溶接封口板30Bを当接させる。具体的には、まず、図4に示すように未溶接ケース本体20Bを用意する。未溶接ケース本体20Bの開口端部21は、第1方向DAと逆方向を向いている。そして、未溶接封口板30Bが保持する発電要素40を、開口25を通じて未溶接ケース本体20Bの内部に収容しながら、未溶接封口板30Bを第1方向DAに沿って移動させる(図4,5参照)。このように未溶接封口板30Bを移動させて、未溶接ケース本体20Bの開口端部21と、未溶接封口板30Bの周縁部31とを、互いに当接させる(図7参照)。即ち、開口端部21と、周縁部31のうち第1方向DAに隆起してなる蓋側突条部34とを、互いに当接させる。   In the contact process of the first embodiment, the unwelded sealing plate 30B is brought into contact with the unwelded case main body 20B described above. Specifically, first, an unwelded case body 20B is prepared as shown in FIG. The open end 21 of the unwelded case main body 20B faces in the direction opposite to the first direction DA. Then, the unwelded sealing plate 30B is moved along the first direction DA while the power generation element 40 held by the unwelded sealing plate 30B is housed in the unwelded case body 20B through the opening 25 (FIGS. 4 and 5). reference). In this way, the unwelded sealing plate 30B is moved so that the open end 21 of the unwelded case body 20B and the peripheral edge 31 of the unwelded sealing plate 30B are brought into contact with each other (see FIG. 7). That is, the opening end 21 and the lid-side ridge 34 that protrudes in the first direction DA from the peripheral edge 31 are brought into contact with each other.

この当接工程では、当接後さらに、蓋側突条部34をその全周にわたって、開口端部21に圧接させる。具体的には、第1方向DAに沿って押圧可能な押圧治具PM,PMを用いて、図8に示すように、未溶接ケース本体20Bの開口端部21に未溶接封口板30Bの蓋側突条部34を第1方向DAに向けて押しつける。これにより、周縁部31の蓋側突条部34は、開口端部21と当接しつつ変形して変形部34Pとなり、開口端部21と、周縁部31の変形部34Pとの間に、隙間が生じていない状態となる。   In this contact step, after the contact, the lid-side ridge 34 is pressed against the open end 21 over the entire circumference. Specifically, as shown in FIG. 8, using the pressing jigs PM, PM that can be pressed along the first direction DA, the lid of the unwelded sealing plate 30B is formed on the open end 21 of the unwelded case body 20B. The side protrusion 34 is pressed toward the first direction DA. As a result, the lid-side ridge 34 of the peripheral edge 31 is deformed while being in contact with the opening end 21 to be a deformed part 34P, and a gap is formed between the open end 21 and the deformed part 34P of the peripheral edge 31. Will not occur.

このような状態を維持しつつ、溶接工程に移行する。本実施形態1の溶接工程では、図8,9に示すように、第1方向DAに直交する方向、具体的には、未溶接ケース本体20Bの各外側面に直交する方向である第2方向DB(図8,9中、右から左方向)からレーザビームEBを照射する。このとき、押圧治具PM,PMで、上述の当接工程に引き続いて、未溶接ケース本体20Bと未溶接封口板30Bとを挟んだ状態に保持し、変形部34Pを開口端部21に圧接させておく。そして、当接した状態の開口端部21と周縁部31(変形部34P及び周縁溶接本体部33)とをレーザビームEBによって溶融させ、未溶接ケース本体20Bと未溶接封口部材30Bとを溶接部PXを介して溶接し、電池ケース10を形成する。   While maintaining such a state, the process proceeds to the welding process. In the welding process of the first embodiment, as shown in FIGS. 8 and 9, the second direction is a direction orthogonal to the first direction DA, specifically, a direction orthogonal to each outer surface of the unwelded case body 20B. The laser beam EB is irradiated from DB (in FIGS. 8 and 9, from right to left). At this time, the pressing jigs PM and PM hold the unwelded case main body 20B and the unwelded sealing plate 30B in a state of being sandwiched between the unwelded case body 20B and the unwelded sealing plate 30B, and press the deformed portion 34P against the opening end 21. Let me. Then, the open end 21 and the peripheral portion 31 (the deformed portion 34P and the peripheral welded main body portion 33) in contact with each other are melted by the laser beam EB, and the unwelded case main body 20B and the unwelded sealing member 30B are welded. The battery case 10 is formed by welding through PX.

すると、上述の溶接工程では、この開口端部21と周縁部31(変形部34P及び周縁溶接本体部33)との間に生じた隙間を通じて、レーザビームEBが電池ケース10の内部に直接照射されることがない。   Then, in the above-described welding process, the laser beam EB is directly irradiated to the inside of the battery case 10 through a gap formed between the opening end portion 21 and the peripheral portion 31 (the deformed portion 34P and the peripheral weld main body portion 33). There is nothing to do.

そこで、発明者らは、上述した当接工程及び溶接工程を行って形成した電池ケース10(発電要素40を有し、電解液を注入する前の電池)について、その内部の溶融、セパレータの焦げ及びスパッタ発生の有無を検証するため、この電池ケース10の解体調査を行った。
なお、比較例として、図10に示す、蓋側突条部を形成していない点でのみ異なる未溶接封口板を用いて形成した電池ケースB1についても、同様の解体調査を行った。なお、電池ケース10及び電池ケースB1について、それぞれ試料数N=10で解体調査を行い、目視確認による電池ケース内表面における溶融箇所の有無、セパレータの焦げの有無、あるいは、電池ケース内におけるスパッタの有無をそれぞれ確認した。これら電池ケース10及び電池ケースB1の調査結果について、表1に示す。
なお、セパレータの焦げは、電池ケース内に直接入射したレーザ光が電池ケース内表面に反射して、セパレータに照射されたために生じたと考えられる。また、スパッタは、レーザ光が電池ケース内表面に照射されて、この部分が溶融したことによって生じたと考えられる。
Therefore, the inventors have melted the inside of the battery case 10 (the battery having the power generation element 40 and before injecting the electrolytic solution) and burned the separator, with respect to the battery case 10 formed by performing the contact process and the welding process described above. In order to verify the presence or absence of spattering, the battery case 10 was disassembled.
In addition, as a comparative example, a similar disassembly investigation was also performed on a battery case B1 formed using an unwelded sealing plate that is different only in that the lid-side protrusion is not formed as shown in FIG. The battery case 10 and the battery case B1 were respectively disassembled with a sample number N = 10, and visually confirmed whether there was a melting point on the inner surface of the battery case, whether the separator was burnt, or whether there was sputtering in the battery case. Each was confirmed. Table 1 shows the results of investigation on the battery case 10 and the battery case B1.
In addition, it is thought that the burn of the separator occurred because the laser beam directly incident on the battery case was reflected on the inner surface of the battery case and applied to the separator. Further, it is considered that the spatter is caused by the laser beam being irradiated on the inner surface of the battery case and melting this portion.

Figure 2009266695
Figure 2009266695

表1によれば、溶融及びセパレータの焦げの欄について見ると、電池ケースB1では、10点のうち7点について、電池ケース内表面の溶融、又は、セパレータの焦げが確認された。これに対し、電池ケース10では、いずれについても確認されなかった。
また、スパッタの欄について見ると、電池ケースB1では10点のうち7点について、電池ケース内部にスパッタの存在が確認された。これに対し、電池ケース10では、いずれも確認されなかった。
この結果より、本実施形態1にかかる電池ケース10では、未溶接封口板30Bに蓋側突条部34を設け、これを未溶接ケース本体20Bに全周にわたって隙間無く圧接させたため、電池ケース10の内表面の溶融、セパレータ43の焦げ、及び、電池ケース10内でのスパッタがいずれも発生していないことが判った。
According to Table 1, in the case of melting and burning of the separator, in the battery case B1, melting of the inner surface of the battery case or burning of the separator was confirmed for 7 out of 10 points. On the other hand, in the battery case 10, neither was confirmed.
Further, looking at the spatter column, in battery case B1, the presence of spatter in the battery case was confirmed for 7 out of 10 points. On the other hand, none was confirmed in the battery case 10.
From this result, in the battery case 10 according to the first embodiment, the lid-side protrusion 34 is provided on the unwelded sealing plate 30B, and this is press-contacted to the unwelded case main body 20B without any gaps. It was found that none of the inner surface melted, the burnt of the separator 43 and the spatter in the battery case 10 occurred.

特に、本実施形態1の場合、未溶接封口板30Bにおける挿入部35の環状突出壁面36は、照射されるレーザビームEBの進行方向(第2方向DB)の直線延長上に位置している(図9参照)。このため、未溶接封口板30Bと未溶接ケース本体20Bとの間に隙間があると、環状突出壁面36にレーザビームEBが当たり、溶融しやすい構成となっている。これに対し、本実施形態1の電池ケース10では、レーザビームEBが環状突出壁面36に照射されるのを確実に防止でき、環状突出壁面36の溶融やそれに伴うスパッタの発生やセパレータ43の一部焼損を確実に防止できる。   In particular, in the case of the first embodiment, the annular protruding wall surface 36 of the insertion portion 35 in the unwelded sealing plate 30B is located on a linear extension in the traveling direction (second direction DB) of the irradiated laser beam EB ( (See FIG. 9). For this reason, if there is a gap between the unwelded sealing plate 30B and the unwelded case main body 20B, the laser beam EB hits the annular projecting wall surface 36 and is easily melted. On the other hand, in the battery case 10 of the first embodiment, it is possible to reliably prevent the laser beam EB from being applied to the annular projecting wall surface 36, so that the annular projecting wall surface 36 is melted and spatter is generated accordingly. Partial burning can be reliably prevented.

前述の溶接工程後は、電池ケース10の内部に、電解液(図示しない)を注入後、安全弁77を封口板30に封着する。かくして、電池1が完成する(図1,2,3参照)。
以上より、本実施形態1の電池1の製造方法によって、信頼性の高い電池を製造することができる。
After the above-described welding process, an electrolyte solution (not shown) is injected into the battery case 10 and then the safety valve 77 is sealed to the sealing plate 30. Thus, the battery 1 is completed (see FIGS. 1, 2, and 3).
As described above, a highly reliable battery can be manufactured by the manufacturing method of the battery 1 of the first embodiment.

(変形形態1)
次に、本発明の変形形態1にかかる電池101について、図面を参照しつつ説明する。
本変形形態1の電池101の製造方法では、突条部を、未溶接封口板の第2溶接予定部にではなく、未溶接ケース本体の第1溶接予定部に設けている点が、前述の実施形態1と異なり、それ以外は同様である。
そこで、実施形態1と異なる点を中心に説明し、同様の部分の説明は省略または簡略化する。なお、同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
(Modification 1)
Next, the battery 101 according to the first modification of the present invention will be described with reference to the drawings.
In the manufacturing method of the battery 101 according to the first modification, the protrusions are provided not on the second welding scheduled portion of the unwelded sealing plate but on the first welding scheduled portion of the unwelded case body, as described above. Unlike Embodiment 1, other than that is the same.
Therefore, differences from the first embodiment will be mainly described, and description of similar parts will be omitted or simplified. In addition, about the same part, the same effect is produced. In addition, the same contents are described with the same numbers.

本変形形態1にかかる電池101は、矩形箱形の電池ケース110及び発電要素40を備える捲回形のリチウムイオン二次電池である。
この電池101の製造方法について、図面を参照しつつ説明する。
まず、電池101の製造方法のうち当接工程について説明する。アルミニウム製の未溶接封口板130Bは、平面視すると矩形板形状であるが、図4に示すように、その周縁が全周にわたりクランク状に屈曲してなり、環状の周縁部131とこれから電池ケース10内側に向けて凸状に突出してなる挿入部35とを有する(図11,12参照)。このうち、周縁部131は、本変形形態1における環状の第2溶接予定部である。但し、実施形態1と異なり、この周縁部131には、蓋側突条部を含まない。
A battery 101 according to the first modification is a wound lithium ion secondary battery including a rectangular box-shaped battery case 110 and a power generation element 40.
A method for manufacturing the battery 101 will be described with reference to the drawings.
First, the contact process in the manufacturing method of the battery 101 will be described. The unwelded sealing plate 130B made of aluminum has a rectangular plate shape in plan view, but as shown in FIG. 4, its peripheral edge is bent into a crank shape over the entire periphery, and the annular peripheral portion 131 and the battery case 10 and an insertion portion 35 protruding in a convex shape toward the inside (see FIGS. 11 and 12). Among these, the peripheral part 131 is a cyclic | annular 2nd welding plan part in this modification 1. FIG. However, unlike Embodiment 1, the peripheral edge portion 131 does not include a lid-side protrusion.

また、アルミニウム製の矩形箱形状の未溶接ケース本体120Bは、第1方向DAの逆方向(図4中、上方)に開口する開口25を囲む環状の開口端部121を有する。なお、この開口端部121は、本変形形態1における環状の第1溶接予定部である。この開口端部121は、開口溶接本体部123と、この開口溶接本体部123に沿って延びる環状で、この開口溶接本体部123から第1方向DAとは逆方向に向けて隆起してなり、頂部が鋭角に形成されたケース側突条部124とを含む(図11,12参照)。このうち開口溶接本体部123は、溶接工程において、未溶接封口板130Bの周縁部131と共に、レーザビームEBで溶融されて互いに混じり合い、溶接部PXをなす。
またケース側突条部124は、図4に示す開口端部121と周縁部131とを対向させた状態において、未溶接ケース本体120Bの開口25の周方向に延びて開口25を囲む環状をなして、周縁部131に向けて突出した形態を有する。
In addition, the rectangular box-shaped unwelded case main body 120B made of aluminum has an annular opening end 121 that surrounds the opening 25 that opens in the reverse direction (upward in FIG. 4) of the first direction DA. The open end 121 is an annular first welding planned portion in the first modification. The opening end 121 has an opening welding main body 123 and an annular shape extending along the opening welding main body 123. The opening end 121 protrudes from the opening welding main body 123 in a direction opposite to the first direction DA. And a case-side ridge 124 having a top formed at an acute angle (see FIGS. 11 and 12). Among these, the opening weld main body 123 is melted by the laser beam EB and mixed with each other together with the peripheral edge 131 of the unwelded sealing plate 130B in the welding process to form a weld PX.
Further, the case-side protrusion 124 has an annular shape that extends in the circumferential direction of the opening 25 of the unwelded case main body 120B and surrounds the opening 25 in a state where the opening end 121 and the peripheral edge 131 shown in FIG. And has a form protruding toward the peripheral edge 131.

本変形形態1の当接工程では、上述した未溶接ケース本体120Bに未溶接封口板130Bを当接させる。具体的には、実施形態1と同様にして、未溶接封口板130Bを第1方向DAに沿って移動させる(図4,11参照)。このように未溶接封口板130Bを移動させて、未溶接ケース本体120Bの開口端部121と、未溶接封口板130Bの周縁部131とを、互いに当接させる(図13参照)。即ち、周縁部131と、開口端部121のケース側突条部124とを、互いに当接させる。   In the contact process of the first modification, the unwelded sealing plate 130B is brought into contact with the unwelded case main body 120B described above. Specifically, as in Embodiment 1, the unwelded sealing plate 130B is moved along the first direction DA (see FIGS. 4 and 11). In this way, the unwelded sealing plate 130B is moved, and the opening end 121 of the unwelded case main body 120B and the peripheral edge 131 of the unwelded sealing plate 130B are brought into contact with each other (see FIG. 13). That is, the peripheral edge 131 and the case-side ridge 124 of the opening end 121 are brought into contact with each other.

この当接工程では、当接後さらに、実施形態1と同様に、ケース側突条部124をその全周にわたって、周縁部131に圧接させる。これにより、開口端部121のケース側突条部124は、周縁部131と当接しつつ変形して変形部124Pとなり、周縁部131と、開口端部121の変形部124Pとの間には、隙間が生じていない状態となる。   In this contact step, after the contact, as in the first embodiment, the case-side ridge 124 is pressed against the peripheral edge 131 over the entire circumference. As a result, the case-side ridge 124 of the opening end 121 is deformed while being in contact with the peripheral portion 131 to become a deformed portion 124P, and between the peripheral portion 131 and the deformed portion 124P of the open end 121, There is no gap.

このような状態を維持しつつ、実施形態1と同様、溶接工程に移行する。本実施形態1の溶接工程では、図14に示すように、第2方向DB(図中、右から左方向)からレーザビームEBを照射する。このとき、押圧治具PM,PMで、上述の当接工程に引き続いて、未溶接ケース本体120Bと未溶接封口板130Bとを挟んだ状態に保持し、変形部124Pを周縁部131に圧接させておく。そして、当接した状態の周縁部131と開口端部121(変形部124P及び開口溶接本体部123)とをレーザビームEBによって溶融させ、未溶接ケース本体120Bと未溶接封口部材130Bとを溶接部PXを介して溶接し、電池ケース110を形成する。   While maintaining such a state, the process proceeds to the welding process as in the first embodiment. In the welding process of the first embodiment, as shown in FIG. 14, the laser beam EB is irradiated from the second direction DB (from the right to the left in the figure). At this time, the pressing jigs PM and PM hold the unwelded case main body 120B and the unwelded sealing plate 130B in a state of being sandwiched between the unwelded case main body 120B and the unwelded sealing plate 130B, and press the deformable portion 124P against the peripheral portion 131. Keep it. The peripheral edge 131 and the open end 121 (the deformed portion 124P and the open welded main body 123) in contact with each other are melted by the laser beam EB, and the unwelded case main body 120B and the unwelded sealing member 130B are welded together. The battery case 110 is formed by welding through PX.

すると、上述の溶接工程では、この周縁部131と開口端部121(変形部124P及び開口溶接本体部123)との間に生じた隙間を通じて、レーザビームEBが電池ケース110の内部に直接照射されることがない。   Then, in the above-described welding process, the laser beam EB is directly irradiated to the inside of the battery case 110 through a gap formed between the peripheral edge portion 131 and the opening end portion 121 (the deformation portion 124P and the opening welding main body portion 123). There is nothing to do.

そこで、発明者らは、上述した電池ケース110(発電要素40を有し、電解液を注入する前の電池)について、その内部の溶融、セパレータの焦げ及びスパッタ発生の有無を検証するため、この電池ケース110の解体調査を行った。また、実施形態1と同様に、比較例として、図10に示す、ケース側突条部を形成していない点でのみ異なる未溶接ケース本体を用いて形成した電池ケースB2についても、同様の解体調査を行った。これら電池ケース110及び電池ケースB2の調査結果について、表2に示す。   In view of this, the inventors examined the above-described battery case 110 (the battery having the power generation element 40 and the battery before injecting the electrolyte solution) in order to verify the melting of the inside, the burning of the separator, and the occurrence of spatter. The battery case 110 was disassembled. Similar to the first embodiment, as a comparative example, the battery case B2 formed using an unwelded case body that differs only in that the case-side protrusion is not formed as shown in FIG. We conducted a survey. Table 2 shows the investigation results of the battery case 110 and the battery case B2.

Figure 2009266695
Figure 2009266695

表2によれば、溶融及びセパレータの焦げの欄について見ると、電池ケースB2では、10点のうち7点について、電池ケース内表面の溶融、又は、セパレータの焦げが確認された。これに対し、電池ケース110のいずれについて、電池ケース内表面の溶融及びセパレータの焦げが確認されなかった。また、電池ケースB2では10点のうち8点について、電池ケース内部にスパッタの存在が確認された。これに対し、スパッタの欄について見ると、電池ケース110のいずれについて、電池ケース内部にスパッタの存在が確認されなかった。
この結果より、本変形形態1にかかる電池ケース110では、未溶接ケース本体120Bにケース側突条部124を設け、これを未溶接封口板130Bに全周にわたって隙間無く圧接させたため、電池ケース110の内表面の溶融、セパレータ43の焦げ、及び、電池ケース110内でのスパッタがいずれも発生しないことが判った。
According to Table 2, when it sees about the column of fusion | melting and a burn of a separator, in battery case B2, the melting of the battery case inner surface or the burn of a separator was confirmed about 7 points | pieces. On the other hand, for any of the battery cases 110, melting of the inner surface of the battery case and burning of the separator were not confirmed. Moreover, in battery case B2, the presence of spatter was confirmed in the battery case for 8 points out of 10. On the other hand, in the spatter column, the presence of spatter in the battery case was not confirmed for any of the battery cases 110.
As a result, in the battery case 110 according to the first modification, the case-side protruding portion 124 is provided on the unwelded case main body 120B, and this is press-contacted to the unwelded sealing plate 130B over the entire circumference without any gaps. It was found that none of the inner surface melting, scoring of the separator 43, and spattering in the battery case 110 occurred.

前述の溶接工程後は、電池ケース110の内部に、電解液(図示しない)を注入後、安全弁77を封口板30に封着する。かくして、電池101が完成する(図1,2,3参照)。
以上より、本変形形態1の電池101の製造方法によって、信頼性の高い電池を製造することができる。
After the above-described welding process, an electrolyte (not shown) is injected into the battery case 110, and then the safety valve 77 is sealed to the sealing plate 30. Thus, the battery 101 is completed (see FIGS. 1, 2, and 3).
As described above, a highly reliable battery can be manufactured by the manufacturing method of the battery 101 according to the first modification.

(実施形態2)
次に、本発明の実施形態2にかかる組電池200について、図15を参照しつつ説明する。なお、前述の実施形態1と同様の部分の説明は省略または簡略化するが、同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
(Embodiment 2)
Next, an assembled battery 200 according to Embodiment 2 of the present invention will be described with reference to FIG. In addition, although description of the part similar to the above-mentioned Embodiment 1 is abbreviate | omitted or simplified, the same effect is produced about the same part. In addition, the same contents are described with the same numbers.

本実施形態2にかかる組電池200は、前述した電池1(又は電池101)、即ち、発電要素40と、この発電要素40を内部に収容した、矩形箱形のアルミニウム製の電池ケース10とを備える捲回形のリチウムイオン二次電池を複数備える。この組電池200は、複数の電池1(又は複数の電池101)を組電池ケース211内に収容してなる。なお、この組電池200では、複数の電池1(又は複数の電池101)が、これらの端子部71A,72Aの締結孔71AH,72AH(図1参照)を利用して、バスバ220とボルト締結されており、各電池1(又は各電池101)が互いに直列に接続されている。
また、この組電池200が備える電池1(又は電池101)は、実施形態1(又は変形形態1)で詳述した電池である。
The assembled battery 200 according to the second embodiment includes the above-described battery 1 (or battery 101), that is, the power generation element 40, and a rectangular box-shaped aluminum battery case 10 in which the power generation element 40 is housed. A plurality of wound lithium ion secondary batteries are provided. The assembled battery 200 includes a plurality of batteries 1 (or a plurality of batteries 101) housed in an assembled battery case 211. In this assembled battery 200, a plurality of batteries 1 (or a plurality of batteries 101) are bolted to the bus bar 220 using the fastening holes 71AH and 72AH (see FIG. 1) of these terminal portions 71A and 72A. Each battery 1 (or each battery 101) is connected in series with each other.
Further, the battery 1 (or battery 101) included in the assembled battery 200 is the battery described in detail in the first embodiment (or modified embodiment 1).

このため、本実施形態2の組電池200は、複数の電池1(又は電池101)のいずれにおいても、電池ケース10(又は電池ケース110)の環状突出壁面36は、全周にわたり、レーザビームEBによる溶融の痕跡が無く、溶接前の表面状態を保持してなる。このようになっているのは、前述の通り、この環状突出壁面36が、溶接工程時にレーザビームEBに直接照射されなかったためであり、溶接工程時に未溶接ケース本体20B(120B)と未溶接封口板30B(130B)との間に隙間が生じていなかったからである。   For this reason, in the assembled battery 200 of the second embodiment, in any of the plurality of batteries 1 (or batteries 101), the annular protruding wall surface 36 of the battery case 10 (or battery case 110) extends over the entire circumference with the laser beam EB. There is no trace of melting due to, and the surface state before welding is maintained. This is because, as described above, the annular protruding wall surface 36 is not directly irradiated with the laser beam EB during the welding process, and the unwelded case main body 20B (120B) and the unwelded seal are formed during the welding process. This is because there was no gap between the plate 30B (130B).

つまり、組電池200が備えるこの複数の電池1(101)は、レーザビームEBが電池ケース10(110)の内部の環状突出壁面36に直接照射されることがなかった電池ばかりで構成されている。このため、レーザビームEBが電池ケース10(110)の内部の環状突出壁面36に直接照射されることに伴って発生やすいスパッタが電池ケース10(110)内に混入するなどの、不具合を防止できており、個々の電池1(101)として見ても、また組電池200全体としても、信頼性の高い組電池となっている。   That is, the plurality of batteries 1 (101) included in the assembled battery 200 are configured only by batteries in which the laser beam EB is not directly irradiated onto the annular protruding wall surface 36 inside the battery case 10 (110). . For this reason, it is possible to prevent problems such as spatter that is likely to be generated when the laser beam EB is directly applied to the annular projecting wall surface 36 inside the battery case 10 (110) and mixed into the battery case 10 (110). Therefore, both the individual battery 1 (101) and the assembled battery 200 as a whole are highly reliable assembled batteries.

以上において、本発明を実施形態1,2および変形形態1に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1等では、電池をリチウムイオン二次電池としたが、本発明は、リチウムイオン二次電池に限らず、いずれの種類の電池にも適用することができる。また、矩形箱形の電池ケースとしたが、例えば、円筒状、角柱状、角板状等の電池ケースの形態としても良い。また、未溶接ケース本体の開口を、発電要素を未溶接ケース本体に収容する際に挿通可能な挿通口としたが、例えば、安全弁の取り付け孔などを開口としても良い。さらに、実施形態1等では、エネルギビーム溶接をレーザビームを用いた溶接としたが、例えば、電子ビームによる溶接、イオンビームによる溶接としても良い。
In the above, the present invention has been described according to the first and second embodiments and the first modified embodiment, but the present invention is not limited to the above-described embodiments, and can be appropriately modified and applied without departing from the gist thereof. Needless to say, you can.
For example, in Embodiment 1 and the like, the battery is a lithium ion secondary battery, but the present invention is not limited to the lithium ion secondary battery, and can be applied to any type of battery. Moreover, although it was set as the rectangular box-shaped battery case, it is good also as forms, such as cylindrical, prismatic shape, square plate shape, etc., for example. Moreover, although the opening of the unwelded case body is an insertion port that can be inserted when the power generation element is accommodated in the unwelded case body, for example, a mounting hole of a safety valve may be used as the opening. Furthermore, in Embodiment 1 or the like, the energy beam welding is a laser beam welding. However, for example, an electron beam welding or an ion beam welding may be used.

また、実施形態1等では、突条部の材質を未溶接ケース本体あるいは未溶接封口部材と、同じ材質とした。しかし、突条部と未溶接ケース本体あるいは未溶接封口部材とを異なる材質としても良い。但し、この場合には、突条部が、未溶接ケース本体あるいは未溶接封口部材よりも柔らかい材質とするのが好ましい。それは、未溶接ケース本体の第1溶接予定部と、未溶接封口部材の第2溶接予定部とを、当接させようとした場合に、圧力が高まった部位で押し潰されるなど容易に変形して、第1溶接予定部と第2溶接予定部とが、全周にわたって容易に圧接可能とするためである。
また、突条部を、当接工程で、圧力を受けたときに容易に変形できるように、突出方向先端側ほど幅細となる形状、即ち、頂部が鋭角となる形状としたが、例えば、くさび状、半球状などの形状としても良い。さらに、突条部の突条を一条有する一重の環状としたが、例えば、その突条を二条以上有する二重以上の環状としても良い。
Moreover, in Embodiment 1 etc., the material of the protrusion part was made into the same material as an unwelded case main body or an unwelded sealing member. However, the protrusion and the unwelded case main body or the unwelded sealing member may be made of different materials. However, in this case, it is preferable that the protrusion is made of a softer material than the unwelded case body or the unwelded sealing member. It is easily deformed, such as being crushed at a site where pressure has been increased, when the first welding planned portion of the unwelded case body and the second welding planned portion of the unwelded sealing member are to be brought into contact with each other. This is because the first welding planned portion and the second welding planned portion can be easily pressed over the entire circumference.
In addition, the protruding portion has a shape that becomes narrower toward the front end side in the protruding direction, that is, a shape in which the apex has an acute angle so that it can be easily deformed when receiving pressure in the contact step. It may be in the shape of a wedge or hemisphere. Furthermore, although it was set as the single annular | circular shape which has one protrusion of the protrusion part, for example, it is good also as a double or more annular | circular shape which has two or more the protrusions.

実施形態1,変形形態1にかかる電池の斜視図である。2 is a perspective view of a battery according to Embodiment 1 and Modification 1. FIG. 実施形態1,変形形態1にかかる電池の部分破断断面図である。2 is a partially broken cross-sectional view of a battery according to Embodiment 1 and Modification 1. FIG. 実施形態1,変形形態1にかかる電池の拡大断面図(図2のA−A部)である。It is an expanded sectional view (AA part of Drawing 2) of a battery concerning Embodiment 1 and modification 1. 実施形態1,変形形態1の押圧工程の説明図である。It is explanatory drawing of the press process of Embodiment 1, and modification 1. FIG. 実施形態1の押圧工程の断面図(図4のB−B部)である。It is sectional drawing (BB part of FIG. 4) of the press process of Embodiment 1. FIG. 実施形態1の押圧工程の拡大断面図(図5のC部)である。It is an expanded sectional view (C section of Drawing 5) of the press process of Embodiment 1. 実施形態1の押圧工程の説明図である。It is explanatory drawing of the press process of Embodiment 1. FIG. 実施形態1の溶接工程の説明図である。FIG. 3 is an explanatory diagram of a welding process according to the first embodiment. 実施形態1の溶接工程の断面図(図8のD部)である。It is sectional drawing (D section of FIG. 8) of the welding process of Embodiment 1. FIG. 実施形態1,変形形態1の電池ケースB1,B2の説明図である。It is explanatory drawing of battery case B1, B2 of Embodiment 1, modification 1. FIG. 変形形態1の押圧工程の断面図(図4のB−B部)である。It is sectional drawing (BB part of FIG. 4) of the press process of the deformation | transformation form 1. FIG. 変形形態1の押圧工程の拡大断面図(図11のE部)である。It is an expanded sectional view (E section of Drawing 11) of a press process of modification 1. 変形形態1の押圧工程の説明図である。It is explanatory drawing of the press process of the deformation | transformation form 1. FIG. 変形形態1の溶接工程の説明図である。It is explanatory drawing of the welding process of the deformation | transformation form 1. FIG. 実施形態2にかかる組電池である。4 is an assembled battery according to a second embodiment.

符号の説明Explanation of symbols

1,101 電池
10,110 電池ケース
20B,120B 未溶接ケース本体
21,121 開口端部(第1溶接予定部)
25 開口
30B,130B 未溶接封口板(未溶接封口部材)
31,131 周縁部(第2溶接予定部)
34 蓋側突条部(突条部)
36 環状突出壁面
40 発電要素
124 ケース側突条部(突条部)
200 組電池
DA 第1方向(重なり方向)
DB 第2方向(重なり方向に直交する方向)
EB エネルギビーム
1,101 Battery 10, 110 Battery case 20B, 120B Unwelded case main body 21, 121 Open end (first weld planned portion)
25 Openings 30B, 130B Unwelded sealing plate (unwelded sealing member)
31, 131 Peripheral part (second welding scheduled part)
34 Lid side ridge (ridge)
36 annular projecting wall surface 40 power generation element 124 case side ridge (ridge)
200 Battery pack DA 1st direction (overlapping direction)
DB second direction (direction perpendicular to the overlapping direction)
EB energy beam

Claims (4)

発電要素と、この発電要素を内部に収容した金属製の電池ケースとを備える電池の製造方法であって、
上記発電要素を内部に収容してなり、開口を有する未溶接ケース本体のうち、上記開口の周縁に位置する環状の第1溶接予定部と、上記未溶接ケース本体の上記開口を封口する未溶接封口部材のうち、上記第1溶接予定部と対向する環状の第2溶接予定部とを、互いに当接させる当接工程と、
上記第1溶接予定部と上記第2溶接予定部とが重なる重なり方向に直交する方向からエネルギビームを照射して、当接した状態の上記第1溶接予定部と上記第2溶接予定部とを溶融させて、上記未溶接ケース本体と未溶接封口部材とを溶接して上記電池ケースを形成する溶接工程と、を備え、
上記未溶接ケース本体の上記第1溶接予定部、及び、上記未溶接封口部材の上記第2溶接予定部のうち、少なくともいずれかは、
上記第1溶接予定部と上記第2溶接予定部とを対向させた状態において、上記開口の周方向に延びて上記開口を囲む環状をなして、対向する相手方の溶接予定部に向けて突出した形態を有する突条部を含んでなり、
上記当接工程は、
上記突条部を、その全周にわたり、上記相手方の溶接予定部に圧接させる
電池の製造方法。
A method of manufacturing a battery comprising a power generation element and a metal battery case containing the power generation element therein,
Of the unwelded case main body having an opening and containing the power generation element therein, an annular first welded portion positioned at the periphery of the opening and an unwelded sealing the opening of the unwelded case main body An abutting step for abutting the annular second welding scheduled portion facing the first welding scheduled portion among the sealing members;
The first welding scheduled portion and the second welding scheduled portion in a state of being in contact with each other by irradiating an energy beam from a direction orthogonal to an overlapping direction in which the first welding scheduled portion and the second welding scheduled portion overlap. Melting and welding the unwelded case body and the unwelded sealing member to form the battery case, and
At least one of the first welding planned portion of the unwelded case body and the second welding planned portion of the unwelded sealing member is:
In a state where the first welding planned portion and the second welding planned portion are opposed to each other, the annular portion extends in the circumferential direction of the opening and surrounds the opening, and projects toward the opposing welding planned portion. Comprising a ridge having a form,
The contact step is
A method for producing a battery, wherein the protruding portion is press-contacted to the mating welded portion over the entire circumference.
請求項1に記載の電池の製造方法であって、
前記未溶接封口部材は、
環状の前記第2溶接予定部の内側に、この第2溶接予定部に沿って形成された環状で、上記第2溶接予定部を前記未溶接ケース本体の前記第1溶接予定部に重ねたとき、上記第2溶接予定部よりも上記未溶接ケース本体側にまで、前記重なり方向に突出する形態の環状突出壁面を有してなる
電池の製造方法。
A battery manufacturing method according to claim 1, comprising:
The unwelded sealing member is
When the second welding planned portion is overlapped with the first welding planned portion of the unwelded case body in an annular shape formed along the second welding planned portion inside the annular second welding planned portion. A battery manufacturing method comprising an annular protruding wall surface protruding in the overlapping direction from the second scheduled welding portion to the unwelded case body side.
請求項1または請求項2に記載の電池の製造方法であって、
前記未溶接封口部材は、板状の未溶接封口板であり、
上記未溶接封口板は、自身の前記第2溶接予定部に、前記突条部を有する
電池の製造方法。
A method for producing a battery according to claim 1 or claim 2,
The unwelded sealing member is a plate-shaped unwelded sealing plate,
The said unwelded sealing board is a manufacturing method of the battery which has the said protrusion part in the said 2nd welding plan part of self.
発電要素と、この発電要素を内部に収容した金属製の電池ケースとを備え、同一形態を有する複数の電池からなる組電池であって、
上記電池の上記電池ケースは、いずれも、
上記発電要素を内部に収容してなり、開口を有する未溶接ケース本体のうち、上記開口の周縁に位置する環状の第1溶接予定部と、上記未溶接ケース本体の上記開口を封口する未溶接封口部材のうち、上記第1溶接予定部と対向する環状の第2溶接予定部とを、上記第1溶接予定部と上記第2溶接予定部とが重なる重なり方向に直交する方向からエネルギビームを照射して、これらを溶融させ、上記未溶接ケース本体と未溶接封口部材とを溶接してなり、
上記電池ケースに用いた上記未溶接封口部材は、
環状の上記第2溶接予定部の内側に、この第2溶接予定部に沿って形成された環状で、上記第2溶接予定部を上記未溶接ケース本体の上記第1溶接予定部に重ねたとき、上記第2溶接予定部よりも上記未溶接ケース本体側にまで突出する形態の環状突出壁面を有してなり、
上記電池ケースの上記環状突出壁面は、全周にわたり、溶接前の表面状態を保持してなる
組電池。
A battery pack comprising a power generation element and a metal battery case containing the power generation element therein, and comprising a plurality of batteries having the same configuration,
The battery case of the battery
Of the unwelded case main body having an opening and containing the power generation element therein, an annular first welded portion positioned at the periphery of the opening and an unwelded sealing the opening of the unwelded case main body Of the sealing member, an annular second welding scheduled portion facing the first welding planned portion is irradiated with an energy beam from a direction orthogonal to the overlapping direction in which the first welding planned portion and the second welding planned portion overlap. Irradiate, melt these, and weld the unwelded case body and unwelded sealing member,
The unwelded sealing member used in the battery case is
When the second weld planned portion is overlapped with the first weld planned portion of the unwelded case body in an annular shape formed along the second weld planned portion inside the annular second weld planned portion. , Having an annular protruding wall surface in a form protruding to the unwelded case main body side from the second welding scheduled portion,
The assembled battery formed by maintaining the surface state before welding of the annular projecting wall surface of the battery case over the entire circumference.
JP2008116236A 2008-04-25 2008-04-25 Manufacturing method of battery, and battery pack Withdrawn JP2009266695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116236A JP2009266695A (en) 2008-04-25 2008-04-25 Manufacturing method of battery, and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116236A JP2009266695A (en) 2008-04-25 2008-04-25 Manufacturing method of battery, and battery pack

Publications (1)

Publication Number Publication Date
JP2009266695A true JP2009266695A (en) 2009-11-12

Family

ID=41392255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116236A Withdrawn JP2009266695A (en) 2008-04-25 2008-04-25 Manufacturing method of battery, and battery pack

Country Status (1)

Country Link
JP (1) JP2009266695A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127400A (en) * 2012-12-27 2014-07-07 Toyota Industries Corp Jig for welding secondary battery
CN103996803A (en) * 2013-02-20 2014-08-20 株式会社杰士汤浅国际 Electric storage device, electric storage apparatus, method for producing electric storage device, and method for producing cover plate
JP2014225427A (en) * 2013-05-15 2014-12-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Cap plate and secondary battery including the same
WO2015119027A1 (en) * 2014-02-05 2015-08-13 住友電気工業株式会社 Power storage device
JP2016152149A (en) * 2015-02-18 2016-08-22 株式会社Gsユアサ Power storage element and power storage device
JP2017139097A (en) * 2016-02-02 2017-08-10 株式会社豊田自動織機 Method of manufacturing power storage device
WO2021230250A1 (en) * 2020-05-13 2021-11-18 株式会社村田製作所 Secondary battery and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127400A (en) * 2012-12-27 2014-07-07 Toyota Industries Corp Jig for welding secondary battery
CN103996803A (en) * 2013-02-20 2014-08-20 株式会社杰士汤浅国际 Electric storage device, electric storage apparatus, method for producing electric storage device, and method for producing cover plate
JP2014160617A (en) * 2013-02-20 2014-09-04 Gs Yuasa Corp Storage element and process of manufacturing cover plate
US9564613B2 (en) 2013-02-20 2017-02-07 Gs Yuasa International Ltd. Electric storage device, electric storage apparatus, method for producing electric storage device, and method for producing cover plate
US9905818B2 (en) 2013-02-20 2018-02-27 Gs Yuasa International Ltd. Electric storage device, electric storage apparatus, method for producing electric storage device, and method for producing cover plate
JP2014225427A (en) * 2013-05-15 2014-12-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Cap plate and secondary battery including the same
WO2015119027A1 (en) * 2014-02-05 2015-08-13 住友電気工業株式会社 Power storage device
JP2016152149A (en) * 2015-02-18 2016-08-22 株式会社Gsユアサ Power storage element and power storage device
JP2017139097A (en) * 2016-02-02 2017-08-10 株式会社豊田自動織機 Method of manufacturing power storage device
WO2021230250A1 (en) * 2020-05-13 2021-11-18 株式会社村田製作所 Secondary battery and manufacturing method thereof
JPWO2021230250A1 (en) * 2020-05-13 2021-11-18
JP7355235B2 (en) 2020-05-13 2023-10-03 株式会社村田製作所 Secondary battery and its manufacturing method

Similar Documents

Publication Publication Date Title
US8241786B2 (en) Secondary battery
JP5121279B2 (en) Manufacturing method of sealed battery
JP6427462B2 (en) Square secondary battery
US10811668B2 (en) Secondary battery
JP2009266695A (en) Manufacturing method of battery, and battery pack
WO2009128335A1 (en) Battery and method for manufacturing the same
US10403862B2 (en) Battery
US11942662B2 (en) Secondary battery comprising a current collector comprising a current collector protrusion and a current collector opening
JP2009087693A (en) Sealed battery and its manufacturing method
JP2009087728A (en) Battery
US20200403215A1 (en) Secondary battery
JP2017010743A (en) Secondary battery and assembled battery using the same
JP5619033B2 (en) Sealed battery and manufacturing method thereof
JP2014017081A (en) Secondary battery
JP2013222621A (en) Secondary battery
JP2023166606A (en) secondary battery
JP2018018691A (en) Secondary battery and method of manufacturing the same, and battery pack using the same
JP3608994B2 (en) Sealed battery
JP2012209260A (en) Battery
JP2007250442A (en) Nonaqueous electrolyte secondary battery
JP5651556B2 (en) Secondary battery
JP5248210B2 (en) Lithium ion secondary battery
JP5856929B2 (en) Rectangular secondary battery and method for manufacturing the same
JP2013026080A (en) Cylindrical secondary battery and manufacturing method thereof
JP5490967B1 (en) Power storage device and method for manufacturing power storage device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705