JPH0574992A - Heat sink made of aluminum alloy and manufacture thereof - Google Patents

Heat sink made of aluminum alloy and manufacture thereof

Info

Publication number
JPH0574992A
JPH0574992A JP3111867A JP11186791A JPH0574992A JP H0574992 A JPH0574992 A JP H0574992A JP 3111867 A JP3111867 A JP 3111867A JP 11186791 A JP11186791 A JP 11186791A JP H0574992 A JPH0574992 A JP H0574992A
Authority
JP
Japan
Prior art keywords
aluminum alloy
heat sink
heat
semiconductor
semiconductor mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3111867A
Other languages
Japanese (ja)
Inventor
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3111867A priority Critical patent/JPH0574992A/en
Publication of JPH0574992A publication Critical patent/JPH0574992A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Abstract

PURPOSE:To obtain a heat sink made of aluminum alloy for a semiconductor device which has high processability and low thermal expansion property and is light and excellent in heat conductivity. CONSTITUTION:The semiconductor mounting part 2 made on one face of a heat sink 1 and the heat radiation part 3 made on the other face both consists of aluminum alloy containing silicon, and the silicon content of the semiconductor mounting part 2 is higher than that of the heat radiation part 3, and besides the silicon content at the interface 5 between both sides is elevated by stages from the heat radiation part 3 to the semiconductor mounting part 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い加工性と低い熱膨
張特性とを併せもち、しかも軽量かつ熱伝導性に優れ
た、半導体デバイス用として好適なアルミニウム合金製
ヒートシンクおよびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy heat sink suitable for semiconductor devices, which has a high workability and a low thermal expansion property and is lightweight and excellent in thermal conductivity, and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、トランジスタを始めとする半導
体素子に電力を供給し動作させると、コレクタ損失等の
原因により電力が内部で消費され、半導体素子が発熱す
る。一方、上記半導体素子は温度、特に熱に対し極めて
敏感で、温度上昇により特性が変化したり動作不全とな
ったりすることがある。
2. Description of the Related Art Generally, when power is supplied to a semiconductor element such as a transistor to operate it, the power is internally consumed due to a collector loss and the like, and the semiconductor element generates heat. On the other hand, the semiconductor element is extremely sensitive to temperature, especially heat, and its characteristics may change or malfunction due to temperature rise.

【0003】そこで、上記半導体素子のうち、通電によ
る発熱量が大きく、通電中冷却を行う必要があるものに
ついては、銅やアルミニウム合金等熱伝導性の高い金属
を用いたヒートシンクと呼ばれる放熱板や放熱器が取り
付けられ、半導体素子で発生した熱をこのヒートシンク
から外部に放射させることにより、温度上昇を防止して
いる。
Therefore, among the above-mentioned semiconductor elements, those which generate a large amount of heat when energized and need to be cooled during energization include a heat sink called a heat sink using a metal having a high thermal conductivity such as copper or aluminum alloy. A heat radiator is attached, and the heat generated in the semiconductor element is radiated to the outside from the heat sink to prevent the temperature from rising.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、半導体
素子の大規模化に伴い、半導体素子とヒートシンクとの
熱膨張係数の違いが問題となってきた。すなわち、熱膨
張係数を比較すると、半導体チップの材料であるシリコ
ンおよびガリウム砒素が各々2.5×10-6/℃および
5.7×10-6/℃、また、前記半導体チップを覆うパ
ッケージや前記半導体チップを搭載するためのセラミッ
ク基板等の材料であるアルミナが7×10-6/℃である
のに対し、ヒートシンクの材料である銅が16.5×1
-6/℃、アルミニウムおよびアルミニウム合金が23
×10-6/℃といずれも非常に大きく、そのため、半導
体素子が発熱すると、この熱膨張係数の違いが原因で前
記半導体チップあるいはパッケージやセラミック基板と
ヒートシンクとの間に曲がりや反りが生じ、その結果、
両者の接合部において剥離や割れが起こることがあっ
た。
However, with the increase in scale of semiconductor elements, the difference in the coefficient of thermal expansion between the semiconductor element and the heat sink has become a problem. That is, comparing the coefficients of thermal expansion, silicon and gallium arsenide, which are the materials of the semiconductor chip, are 2.5 × 10 −6 / ° C. and 5.7 × 10 −6 / ° C., respectively, and the package and Alumina, which is the material for the ceramic substrate for mounting the semiconductor chip, has a concentration of 7 × 10 −6 / ° C., whereas copper, which is the material for the heat sink, has a capacitance of 16.5 × 1.
0 -6 / ℃, aluminum and aluminum alloy 23
X 10 −6 / ° C., which is very large. Therefore, when a semiconductor element generates heat, bending or warpage occurs between the heat sink and the semiconductor chip or package due to the difference in the coefficient of thermal expansion. as a result,
There were cases where peeling or cracking occurred at the joint between the two.

【0005】このような問題を解決するため、ヒートシ
ンクの材料として、タングステンやモリブデンのような
熱膨張係数の小さい金属と銅合金等との複合材が開発さ
れている。しかしながら、タングステンやモリブデンは
高価であり、しかも比重が非常に大きいため、ヒートシ
ンクが重くなるという欠点があった。
In order to solve such a problem, a composite material of a metal having a small coefficient of thermal expansion such as tungsten or molybdenum and a copper alloy has been developed as a material for a heat sink. However, since tungsten and molybdenum are expensive and have a very large specific gravity, there is a drawback that the heat sink becomes heavy.

【0006】一方、アルミニウムないしはアルミニウム
合金に珪素を添加すると、その熱膨張係数を低下させる
ことが可能である。アルミニウム合金の珪素含有率と、
当該合金の熱膨張係数および伸び、ならびに硬度との関
係を表1に示す。
On the other hand, when silicon is added to aluminum or an aluminum alloy, the coefficient of thermal expansion can be lowered. The silicon content of the aluminum alloy,
Table 1 shows the relationship between the coefficient of thermal expansion, elongation, and hardness of the alloy.

【0007】[0007]

【表1】 [Table 1]

【0008】表1に示す通り、アルミニウム合金の珪素
含有率が高くなる程、熱膨張係数が低下する。そこで、
その性質を利用し、重量比にして50%〜80%前後の
含有率で珪素を含有するアルミニウム合金製のヒートシ
ンクが開発されている。このヒートシンクにおいては、
アルミニウムの軽量性と高い熱伝導性を失うことなく、
その熱膨張係数を低下させることが可能である。従っ
て、半導体素子とヒートシンク間における熱膨張係数の
差による両者間の曲がりや反り等も起きにくくなってい
る。
As shown in Table 1, the higher the silicon content of the aluminum alloy, the lower the coefficient of thermal expansion. Therefore,
Utilizing this property, a heat sink made of an aluminum alloy containing silicon at a content ratio of about 50% to 80% by weight has been developed. In this heat sink,
Without losing the light weight and high thermal conductivity of aluminum,
It is possible to reduce the coefficient of thermal expansion. Therefore, bending or warping between the semiconductor element and the heat sink due to the difference in thermal expansion coefficient between them is less likely to occur.

【0009】しかしながら、同じく表1に示す通り、ア
ルミニウム合金の珪素含有率が高くなるに従い、その伸
びが低下し、かつ硬度が上昇するため合金は脆くなる。
その結果、合金の被削性や靱性が低下するので、ヒート
シンクにおける放熱フィン等の精密な加工が困難とな
り、一定の放熱効果を得るためには、ヒートシンクを大
型化せざるを得ないという問題があった。
However, as also shown in Table 1, as the silicon content of the aluminum alloy increases, its elongation decreases and its hardness increases, so that the alloy becomes brittle.
As a result, the machinability and toughness of the alloy are reduced, making it difficult to perform precise processing of the heat radiation fins in the heat sink, and the size of the heat sink must be increased in order to obtain a certain heat radiation effect. there were.

【0010】[0010]

【課題を解決するための手段】本発明は、一方の面に半
導体を搭載する半導体搭載部が形成され、かつ他方の面
が放熱部とされているヒートシンクにおいて、前記半導
体搭載部と前記放熱部がいずれも珪素を含有するアルミ
ニウム合金からなり、かつ前記半導体搭載部の珪素含有
率が前記放熱部の珪素含有率より高くなっているととも
に、前記半導体搭載部と前記放熱部との間に境界部が形
成され、しかも、前記境界部における珪素含有率が、前
記放熱部から前記半導体搭載部に向けて段階的に高くな
っているものである。
According to the present invention, there is provided a heat sink having a semiconductor mounting portion for mounting a semiconductor formed on one surface thereof and a heat radiating portion on the other surface thereof. Both are made of an aluminum alloy containing silicon, and the silicon content of the semiconductor mounting portion is higher than the silicon content of the heat radiating portion, and a boundary portion is formed between the semiconductor mounting portion and the heat radiating portion. And the silicon content in the boundary portion gradually increases from the heat radiation portion toward the semiconductor mounting portion.

【0011】[0011]

【作用】本発明においては、半導体搭載部の珪素含有率
が放熱部より高いため、前記半導体搭載部の熱膨張係数
は前記放熱部より小さく、一方、加工性および靱性につ
いては前記放熱部が前記半導体搭載部より高くなってい
る。従って、放熱部を小型化し、かつ放熱効率を高める
ことができる。その結果、半導体素子の大規模化および
大電力化が可能となるとともに、半導体素子の信頼性お
よび寿命が著しく向上する他、半導体装置全体の軽量化
が可能である。
In the present invention, since the silicon content of the semiconductor mounting portion is higher than that of the heat radiating portion, the coefficient of thermal expansion of the semiconductor mounting portion is smaller than that of the heat radiating portion. It is higher than the semiconductor mounting part. Therefore, the heat dissipation portion can be downsized and the heat dissipation efficiency can be improved. As a result, it is possible to increase the scale and power of the semiconductor element, significantly improve the reliability and life of the semiconductor element, and reduce the weight of the entire semiconductor device.

【0012】また、前記半導体搭載部と前記放熱部との
間に形成された境界部における珪素含有率が、前記放熱
部から前記半導体搭載部に向けて段階的に高くなってい
るため、半導体素子の発熱に伴う前記半導体素子とヒー
トシンク間における熱膨張係数の差が前記境界部におい
て相殺され、その結果、両者間の曲がりや反りがなくな
り、両者の接合部における剥離や割れが防止される。
Further, since the silicon content in the boundary portion formed between the semiconductor mounting portion and the heat radiating portion gradually increases from the heat radiating portion toward the semiconductor mounting portion, the semiconductor element The difference in the coefficient of thermal expansion between the semiconductor element and the heat sink due to the heat generation is canceled at the boundary, and as a result, the bending and warping between the two are eliminated, and peeling and cracking at the joint between the two are prevented.

【0013】[0013]

【実施例】以下、図面に基づき、本発明の実施例につい
て更に詳しく説明する。図1は、本発明の基本的な構造
を示すもので、ヒートシンク1は、半導体搭載部2、放
熱部3、および両者間に形成された境界部5の三つの部
分から概略構成されている。また、放熱部3には、表面
積を増加し、放熱効果を高めるためにフィン4が設けら
れている。
Embodiments of the present invention will now be described in more detail with reference to the drawings. FIG. 1 shows a basic structure of the present invention. A heat sink 1 is roughly composed of a semiconductor mounting portion 2, a heat radiating portion 3 and a boundary portion 5 formed therebetween. Further, the heat dissipation portion 3 is provided with fins 4 to increase the surface area and enhance the heat dissipation effect.

【0014】ここで、半導体搭載部2、放熱部3および
境界部5はいずれも珪素を含有するアルミニウム合金製
で、また、上記各部における珪素含有率は、半導体搭載
部2が最高で、放熱部3が最低となっている。更に、境
界部5における珪素含有率は、放熱部3から半導体搭載
部2に向けて段階的に高くなっている。
Here, the semiconductor mounting portion 2, the heat radiating portion 3 and the boundary portion 5 are all made of an aluminum alloy containing silicon, and the silicon content in each of the above portions is the highest in the semiconductor mounting portion 2 and the heat radiating portion. 3 is the lowest. Further, the silicon content rate in the boundary portion 5 gradually increases from the heat radiation portion 3 toward the semiconductor mounting portion 2.

【0015】上記構造を有するヒートシンク1は、粉末
鍛造および機械加工により製造される。その概略工程を
図2ないし図6とともに以下に述べる。
The heat sink 1 having the above structure is manufactured by powder forging and machining. The outline process will be described below with reference to FIGS.

【0016】(1) 中空円筒状をなす押し型6および
その上下部に加圧用のパンチ7・8が装備された、図2
に示すような粉末成形装置9の下部パンチ8を、所定位
置(図中矢印A)まで上昇させた後、図3に示すよう
に、押し型6内に、所定の珪素含有率で珪素を含有する
アルミニウム合金粉末10を所定量投入する。
(1) A pressing die 6 having a hollow cylindrical shape and punches 7 and 8 for pressurizing the upper and lower portions thereof are equipped, as shown in FIG.
After raising the lower punch 8 of the powder molding apparatus 9 as shown in FIG. 1 to a predetermined position (arrow A in the figure), as shown in FIG. 3, the pressing die 6 contains silicon at a predetermined silicon content rate. A predetermined amount of aluminum alloy powder 10 to be used is charged.

【0017】(2) 投入したアルミニウム合金粉末1
0の表面が前記所定位置と一致するまで下部パンチ8を
下降させた後、図4に示すように、押し型6内に、さき
に投入したものより珪素含有率が低いアルミニウム合金
粉末11を所定量投入する。
(2) The charged aluminum alloy powder 1
After lowering the lower punch 8 until the surface of No. 0 coincides with the above-mentioned predetermined position, as shown in FIG. 4, an aluminum alloy powder 11 having a lower silicon content than the one charged in the former is placed in the pressing die 6. Add a fixed amount.

【0018】(3) 上記(2)の操作を繰り返して行
い、シリカ含有率が徐々に低下するようにアルミニウム
合金粉末を積層してゆき、珪素含有率が最も高いアルミ
ニウム合金粉末10上に粉末層12を形成させる。更
に、粉末層12の表面が前記所定位置と一致するまで下
部パンチ8を下降させた後、図5に示すように、珪素含
有量が最も低いアルミニウム合金粉末13を押し型6内
に投入する。
(3) The above operation (2) is repeated to stack aluminum alloy powders so that the silica content gradually decreases, and a powder layer is formed on the aluminum alloy powder 10 having the highest silicon content. 12 is formed. Further, after lowering the lower punch 8 until the surface of the powder layer 12 coincides with the predetermined position, as shown in FIG. 5, the aluminum alloy powder 13 having the lowest silicon content is put into the pressing die 6.

【0019】ここで、粉末層12における珪素含有率
は、珪素含有率が最も高いアルミニウム合金粉末10か
ら珪素含有率が最も低いアルミニウム合金粉末13に向
けて段階的に低くなっている。
Here, the silicon content in the powder layer 12 is gradually reduced from the aluminum alloy powder 10 having the highest silicon content to the aluminum alloy powder 13 having the lowest silicon content.

【0020】その後、図6に示すように、前記粉末を上
下部両パンチ7,8を用いて上下から加圧、成形して円
筒状の成形体とし、更に、この成形体を約480℃で所
定時間加熱した後、ただちに熱間鍛造を施し、アルミニ
ウム合金鍛造体を得る。
Thereafter, as shown in FIG. 6, the powder is pressed from above and below using both upper and lower punches 7 and 8 to form a cylindrical molded body, and this molded body is further heated at about 480 ° C. After heating for a predetermined time, hot forging is immediately performed to obtain an aluminum alloy forged body.

【0021】(5) 機械加工により、前記鍛造体のう
ち、珪素含有率が最も高いアルミニウム合金で形成され
た部分に半導体搭載部2を形成するとともに、珪素含有
量が最も低いアルミニウム合金で形成された部分に放熱
部3を形成する。これは、珪素含有率が相対的に高い側
を半導体搭載部2とすることにより、当該部における熱
膨張係数をなるべく小さく抑える一方、珪素含有率が相
対的に低い側を放熱部3とすることにより、当該部にお
ける被削性および靱性の低下を防止し、フィン4の形成
のような精密な機械加工を可能とするためである。ま
た、鍛造の結果、粉末層12は、境界部5となる。
(5) The semiconductor mounting portion 2 is formed by machining on the portion formed of the aluminum alloy having the highest silicon content in the forged body, and is formed of the aluminum alloy having the lowest silicon content. The heat dissipation portion 3 is formed on the open portion. This is because the side having a relatively high silicon content is used as the semiconductor mounting portion 2 so that the coefficient of thermal expansion in that portion is kept as small as possible, while the side having a relatively low silicon content is used as the heat dissipation portion 3. Thereby, the machinability and the toughness of the portion are prevented from being lowered, and the precise machining such as the formation of the fin 4 is enabled. Further, as a result of forging, the powder layer 12 becomes the boundary portion 5.

【0022】なお、本実施例においては、半導体搭載部
2のアルミニウム合金における珪素含有率の範囲は重量
比で30%〜50%とし、放熱部3のアルミニウム合金
における珪素含有率の範囲は同じく5〜20%とした。
一方、粉末層12におけるアルミニウム合金粉末11の
積層回数およびその厚さは、ヒートシンク1の仕様等に
応じて任意に設定される。
In this embodiment, the range of silicon content in the aluminum alloy of the semiconductor mounting portion 2 is 30% to 50% by weight, and the range of silicon content in the aluminum alloy of the heat dissipation portion 3 is 5%. -20%.
On the other hand, the number of laminations and the thickness of the aluminum alloy powder 11 in the powder layer 12 are arbitrarily set according to the specifications of the heat sink 1.

【0023】次に、本発明のヒートシンク1を装着した
ハイブリッド型半導体素子14(以下、素子と略称す
る)の例を図7に示す。
Next, FIG. 7 shows an example of a hybrid type semiconductor device 14 (hereinafter simply referred to as a device) to which the heat sink 1 of the present invention is attached.

【0024】半導体搭載部2は、高熱伝導性接着剤によ
り、アルミナ等のセラミックからなるセラミック基板1
5に接着されている。セラミック基板15上には、銅ま
たはクロムもしくはそれらの合金からなる薄膜配線16
がなされ、同配線上の所定の位置に、入/出力用のI/
Oピン17およびシリコンまたはガリウム砒素製の半導
体チップ18が取り付けられている。また、半導体チッ
プ18は樹脂製のキャップ19で覆われており、更に、
素子14を構成する上記各部材間は、エポキシ樹脂その
他のコーティング用樹脂20によりコーティングされて
いる。
The semiconductor mounting portion 2 is a ceramic substrate 1 made of a ceramic such as alumina with a high thermal conductive adhesive.
It is glued to 5. On the ceramic substrate 15, thin film wiring 16 made of copper, chromium, or an alloy thereof is provided.
I / O for input / output at a predetermined position on the same wiring.
An O pin 17 and a semiconductor chip 18 made of silicon or gallium arsenide are attached. The semiconductor chip 18 is covered with a resin cap 19, and further,
An epoxy resin or other coating resin 20 is coated between the above-described members that form the element 14.

【0025】通電により素子14が発熱すると、その熱
はセラミック基板15からまず半導体搭載部2に伝えら
れ、ついで境界部5を経て放熱部3に伝えられた後、放
熱部3のフィン4から放射される。ここで、素子14で
発生した熱の伝導に伴い、セラミック基板15、半導体
搭載部2、放熱部3および境界部5はいずれも熱膨張を
起こすが、セラミック基板15と半導体搭載部2の熱膨
張係数が共に比較的小さいため、両者間で曲がりや反り
が生じることはない。一方、半導体搭載部2と放熱部3
の熱膨張係数は、両者における珪素含有量の差異に伴い
大きく異なるが、前述の通り両者間に形成された境界部
5における珪素含有量が徐々に変化しているため、上記
の熱膨張係数の差は境界部5内で徐々に相殺される。そ
の結果、この両者間においても曲がりや反りが生じるこ
とはない。
When the element 14 generates heat by energization, the heat is first transferred from the ceramic substrate 15 to the semiconductor mounting portion 2 and then to the heat radiation portion 3 via the boundary portion 5, and then radiated from the fins 4 of the heat radiation portion 3. To be done. Here, as the heat generated in the element 14 is conducted, the ceramic substrate 15, the semiconductor mounting portion 2, the heat radiating portion 3 and the boundary portion 5 all expand thermally, but the thermal expansion of the ceramic substrate 15 and the semiconductor mounting portion 2 does not occur. Since both coefficients are relatively small, there is no bending or warping between them. On the other hand, the semiconductor mounting part 2 and the heat dissipation part 3
The coefficient of thermal expansion of the above-mentioned is greatly different due to the difference in the content of silicon between the two, but as described above, the content of silicon in the boundary portion 5 formed between the two is gradually changing. The difference is gradually offset within the boundary 5. As a result, there is no bending or warpage between the two.

【0026】放熱部3に伝えられた熱はフィン4から放
射されるが、本発明のフィン4においては精密な機械加
工が可能であるため、フィン4全体の大きさが小型であ
るにもかかわらず表面積が非常に大きく、放熱効果も高
くなっている。従って、半導体素子に入力可能な電圧よ
び電流の許容値を相対的に高く設定することができる。
The heat transmitted to the heat radiating portion 3 is radiated from the fins 4. However, since the fins 4 of the present invention can be machined precisely, the fins 4 as a whole are small in size. The surface area is very large and the heat dissipation effect is also high. Therefore, the allowable values of the voltage and the current that can be input to the semiconductor element can be set relatively high.

【0027】なお、本発明のヒートシンク1において
は、軽量なアルミニウム合金が使用され、しかも、上記
のように放熱部の小型化が可能となっているため、ヒー
トシンク1の使用が半導体装置全体の重量および大きさ
におよぼす影響は軽微である。
In the heat sink 1 of the present invention, a lightweight aluminum alloy is used, and since the heat radiating portion can be downsized as described above, the use of the heat sink 1 reduces the weight of the entire semiconductor device. And its effect on size is minor.

【0028】[0028]

【発明の効果】上記説明したように、本発明において
は、珪素を含有するアルミニウム合金製のヒートシンク
のうち、半導体搭載部の珪素含有率が放熱部より高いた
め、前記半導体搭載部の熱膨張係数は前記放熱部より小
さく、一方、加工性および靱性については前記放熱部が
前記半導体搭載部より高くなっている。従って、放熱部
を小型化し、かつ放熱効率を高めることができた。その
結果、半導体素子の大規模化および大電力化が可能とな
るとともに、半導体素子の信頼性および寿命が著しく向
上する他、半導体装置全体の軽量化が可能となった。
As described above, according to the present invention, in the heat sink made of an aluminum alloy containing silicon, the silicon content of the semiconductor mounting portion is higher than that of the heat radiation portion. Is smaller than the heat radiating portion, while the heat radiating portion is higher than the semiconductor mounting portion in terms of workability and toughness. Therefore, the heat dissipation portion can be downsized and the heat dissipation efficiency can be improved. As a result, it is possible to increase the scale and power of the semiconductor element, significantly improve the reliability and life of the semiconductor element, and reduce the weight of the entire semiconductor device.

【0029】また、前記半導体搭載部と前記放熱部との
間に形成された境界部における珪素含有率が、前記放熱
部から前記半導体搭載部に向けて段階的に高くなってい
るため、半導体素子の発熱に伴う前記半導体素子とヒー
トシンク間における熱膨張係数の差が前記境界部におい
て相殺され、その結果、両者間の曲がりや反りがなくな
り、両者の接合部における剥離や割れが防止された。
Further, since the silicon content in the boundary formed between the semiconductor mounting portion and the heat radiating portion gradually increases from the heat radiating portion toward the semiconductor mounting portion, the semiconductor element The difference in the coefficient of thermal expansion between the semiconductor element and the heat sink due to the heat generation is canceled at the boundary, and as a result, the bending and warping between the two are eliminated and peeling and cracking at the joint between the two are prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のヒートシンクの構造を示す模式図であ
る。
FIG. 1 is a schematic view showing a structure of a heat sink of the present invention.

【図2】本発明のヒートシンクに用いられるアルミニウ
ム合金を製造するための粉末鍛造装置の構造を示す模式
図である。
FIG. 2 is a schematic diagram showing the structure of a powder forging apparatus for producing an aluminum alloy used for the heat sink of the present invention.

【図3】本発明のヒートシンクに用いられるアルミニウ
ム合金の製造工程を示す模式図である。
FIG. 3 is a schematic view showing a manufacturing process of an aluminum alloy used for the heat sink of the present invention.

【図4】本発明のヒートシンクに用いられるアルミニウ
ム合金の製造工程を示す模式図である。
FIG. 4 is a schematic view showing a manufacturing process of an aluminum alloy used for the heat sink of the present invention.

【図5】本発明のヒートシンクに用いられるアルミニウ
ム合金の製造工程を示す模式図である。
FIG. 5 is a schematic view showing a manufacturing process of an aluminum alloy used for the heat sink of the present invention.

【図6】本発明のヒートシンクに用いられるアルミニウ
ム合金の製造工程を示す模式図である。
FIG. 6 is a schematic view showing a manufacturing process of an aluminum alloy used for the heat sink of the present invention.

【図7】本発明のヒートシンクのハイブリッド型半導体
素子への装着例を示す模式図である。
FIG. 7 is a schematic view showing an example of mounting a heat sink of the present invention on a hybrid semiconductor element.

【符号の説明】[Explanation of symbols]

1 ヒートシンク 2 半導体搭載部 3 放熱部 4 フィン 5 境界部 6 押し型 7 上部パンチ 8 下部パンチ 9 粉末成形装置 10、11、13 アルミニウム合金粉末 12 粉末層 14 ハイブリッド型半導体素子(素子) 15 セラミック基板 16 薄膜配線 17 I/Oピン 18 半導体チップ 19 キャップ 20 コーティング用樹脂 DESCRIPTION OF SYMBOLS 1 heat sink 2 semiconductor mounting part 3 heat dissipation part 4 fins 5 boundary part 6 pressing die 7 upper punch 8 lower punch 9 powder molding device 10, 11, 13 aluminum alloy powder 12 powder layer 14 hybrid type semiconductor element (element) 15 ceramic substrate 16 Thin film wiring 17 I / O pin 18 Semiconductor chip 19 Cap 20 Coating resin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一方の面に半導体素子を搭載する半導体
搭載部を有し、他方の面に放熱部を有するアルミニウム
合金製ヒートシンクにおいて、前記半導体搭載部と前記
放熱部がいずれも珪素を含有するアルミニウム合金から
なり、かつ前記半導体搭載部の珪素含有率が前記放熱部
の珪素含有率より高くなっているとともに、前記半導体
搭載部と前記放熱部との間に境界部が形成され、しか
も、前記境界部における珪素含有率が、前記放熱部から
前記半導体搭載部に向け段階的に高くなっていることを
特徴とするアルミニウム合金製ヒートシンク。
1. A heat sink made of an aluminum alloy having a semiconductor mounting portion for mounting a semiconductor element on one surface and a heat radiating portion on the other surface, wherein both the semiconductor mounting portion and the heat radiating portion contain silicon. It is made of an aluminum alloy, and the silicon content of the semiconductor mounting portion is higher than the silicon content of the heat radiating portion, and a boundary portion is formed between the semiconductor mounting portion and the heat radiating portion. A heat sink made of an aluminum alloy, wherein the silicon content in the boundary portion is gradually increased from the heat radiation portion toward the semiconductor mounting portion.
【請求項2】 前記境界部が、珪素含有率の異なる少な
くとも2種類のアルミニウム合金粉末を用いた粉末鍛造
により形成されることを特徴とする請求項1記載のアル
ミニウム合金製ヒートシンク。
2. The aluminum alloy heat sink according to claim 1, wherein the boundary portion is formed by powder forging using at least two kinds of aluminum alloy powders having different silicon contents.
【請求項3】 珪素含有率の異なる少なくとも2種類の
アルミニウム合金粉末を積層し、前記粉末を上下より加
圧成形後熱間鍛造して得た粉末鍛造成形物に、更に機械
加工を施して製造されることを特徴とする請求項1記載
のアルミニウム合金製ヒートシンクの製造法。
3. A powder forged product obtained by laminating at least two kinds of aluminum alloy powders having different silicon contents, press-molding the powder from above and below and then hot forging, and further machining the powder forged product. The method for manufacturing an aluminum alloy heat sink according to claim 1, wherein
JP3111867A 1991-05-16 1991-05-16 Heat sink made of aluminum alloy and manufacture thereof Pending JPH0574992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3111867A JPH0574992A (en) 1991-05-16 1991-05-16 Heat sink made of aluminum alloy and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3111867A JPH0574992A (en) 1991-05-16 1991-05-16 Heat sink made of aluminum alloy and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0574992A true JPH0574992A (en) 1993-03-26

Family

ID=14572156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3111867A Pending JPH0574992A (en) 1991-05-16 1991-05-16 Heat sink made of aluminum alloy and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0574992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148927B2 (en) 2002-03-01 2006-12-12 Canon Kabushiki Kaisha Signal readout structure for an image sensing apparatus
KR100804643B1 (en) * 2006-11-30 2008-02-20 삼성전자주식회사 Voltage regulator, digital amplifier including the same, and method of regulating a voltage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148927B2 (en) 2002-03-01 2006-12-12 Canon Kabushiki Kaisha Signal readout structure for an image sensing apparatus
US7719587B2 (en) 2002-03-01 2010-05-18 Canon Kabushiki Kaisha Signal readout structure for an image sensing apparatus
KR100804643B1 (en) * 2006-11-30 2008-02-20 삼성전자주식회사 Voltage regulator, digital amplifier including the same, and method of regulating a voltage

Similar Documents

Publication Publication Date Title
EP0183016B1 (en) Material for a semiconductor device and process for its manufacture
JPH0261539B2 (en)
US20070119582A1 (en) Thermal interface apparatus, systems, and methods
TW200917434A (en) Die exhibiting an effective coefficient of thermal expansion equivalent to a substrate mounted thereon, and processes of making same
US6583505B2 (en) Electrically isolated power device package
JP2006202884A (en) Semiconductor device and its manufacturing method
JP2003068949A (en) Heat sink, power semiconductor module, and ic package
EP3664133A1 (en) Power module
TW200532815A (en) Apparatus and method for die attachment
US20020191377A1 (en) Material of heat-dissipating plate on which semiconductor is mounted, method for fabricating the same, and ceramic package produced by using the same
JPS5987893A (en) Circuit board, method of producing same and semiconductor device using same
JPH0574992A (en) Heat sink made of aluminum alloy and manufacture thereof
EP1553627A1 (en) Material for a heat dissipation substrate for mounting a semiconductor and a ceramic package using the same
JPH09298259A (en) Heat sink and manufacture thereof
US7645641B2 (en) Cooling device with a preformed compliant interface
JP2004336046A (en) Application specific heat sink element
JP2004096034A (en) Method of manufacturing module structure, circuit board and method of fixing the same
JP2000150742A (en) Heat conductive sheet and manufacture thereof and semiconductor device
JP2004281676A (en) Heat radiator and its producing method
JP2001135753A (en) Semiconductor module substrate and manufacturing method for the same
JPS60241239A (en) Semiconductor device
JP2006041231A (en) Ceramic circuit board and electric apparatus
JP3452503B2 (en) Molding method of base for semiconductor package
JP2003188240A (en) Wafer-retaining device
CN115692216B (en) Electronic packaging structure formed by compounding different materials and preparation method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990525