JPS62219013A - Radiation controlling heat conduction surface - Google Patents

Radiation controlling heat conduction surface

Info

Publication number
JPS62219013A
JPS62219013A JP6056886A JP6056886A JPS62219013A JP S62219013 A JPS62219013 A JP S62219013A JP 6056886 A JP6056886 A JP 6056886A JP 6056886 A JP6056886 A JP 6056886A JP S62219013 A JPS62219013 A JP S62219013A
Authority
JP
Japan
Prior art keywords
radiation
substrate
plate
multilayer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6056886A
Other languages
Japanese (ja)
Inventor
Toshio Hatada
畑田 敏夫
Shigeki Hirasawa
茂樹 平沢
Takuji Torii
鳥居 卓爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6056886A priority Critical patent/JPS62219013A/en
Publication of JPS62219013A publication Critical patent/JPS62219013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Abstract

PURPOSE:To control the quantity of radiation finely with a low space occupation rate and a simple constitution by bringing a composite layer plate-shaped body, where a plate-shaped member having a high heat conductivity and a plate-shaped member deformed in accordance with the variance of temperature are laminated, into contact with a substrate, which receives heat from a heat source, with a film surface having a high emissivity between them. CONSTITUTION:When the temperature of a substrate 4 is low, small composite layer pieces 7 are not deformed because there is scarecely a difference of expansion between a material 1 having a low thermal expansibility and a material 2 having a high thermal expansibility, and this radiation control heating surface is all covered with a surface 5 having a low emissivity to minimize the quantity of radiation to the external. The difference of expansion between said materials 1 and 2 is increased and small rectangular composite layer pieces 7 are deformed outward according as the temperature of the substrate 4 rises gradually. In this case, since the heat from the substrate 4 is transmitted much and quickly because of the existence of a material 3 having a high heat conductivity, small rectangular composite layer pieces 7 respond quickly and the extent of deformation is large. At this time, a most of the radiation control heating surface is occupied with a surface 6 having a high emissivity, and the quantity of radiation to the external is maximized to suppress the temperature rise of the substrate 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、輻射制御伝熱面に係り、特に1例えば宇宙用
機器や半導体熱処理設備の熱制御に好適な輻射制御伝熱
面に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a radiation control heat transfer surface, and particularly to a radiation control heat transfer surface suitable for heat control of space equipment and semiconductor heat treatment equipment, for example. be.

〔従来の技術〕[Conventional technology]

従来の輻射熱制御技術としては、人工衛星の熱制御機器
として開発された、例えば特開昭59−154516号
公報記載の技術が知られている。
As a conventional radiant heat control technique, a technique described in, for example, Japanese Patent Laid-Open No. 154516/1983, which was developed as a heat control device for an artificial satellite, is known.

当該技術は、人工衛星内部の発熱量を制御する放熱面の
放熱量制御に関するもので、放熱量を調整するために実
際に多用されている熱制御器、サーマルルーバのブレー
ドを、バイメタルで構成したものである。
This technology is related to the control of the amount of heat dissipated from the heat dissipation surface that controls the amount of heat generated inside the satellite, and the blades of the thermal louver, which is a heat controller that is often used in practice to adjust the amount of heat dissipated, are made of bimetal. It is something.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

特開昭59−154516号公報に記載されている技術
は、人工衛星用に使用実績のあるサーマルルーバの構造
が複雑であることを改善したもので、サーマルルーバの
ブレードをバイメタルで構成したところにある。しかし
、ブレードの開閉を十分に行わせるには、バイメタルの
変位が十分に取れることが必要であるが、放熱板からの
輻射とバイメタルの熱伝導を利用する方式では、熱の伝
導速度、伝導量が限られてしまい、動作の遅延、バイメ
タル変位量が少ないという問題について、配慮されてい
なかった。
The technology described in Japanese Patent Application Laid-open No. 59-154516 is an improvement on the complicated structure of thermal louvers that have been used for artificial satellites. be. However, in order to open and close the blade sufficiently, it is necessary to have sufficient displacement of the bimetal, but in a method that uses radiation from the heat sink and heat conduction of the bimetal, However, the problems of operation delay and small amount of bimetal displacement were not considered.

本発明は、前述の従来技術の問題点を解決するためにな
されたもので、少ない空間占有率で、かつ簡単な構成で
、こめの細かい輻射量制御を行いうる輻射制御伝熱面の
提供を、その目的としている。
The present invention was made in order to solve the problems of the prior art described above, and aims to provide a radiation control heat transfer surface that occupies a small space, has a simple configuration, and is capable of finely controlling the amount of radiation. , that purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る輻射制御伝熱面の構成は1発熱源から熱を
受ける基板上に、熱伝導率の高い板状部材と温度変化に
従って変形する応答性のよい板状部材とを積層した複層
板状体を、高輻射率の膜面を介して当接せしめるように
し、前記複層板状体には切込みによる複数の複層小片を
備え、これら積層小片のそれぞれ一端となる当接部を、
上記基板上に固着するようにしたものである。
The configuration of the radiation control heat transfer surface according to the present invention is as follows: 1. A multi-layered structure in which a plate-like member with high thermal conductivity and a plate-like member with good responsiveness that deforms according to temperature changes are laminated on a substrate that receives heat from a heat generation source. The plate-shaped body is brought into contact with a film surface having a high emissivity, and the multi-layered plate-shaped body is provided with a plurality of multi-layered pieces formed by cutting, and an abutment portion serving as one end of each of these laminated pieces is provided. ,
It is designed to be fixed onto the substrate.

〔作用〕[Effect]

前述の技術的手段によれば、熱膨張率の異なる部材と熱
伝導率の優れた部材との組合わせ、または形状記憶合金
と熱伝導率の優れた部材との組合わせにより形成された
複層板状体の複数の複層小片のそれぞれの一端を、基板
上の放熱面に取付けることにより、放熱面からの熱は複
数の複層小片に速く、また大量に伝する。この結果、そ
の複層小片はすばやく応答して大きな変形が得られ、熱
制御性が大きく向上する。
According to the above-mentioned technical means, a multi-layer structure formed by a combination of a member with different coefficients of thermal expansion and a member with excellent thermal conductivity, or a combination of a shape memory alloy and a member with excellent thermal conductivity. By attaching one end of each of the plurality of multilayer small pieces of the plate-like body to the heat radiation surface on the substrate, heat from the heat radiation surface is quickly and in large quantities transferred to the plurality of multilayer small pieces. As a result, the multi-layered piece responds quickly and achieves large deformations, greatly improving thermal controllability.

〔実施例〕〔Example〕

以下、本発明の各実施例を第1図ないし第9図を参照し
て説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 9.

まず、第1図は、本発明の一実施例に係る輻射制御伝熱
面の構成を示す斜視図、第2図は、その輻射制御伝熱面
の複層小片の未変形時を示す斜視図、第3図は、その複
層小片の変形時を示す斜視図である。
First, FIG. 1 is a perspective view showing the configuration of a radiation control heat transfer surface according to an embodiment of the present invention, and FIG. 2 is a perspective view showing the undeformed multilayer small piece of the radiation control heat transfer surface. , FIG. 3 is a perspective view showing the multilayer small piece when it is deformed.

第1図において、1は、熱膨張率の小さい材料、例えば
、鉄、ニッケル合金よりなる小型懸張材、2は、熱膨張
率の大きい材料1例えば、マンガン。
In FIG. 1, 1 is a small suspension member made of a material with a small coefficient of thermal expansion, such as iron or a nickel alloy, and 2 is a material 1 with a large coefficient of thermal expansion, such as manganese.

銅、ニッケル合金よりなる火熱膨張材で、これら小熱膨
張材1と大熱膨張材2とは、金属薄板を貼り合わせた、
いわゆるバイメタルであり、温度変化に従って変形する
応答性のよい板状部材を構成している。小熱膨張材1と
大熱膨張材2との組合せは、上記のようなバイメタルに
限らず、例えば合成樹脂と金属との組合せでもよい。
It is a thermal expansion material made of copper and nickel alloy, and these small thermal expansion material 1 and large thermal expansion material 2 are made by bonding thin metal plates.
It is a so-called bimetal, and constitutes a highly responsive plate-like member that deforms according to temperature changes. The combination of the small thermal expansion material 1 and the large thermal expansion material 2 is not limited to the above bimetal, but may be a combination of synthetic resin and metal, for example.

3は、熱伝導率の高い材料、例えばアルミニウムや銅な
どの部材によりなる大熱伝導材、4は。
3 is a large heat conductive material made of a material with high thermal conductivity, such as aluminum or copper; and 4 is a high heat conductive material.

発熱体からの熱を受ける基板である。This is a board that receives heat from a heating element.

小熱膨張材1の表面は、輻射率の低い膜、例えば銀蒸着
鏡面仕上げ膜など低輻射率面5を形成している。また、
基板4の表面は、輻射率の高い膜、例えばシルバーテフ
ロン膜など高輻射率面6を形成して放熱面となっている
The surface of the small thermal expansion material 1 forms a low emissivity surface 5 such as a film with a low emissivity, for example, a silver vapor-deposited mirror finish film. Also,
The surface of the substrate 4 serves as a heat dissipation surface by forming a high emissivity surface 6 such as a film with a high emissivity, such as a silver Teflon film.

このようにして、小熱膨張材1および大熱膨張材2より
なる板状部材と大熱伝導材3よりなる板状部材とを積層
した複層板状体は、基板4上に高輻射率面6を介して当
接するように構成されている。そして、この複層板状体
の複数個所にコの字状に部分的切込みを入れ、高輻射率
面6と大熱伝導材3とを分離状態で当接することにより
、矩形状の複層小片7が複数個形成され、これら複層小
片7のそれぞれ一端となる当接部が基板4に固着されて
本実施例の輻射制御伝熱面を構成している。
In this way, a multilayer plate-like body in which a plate-like member made of the small thermal expansion material 1 and the large thermal expansion material 2 and a plate-like member made of the large thermal conductive material 3 are laminated is formed on the substrate 4 with a high emissivity. It is configured to abut via the surface 6. Then, by making partial incisions in a U-shape at multiple locations on this multilayer plate-like body and abutting the high emissivity surface 6 and the large heat conductive material 3 in a separated state, a rectangular multilayer small piece is formed. A plurality of small multilayer pieces 7 are formed, and the abutting portions serving as one ends of each of these multilayer small pieces 7 are fixed to the substrate 4 to constitute the radiation control heat transfer surface of this embodiment.

次に、本実施例の輻射制御伝熱面の動作を第2図、第3
図を参照して説明する。
Next, the operation of the radiation control heat transfer surface of this example is shown in Figures 2 and 3.
This will be explained with reference to the figures.

まず、基板4の温度が低い場合には、小熱膨張材1と大
熱膨張材2との膨張差がほとんどないため、第2図に示
すように矩形状の複層小片7は変形せず、この輻射制御
伝熱面の表面はすべて低輻射率面5で覆われる。このと
き、外部への輻射量は最小になる。
First, when the temperature of the substrate 4 is low, there is almost no difference in expansion between the small thermal expansion material 1 and the large thermal expansion material 2, so the rectangular multilayer small piece 7 does not deform as shown in FIG. , the entire surface of this radiation control heat transfer surface is covered with a low emissivity surface 5. At this time, the amount of radiation to the outside becomes minimum.

基板4の温度が徐々に上昇するに従って、小熱膨張材1
、大熱膨張材2の膨張差が大きくなり、矩形状の複層小
片7は外側に変形してゆく。この場合、大熱伝導材3が
存在することにより、基板4からの熱は速やかに、かつ
大量に火熱膨張材2に伝えられるから、矩形状の複層小
片7の応答が速くなるとともに、変形量が大きくとれる
。第3図は、複数個の複層小片7が十分に変形した状態
を示している。このとき、この輻射制御伝熱面の表面は
高輻射率面6が大部分を占めるようになり。
As the temperature of the substrate 4 gradually rises, the small thermal expansion material 1
, the expansion difference of the large thermal expansion material 2 increases, and the rectangular multilayer small piece 7 deforms outward. In this case, due to the presence of the large heat conductive material 3, heat from the substrate 4 is quickly and in large quantities transferred to the thermally expandable material 2, so the response of the rectangular multilayer small piece 7 becomes faster and the deformation occurs. You can get a large amount. FIG. 3 shows a state in which the plurality of multilayer pieces 7 are sufficiently deformed. At this time, the high emissivity surface 6 occupies most of the surface of this radiation control heat transfer surface.

外部への輻射放熱量が最大となって基板4の温度上昇が
抑制される。
The amount of radiated heat to the outside is maximized, and the temperature rise of the substrate 4 is suppressed.

次に第4図は、第1図における複層小片部をさらに分割
した例を示す斜視図である。図中、第1図と同一符号の
ものは、第1図の実施例と同等部分であるから、その説
明を省略する。
Next, FIG. 4 is a perspective view showing an example in which the multilayer small piece portion in FIG. 1 is further divided. In the figure, the same reference numerals as in FIG. 1 are the same parts as in the embodiment of FIG. 1, so the explanation thereof will be omitted.

第4図の実施例は、矩形状の複層小片の分割数を増した
もので、複層小片8は、第1図に示した複層小片7にさ
らに複数の切込みを施したものである。このようにすれ
ば、第1図の実施例より、さらにきめの細かい輻射量の
制御が可能である。
In the embodiment shown in FIG. 4, the number of divisions of the rectangular multilayer small piece is increased, and the multilayer small piece 8 is obtained by further making a plurality of cuts in the multilayer small piece 7 shown in FIG. . In this way, it is possible to control the amount of radiation more precisely than in the embodiment shown in FIG.

次に第5図は1本発明の他の実施例に係る輻射制御伝熱
面の構成を示す斜視図である0図中、第1図と同一符号
のものは、第1図の実施例と同等部分であるから、その
説明を省略する。
Next, FIG. 5 is a perspective view showing the configuration of a radiation control heat transfer surface according to another embodiment of the present invention. Since they are equivalent parts, their explanation will be omitted.

第5図の実施例では、熱膨張率の異なる2種類の部材を
積層した板状部材を部分的に切欠いた形状のもので、小
熱膨張材1′と火熱膨張材2′との積層部材は三角形状
に部分的に存在している。
In the embodiment shown in FIG. 5, a plate-like member made by laminating two types of members with different coefficients of thermal expansion is partially cut out, and the laminated member is made of a small thermal expansion material 1' and a fire thermal expansion material 2'. exists partially in a triangular shape.

大熱伝導材3の部分は第4図の実施例と同様の矩形状に
形成されており、三角形状部と矩形状火熱伝導材3部と
で複層小片9を構成している。
The portion of the large heat conductive material 3 is formed into a rectangular shape similar to the embodiment shown in FIG. 4, and the triangular portion and the rectangular heat conductive material 3 constitute a multilayer small piece 9.

このような輻射制御伝熱面によれば1次の第1図、第4
図と同様の効果が期待できるほか、輻射制御伝熱面の軽
量化が可能である。
According to such a radiation controlled heat transfer surface, the first-order Fig. 1 and Fig. 4
In addition to the same effects as shown in the figure, it is also possible to reduce the weight of the radiation control heat transfer surface.

次に1本発明のさらに他の実施例を第6図および第7図
を参照して説明する。
Next, still another embodiment of the present invention will be described with reference to FIGS. 6 and 7.

ここに第6図は、本発明のさらに他の実施例に係る輻射
制御伝熱面の構成を示す斜視図、第7図は、第6図にお
ける複層小片部をさらに分割した例を示す斜視図である
。図中、第1図ないし第4図と同一符号のものは、先の
実施例と同等部であるから、その説明を省略する。
Here, FIG. 6 is a perspective view showing the configuration of a radiation control heat transfer surface according to still another embodiment of the present invention, and FIG. 7 is a perspective view showing an example in which the multilayer small piece part in FIG. 6 is further divided. It is a diagram. In the drawings, the same reference numerals as those in FIGS. 1 to 4 are the same parts as in the previous embodiment, so the explanation thereof will be omitted.

第6図において、10は形状記憶合金部材で、温度変化
に従って変形する応答性のよい板状部材を構成している
。3は、第1図で説明したと同じ、例えばアルミニウム
や銅などの部材よりなる大熱伝導材である。形状記憶合
金部材1oと大熱伝導材3とを積層した複層板状体は、
基板4上に高輻射率面6を介して当接するように構成さ
れている。
In FIG. 6, 10 is a shape memory alloy member, which constitutes a responsive plate member that deforms according to temperature changes. Reference numeral 3 denotes a large heat conductive material made of, for example, aluminum or copper, which is the same as that explained in FIG. A multi-layered plate-like body in which the shape memory alloy member 1o and the large heat conductive material 3 are laminated,
It is configured to abut on the substrate 4 via the high emissivity surface 6.

そして、この複層板状体の複数個所にコの字状に部分的
切込みを入れ、高輻射率面6と大熱伝導材3とを分離状
態で当接することにより、矩形状の複層小片11が複数
個形成され、これら複層小片11のそれぞれ一端となる
当接部が基板4に固着されて本実施例の輻射制御伝熱面
を構成する。
Then, by making partial incisions in a U-shape at multiple locations on this multilayer plate-like body and abutting the high emissivity surface 6 and the large heat conductive material 3 in a separated state, a rectangular multilayer small piece is formed. A plurality of small multi-layer pieces 11 are formed, and the abutting portions serving as one ends of each of these multilayer pieces 11 are fixed to the substrate 4 to constitute the radiation control heat transfer surface of this embodiment.

第6図の実施例の輻射制御伝熱面の動作を次に説明する
The operation of the radiation control heat transfer surface of the embodiment shown in FIG. 6 will now be described.

基板4の温度が低く、形状記憶合金部材10の変態温度
以下の場合は、矩形状の複層小片11は変形せず、この
輻射制御伝熱面の表面はすべて低輻射率面5で覆われる
。このとき、外部への輻射量は最小になる。
When the temperature of the substrate 4 is low and is below the transformation temperature of the shape memory alloy member 10, the rectangular multilayer small piece 11 does not deform, and the entire surface of this radiation control heat transfer surface is covered with the low emissivity surface 5. . At this time, the amount of radiation to the outside becomes minimum.

基板4の温度が上昇し、形状記憶合金部材10の変態温
度を越えると、矩形状の複層小片11は外側に変形する
。この場合、大熱伝導材3が存在することにより、基板
4からの熱は速やかに、かつ大量に形状記憶合金部材1
0に伝えられるから、形状記憶合金部材10の応答が速
く、制御性がきわめて良い、複数個の複層小片11が十
分に変形すると、この輻射制御伝熱面の表面は高輻射率
面6が大部分を占めるようになり、外部への輻射放熱量
が最大となって基板4の温度上昇が抑制される。
When the temperature of the substrate 4 rises and exceeds the transformation temperature of the shape memory alloy member 10, the rectangular multilayer piece 11 deforms outward. In this case, due to the presence of the large heat conductive material 3, heat from the substrate 4 is quickly and in large quantities transferred to the shape memory alloy member 1.
0, the response of the shape memory alloy member 10 is fast and the controllability is extremely good.When the plurality of multilayer small pieces 11 are sufficiently deformed, the surface of this radiation control heat transfer surface becomes a high emissivity surface 6. As a result, the amount of radiant heat radiated to the outside is maximized, and the temperature rise of the substrate 4 is suppressed.

次に第7図の実施例は、複層小片の分割数を増したもの
で、複層小片12は、第6図に示した複層小片11にさ
らに複数の切込みを施したものである。このようにすれ
ば、第6図の実施例より、さらにきめの細かい輻射量の
制御が可能である。
Next, in the embodiment shown in FIG. 7, the number of divisions of the multilayer small piece is increased, and the multilayer small piece 12 is obtained by further making a plurality of cuts in the multilayer small piece 11 shown in FIG. In this way, it is possible to control the amount of radiation more precisely than in the embodiment shown in FIG.

なお、前述の各実施例は、人工衛星など宇宙機器の熱制
御に適用できる軽量で信頼性の高い輻射制御伝熱面であ
るが、本発明は、宇宙機器に限らず、半導体熱処理設備
などで、従来の電気ヒータ制御に替るきめの細かい温度
パターン制御の実現にも好適なものである。
Each of the above embodiments is a lightweight and highly reliable radiation control heat transfer surface that can be applied to heat control of space equipment such as artificial satellites, but the present invention is applicable not only to space equipment but also to semiconductor heat treatment equipment, etc. , it is also suitable for realizing fine-grained temperature pattern control as an alternative to conventional electric heater control.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、少ない空間占有率
で、かつ簡単な構成で、きめの細かい輻射量制御を行い
うる輻射制御伝熱面を提供することができる。
As described above, according to the present invention, it is possible to provide a radiation control heat transfer surface that can perform fine radiation amount control with a small space occupation rate and a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る輻射制御伝熱面の構
成を示す斜視図、第2図は、その輻射制御伝熱面の複層
小片の未変形時を示す斜視図、第3図は、その複層小片
の変形時を示す斜視図、第4図は、第1図における複層
小片部をさらに分割した例を示す斜視図、第5図は1本
発明の他の実施例に係る輻射制御伝熱面の構成を示す斜
視図、第6図は、本発明のさらに他の実施例に係る輻射
制御伝熱面の構成を示す斜視図、第7図は、第6図にお
ける複層小片部をさらに分割した例を示す斜視図である
。 1.1′・・・小熱膨張材、2,2′・・・大熱膨張材
。 3・・・大熱伝導材、4・・・基板、5・・・低輻射率
面、6・・・高輻射率面、7,8,9,11.12・・
・複層小片、1o・・・形状記憶合金部材。 ¥I 1 目 7−・−4J、l−門 第 2 図 I  tJ+ M50 ユ ¥r、+  ロ ネ[4−1−乃 茅5 口 第7 図
FIG. 1 is a perspective view showing the configuration of a radiation control heat transfer surface according to an embodiment of the present invention, FIG. 2 is a perspective view showing the undeformed multilayer small piece of the radiation control heat transfer surface; 3 is a perspective view showing the deformation of the multilayer small piece, FIG. 4 is a perspective view showing an example in which the multilayer small piece in FIG. 1 is further divided, and FIG. 5 is a perspective view showing another embodiment of the present invention. FIG. 6 is a perspective view showing the configuration of a radiation control heat transfer surface according to yet another embodiment of the present invention; FIG. It is a perspective view which shows the example which further divided the multilayer small piece part in . 1.1'...Low thermal expansion material, 2,2'...Large thermal expansion material. 3... High heat conductive material, 4... Substrate, 5... Low emissivity surface, 6... High emissivity surface, 7, 8, 9, 11.12...
・Multilayer small piece, 1o...shape memory alloy member. ¥I 1 Eye 7-・-4J, l-gate 2nd figure I tJ+ M50 Yu¥r, + Ronet [4-1-nohay5 mouth 7th figure

Claims (1)

【特許請求の範囲】 1、発熱源から熱を受ける基板上に、熱伝導率の高い板
状部材と温度変化に従って変形する応答性のよい板状部
材とを積層した複層板状体を、高輻射率の膜面を介して
当接せしめるようにし、前記複層板状体には切込みによ
る複数の複層小片を備え、これら複層小片のそれぞれ一
端となる当接部を、上記基板上に固着するように構成し
たことを特徴とする輻射制御伝熱面。 2、特許請求の範囲第1項記載のものにおいて、温度変
化に従って変形する応答性のよい板状部材は、熱膨張率
の異なる少なくとも2種類の部材を積層して形成したも
のである輻射制御伝熱面。 3、特許請求の範囲第1項記載のものにおいて、温度変
化に従って変形する応答性のよい板状部材は、形状記憶
合金により形成したものである輻射制御伝熱面。
[Claims] 1. A multilayer plate-like body in which a plate-like member with high thermal conductivity and a plate-like member with good responsiveness that deforms according to temperature changes are laminated on a substrate that receives heat from a heat generation source, The multilayer plate-shaped body is provided with a plurality of multilayer small pieces formed by notches, and the abutting portion, which is one end of each of these multilayer small pieces, is brought into contact with the substrate through a film surface having a high emissivity. A radiation control heat transfer surface configured to be firmly fixed to the surface. 2. In the item described in claim 1, the responsive plate member that deforms in accordance with temperature changes is a radiation controlled transmission member formed by laminating at least two types of members having different coefficients of thermal expansion. Thermal side. 3. The radiation control heat transfer surface according to claim 1, wherein the responsive plate member that deforms according to temperature changes is formed of a shape memory alloy.
JP6056886A 1986-03-20 1986-03-20 Radiation controlling heat conduction surface Pending JPS62219013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6056886A JPS62219013A (en) 1986-03-20 1986-03-20 Radiation controlling heat conduction surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6056886A JPS62219013A (en) 1986-03-20 1986-03-20 Radiation controlling heat conduction surface

Publications (1)

Publication Number Publication Date
JPS62219013A true JPS62219013A (en) 1987-09-26

Family

ID=13145993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6056886A Pending JPS62219013A (en) 1986-03-20 1986-03-20 Radiation controlling heat conduction surface

Country Status (1)

Country Link
JP (1) JPS62219013A (en)

Similar Documents

Publication Publication Date Title
US11946705B2 (en) Deformable fin heat exchanger
EP1766681B1 (en) Memory metal springs for heatsink attachments and corresponding method
US5461774A (en) Apparatus and method of elastically bowing a base plate
US3441812A (en) Fused junction between a germanium-silicon semiconductor member and a junction element and method of producing the same
TWI658476B (en) Coil device
JPS62219013A (en) Radiation controlling heat conduction surface
JPH05259667A (en) Heat radiating structure
JPS6114154Y2 (en)
JP2004281676A (en) Heat radiator and its producing method
EP3540770B1 (en) Heat transfer device
JPS6219073B2 (en)
WO2020245975A1 (en) Warpage control structure for metal base plate, semiconductor module, and inverter device
JPS63149297A (en) Heat controller for artificial satellite
JPS5875220A (en) Temperature controller
US1639708A (en) Thermostat
US11946460B1 (en) Thermal-mechanical linear actuator
JPS591994A (en) Heat pipe for temperature control
JPH08230797A (en) Heat flow switch of satellite
JPH01229800A (en) Radiator
US5068156A (en) Semiconductor package
JPS5987520A (en) Temperature control device
EP0584800A2 (en) Positive temperature coefficient thermistor device
JPH0722161A (en) Ceramic heater and base board for it
JPH0574992A (en) Heat sink made of aluminum alloy and manufacture thereof
JP3567839B2 (en) Thermal resistance control device