JP2004281676A - Heat radiator and its producing method - Google Patents

Heat radiator and its producing method Download PDF

Info

Publication number
JP2004281676A
JP2004281676A JP2003070364A JP2003070364A JP2004281676A JP 2004281676 A JP2004281676 A JP 2004281676A JP 2003070364 A JP2003070364 A JP 2003070364A JP 2003070364 A JP2003070364 A JP 2003070364A JP 2004281676 A JP2004281676 A JP 2004281676A
Authority
JP
Japan
Prior art keywords
plate
clad
heat sink
layer
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003070364A
Other languages
Japanese (ja)
Inventor
Kyosuke Ohashi
恭介 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003070364A priority Critical patent/JP2004281676A/en
Publication of JP2004281676A publication Critical patent/JP2004281676A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for producing a heat radiator in which machining can be carried out by a constant operation in a correction process performing plastic deformation machining while confining variation in the shape of the heat radiator within a specified range in the production stage, and a deformation capable of stabilizing the shape after deformation can be secured surely. <P>SOLUTION: As a heat radiator 10, a clad plate where the opposite sides of a substrate layer 22 is clad with plate layers is employed and the thickness of the plate layer on the bonding surface side of the insulating substrate is set smaller than that on the other side. The process for producing the heat radiator 10 comprises a rolling step (S10) for forming a clad plate 20 by hot pressing metal plates of an identical material having a different thickness laminated on the upper and lower surfaces of a core metal plate, a step (S11) for rolling and cutting the clad plate 20 after it is cooled down to room temperature and then shaping it as desired, and a correction step (S12) performing plastic deformation machining at room temperature such that it is curved to project to the bonding surface side of the insulating substrate and to the other side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置用の放熱板及びその製造方法に関する。
【0002】
【従来の技術】
従来から、動作時に発熱する電子部品が実装される絶縁基板を搭載したパワーモジュール等の半導体装置では、当該電子部品を使用温度内に維持するための放熱対策が講じられている。例えば、半導体素子を実装した絶縁基板の裏面側に熱伝導率の高い大型金属を放熱板として接着し、絶縁基板上で発生した熱を拡散し放熱する構造が採用されている。
このような構造において、半導体素子が実装された複数の絶縁基板は、放熱板の一側面の適宜位置にはんだ付け等で固定され、この放熱板の一側面は筐体にて覆われ、さらに、該放熱板の他側面は冷却体に接して固定される。
従って、半導体素子の放熱板への確実な接着や、放熱板の冷却体への有効な接触面積の確保のために、完成状態において放熱板は平面状であることが望ましい。
しかし、半導体素子を実装した絶縁基板を放熱板の一側面にはんだ接合する場合、放熱板ははんだが溶融する温度まで加熱されることとなり、加熱温度に応じて熱膨張する。はんだ接合後に放熱板を冷却すると、熱膨張した放熱板の絶縁基板接合側面ははんだが凝固した後は収縮が制限されるが、反対側面は自由に収縮可能である。そして、はんだの凝固温度は常温より遙かに高いため、常温に戻った放熱板の絶縁基板接合側面とその反対側面との収縮量が大きく異なることとなり、図8に示す如く、放熱板10’は絶縁基板11の接着された側に凸となるように湾曲してしまう。
このために、放熱板の冷却体への接触面積を有効に確保することが困難となり、冷却効率を低下させてしまうという不具合が生じる。
【0003】
一方、放熱板の特性として、高い熱伝導率(放熱性)とともに、低い線膨張係数を備えることが要求される。
そのうち、線膨張係数は、半導体素子を実装した絶縁基板との接合の信頼性を向上させるために、放熱板の線膨張係数よりも小さな絶縁基板の線膨張係数に、できるだけ近づけることが望ましい。そこで、熱伝導率性に優れた銅(Cu;線膨脹係数16.5×10−6m/K)に、線膨張係数を抑える目的で線膨張係数の低いモリブデン(Mo;線膨張係数5.1×10−6m/K)を複合した、銅−モリブデン複合材(Cu−Mo複合材)を利用した材料が、放熱板材料として提案されている。例えば、特許文献1に記載の技術である。
【0004】
特許文献1に記載の技術では、モリブデン圧粉体の粉末間の空隙に溶融した銅を含有浸透したモリブデンと銅との複合体を圧延した、Cu−Mo複合材及びその製造方法が提案されている。また、この技術では、Cu−Mo複合材の両面にさらに銅板を圧着したCu/Cu−Mo複合材/Cuクラッド板から成る、銅クラッド型半導体搭載用放熱基板材料が提案されており、高価な金属材料の一つであるMoの性能と採用コストとのバランスを考慮して、Moの含有量を抑制しつつ、線膨張係数を低い数値に維持するようにしている。
【0005】
ところで、特許文献2に記載の技術では、本発明者により、半導体素子を実装する絶縁基板として、放熱板との接合面側に生じる熱応力が、他面側に生じる熱応力よりも大きくなる材料を採用した三層のクラッド板を採用し、放熱板とのはんだ付けによる接着の際に、絶縁基板の放熱板との接合面側が凸となるように反ることを利用して、絶縁基板の放熱板との接合層に存在する気泡の除去を図る構造が提案されている。
【0006】
【特許文献1】
特開2001−358266号公報
【特許文献2】
特開平10−270612号公報
【0007】
【発明が解決しようとする課題】
前述の、Cu/Mo/Cuクラッド板又はCu/Cu−Mo複合材/Cuクラッド板から成る、銅クラッド型の放熱板を製造しようとする際に、両面にクラッドされたCu層の厚みが均一となるように製造しても、完全に均一にすることは難しく、個々の製品につきばらつきが生じ易い。Cu層の厚みの差により、製造段階の放熱板がいずれか一面側に湾曲し、その反り量(平面度)にばらつきが生じることとなる。そこで、いずれか一面側に湾曲した状態の製造段階の放熱板を、塑性変形させることにより、略平板状となるように修正が加えられる。
しかし、塑性変形加工時の変形量が少ない場合には、熱履歴により応力解放等が生じ、形状が元の状態に戻ってしまうことがある。これに加え、製造段階の放熱板がいずれの一面側に湾曲しているかは、ばらつきがある。これらに起因して、安定した湾曲した状態の放熱板の塑性変形加工による修正工程を構築することが困難となっている。
【0008】
また、銅クラッド型の放熱板の両面にクラッドされたCu層に発生する熱応力に起因する放熱板の形状変化量には限度があるため、放熱板の低温時における反り量が大きいと、熱応力に起因する放熱板の形状変化量によって、高温時に冷却部との密着性を確保することができる程度まで変形させることが困難となり、冷却部との密着性を確保できなくなって冷却効率の低下を招くのである。
【0009】
これらの理由により、絶縁基板接合状態或いは単体での放熱板の反り量(形状)をある一定範囲内とすることが必要となる。
そこで、本発明では、銅クラッド型の放熱板の両面にクラッドされたCu層に起因して発生する熱応力を利用することにより、製造段階での放熱板の形状のばらつきを抑制してある一定範囲内とし、湾曲した状態の放熱板に対して確実で安定した修正工程を施すことの可能な放熱板の製造方法を提案する。
【0010】
【課題を解決するための手段】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
【0011】
即ち、請求項1においては、素子を実装した絶縁基板が一側面に接合され、他側面が冷却体に接触固定される放熱板であって、放熱板を、芯材となる基板層の両面が金属層でクラッドされた少なくとも三層から成るクラッド板で構成し、絶縁基板接合面側にクラッドされた金属層と基板層との間で発生する熱応力より、他面側にクラッドされた金属層と基板層との間で発生する熱応力が大きくなるようにしたものである。
【0012】
請求項2においては、前記基板層の一側面にクラッドされた金属層と、他側面にクラッドされた金属層との、厚みを異ならせたものである。
【0013】
請求項3においては、前記基板層の一側面にクラッドされた金属層と、他側面にクラッドされた金属層との、線膨張係数を異ならせたものである。
【0014】
請求項4においては、素子を実装した絶縁基板が一側面に接合され、他側面が冷却体に接触固定される放熱板の製造方法であって、芯材となる金属板の上下面に、同一材料から成り互いに厚みの異なる金属板をそれぞれ積層して、熱間圧着を行う圧延工程と、常温まで冷却したのち、所望の形状に成形する成形工程と、常温において塑性変形加工で反り量を修正する修正工程とで構成されるものである。
【0015】
請求項5においては、素子を実装した絶縁基板が一側面に接合され、他側面が冷却体に接触固定される放熱板の製造方法であって、芯材となる金属板の上下面に、互いに膨張係数の異なる材料から成る金属板をそれぞれ積層して、熱間圧着を行う圧延工程と、常温まで冷却したのち、所望の形状に成形する成形工程と、常温において塑性変形加工で反り量を修正する修正工程とで構成されるものである。
【0016】
【発明の実施の形態】
次に、発明の実施の形態を説明する。
図1は本発明に係る放熱板製造工程を示す流れ図、図2は重ね合わせた放熱板構成材料の状態を示す側断面図、図3は圧延してクラッド板を形成する様子を示す側面図、図4は冷却後のクラッド板を示す側面図、図5は塑性変形加工後の放熱板を示す側面図である。
図6は(a)放熱板に絶縁基板を接合する様子を示す側面図、(b)常温における絶縁基板を接合した放熱板を示す側断面図、(c)高温における絶縁基板を接合した放熱板を示す側面図である。
図7は(a)常温における冷却体に固定した放熱板を示す側面図、(b)素子発熱時における冷却体に固定した放熱板を示す側面図である。
図8は(a)放熱板に半導体素子を実装した絶縁基板をはんだ接合する様子を示す側面図、(b)半導体素子を実装した絶縁基板をはんだ層を介して接合した放熱板を示す側面図である。
【0017】
まず、本発明に係る放熱板10について説明する。
図5に示す如く、放熱板10は、少なくとも三層から成るクラッド板であって、比較的線膨張係数が小さい材料から成り芯材となる基板層22の両面が、それぞれ比較的熱伝導率の高い材料から成る被板層21・23でクラッドされたものである。この放熱板10の構造により、基板層22と被板層21との間で発生する熱応力と、基板層22と被板層23との間で発生する熱応力とが、互いに異なることを特徴としている。
【0018】
放熱板10の一側面(以降「上面」と示す)には、半導体素子18が実装された絶縁基板11がはんだ接合され、該放熱板10の他側面(以降「下面」と示す)は、放熱板10が冷却体16にボルト等の締結部材により固定されたときに、グリス層を介して冷却体16に接する。
そして、同様の状態で昇温・加熱又は冷却したときに、放熱板10の上面側にクラッドされた被板層21(以降「上被板層21」と示す)と基板層22との間で発生する熱応力より、放熱板10の下面側にクラッドされた被板層23(以降「下被板層23」と示す)と基板層22との間で発生する熱応力が、相対的に大きくなるように設定して、膨張時には放熱板10に下面側に凸に曲げようとする力を作用させ、収縮時には放熱板10に上面側に凸に曲げようとする力を作用させるようにしている。
【0019】
なお、本実施例では、基板層22と上被板層21との間で発生する熱応力と、基板層22と下被板層23との間で発生する熱応力とを互いに違えるようにするために、被板層21・23としていずれも同じ材料が採用され、下被板層23の層厚が大きくなるように形成されている。
これにより、上被板層21と基板層22との間で発生する熱応力に対して、下被板層23と基板層22との間で発生する熱応力が大きくなり、膨脹時の放熱板10に下面側に凸となるような曲げ荷重を、また、収縮時の放熱板10に上面側に凸となるような曲げ荷重を、作用させるようにしている。
この場合、被板層21・23の層厚は、発生する熱応力の差により必ず放熱板10(クラッド板20)が一側に湾曲するように、決定する必要がある。
【0020】
但し、放熱板10の形態は本実施例に限定されるものではなく、放熱板10に熱応力を発生させるために、上被板層21と下被板層23とで線膨張係数の異なる材料を採用し、上被板層21に対して下被板層23の方が線膨張係数が大きいものを選定することができる。このように、材質ごとの線膨張係数の違いによって上被板層21と基板層22の間で発生する熱応力と、下被板層23と基板層22の間で発生する熱応力とを違えることができる。
この場合、被板層21・23の材料は、発生する熱応力の差により必ず放熱板10(クラッド板20)が一側に湾曲するように、選定する必要がある。
【0021】
次に、前述の放熱板10の製造方法について、図1の流れ図を用いて説明する。
製造工程は、大概して、圧延工程(S10)と、成形工程(S11)と、修正工程(S12)とで構成される。
【0022】
まず、圧延工程(S10)より説明する。
図2に示す如く、放熱板10の芯材となり、比較的低い熱膨張係数の材料から成る基板層22を構成するための金属板22’と、該基板層22の上面側にクラッドされる上被板層21を構成するための金属板21’と、該基板層22の下面側にクラッドされる下被板層23を構成するための金属板23’とを、積層し、リベット24等を貫設することにより固定する(S10a)。
このようにして固定された状態の三枚の金属板21’・22’・23’を、圧着温度まで昇温された水素雰囲気の電気炉で保持して、各金属板21’・22’・23’が圧着温度となるまで加熱する(S10b)。
そして、図3に示す如く、加熱された三板の金属板21’・22’・23’を圧延機に通して熱間圧着し(S10c)、金属板21’と金属板22’とを圧着接合するとともに、金属板23’と金属板22’とを圧着接合し、三層のクラッド板20を形成する。
【0023】
次に、成形工程(S11)について説明する。
上述の如く形成されたクラッド板20を、自然冷却する(S11a)。このとき、クラッド板20の上下面側にクラッドされた被板層21・23よりも、基板層22の線膨張係数は小さく、上被板層21と基板層22との間と、下被板層23と基板層22との間に、それぞれ熱応力が発生する。しかし、被板層21・23の層厚がそれぞれ異なるため、基板層22の上面と下面とで作用する熱応力に差が生じており、これにより、放熱板10に上面側に凸に曲げようとする力が作用する。従って、常温まで冷却されたクラッド板20は、図4に示す如く、上被板層21側に凸となるように湾曲し、円筒曲面を形成している。
【0024】
このときのクラッド板20の反り量をDとし、反り量Dの値はクラッド板20が上面側(絶縁基板11接合面側)に凸であるときを正とし、クラッド板20が下面側(冷却体16に面する側)に凸であるときを負とする。
本実施例のクラッド板20は、上被板層21と下被板層23の層厚が異なるため、必ず、一側に湾曲し、しかも、下被板層23の方が層厚が大きいため、クラッド板20は必ず、上面側に凸に反った形状となる。すなわち、クラッド板20の反り方向(湾曲方向)のばらつきをなくすことができる。
【0025】
さらに、膨脹時又は収縮時に、クラッド板20と上被板層21の間で発生する熱応力と、クラッド板20と下被板層23の間で発生する熱応力との差は、被板層21・23の層厚によりある程度制御することが可能である。従って、膨脹時又は収縮時に、クラッド板20に作用する曲げ荷重をある程度制御することが可能となり、クラッド板20の反り量Dをある一定範囲内に制御することが可能となる。
反り量Dは、後述する常温での塑性変形加工時に、熱履歴により元の状態に戻ることがなく、且つ、変形後の形態を安定して維持させることのできる変形量(「保証変形量」とする)を加えることができる範囲内となるように制御する。
すなわち、反り量Dを、正の値であって、ある一定範囲内(αmax≧D≧αmin>0)となるように制御することが好ましい。なお、αmax及びαminの値は、基板層22及び被板層21・23の材料や厚み等により、異なるため、採用する材料に応じて設定する。
【0026】
続いて、クラッド板20の表面の酸化物等を除去するために表面処理を行ったあと、繰り返し圧延し(S11b)、所定の厚みのクラッド板20とする。そして、クラッド板20を切断して(S11c)、所定の放熱板10の大きさとなるように成形する。
【0027】
次に、修正工程(S12)について説明する。
修正工程(S12)では、成形工程(S11)にて放熱板10の大きさに成形されたクラッド板20に常温で塑性変形加工を施し、クラッド板20の反り量(平面度)を修正し、放熱板10とする(S12a)。
塑性変形加工では、上面側に凸であるクラッド板20を、略平面状若しくは下面側に凸となるように変形する。従って、製造された放熱板10は、図5に示す如く、略平面もしくは下面側に凸に反った状態となる。
このときの放熱板の反り量をDとし、上面側(絶縁基板11接合側)に凸である時を正、下面側に凸である時を負とする。すなわち、反り量Dのクラッド板20は、塑性変形加工を経て反り量Dの放熱板10とされ、このときの反り量Dはゼロ若しくは負の値となるように形成されている。
【0028】
この塑性変形加工において、クラッド板20の反り方向が一定であるため、加える変形方向は統一されている。すなわち、クラッド板20の反り量Dは必ず正の値となるようにされており、このクラッド板20を上面側から押圧する荷重を加えることにより、反り量Dがゼロ若しくは負の値である放熱板10とするのである。
また、放熱板10の反り量Dは、素子の発熱時に熱応力に起因して放熱板が形状変化したときに、冷却体との密着性を確保することができる程度の形状となるように、値が定められており、従って、この塑性変形加工における、反り量Dから反り量Dとする形状変化量は略一定となる。
さらに、前述の如く、クラッド板20の反り量Dは、保証変形量を与えることのできる範囲内の値とされているため、塑性変形加工により変形された後のクラッド板20(すなわち放熱板10)の形状は安定したものとなる。
【0029】
このように、塑性変形加工を、製品を通して略一定の加工とすることが可能であり、しかも、変形後の形状を安定させることのできる変形量を確実に確保することが可能であるので、確実な修正工程(S12)を構築することができ、この修正工程(S12)を経ることにより、常温において安定して略平面状若しくは下面側に凸に反った状態の放熱板10を形成することができる。
【0030】
上述の製造工程により製造された放熱板10の上面には、半導体素子18が実装された絶縁基板11が接合される。
図6(a)に示す如く、半導体素子18を実装した絶縁基板11をはんだ箔12’を介して放熱板10の上面に載置する。そして、公知のはんだ付け接合工程にて、放熱板10と絶縁基板11とがはんだ接合される。
【0031】
上述の放熱板10と絶縁基板11との接合工程において、絶縁基板11と放熱板10とが加熱されている間は、放熱板10は膨張する。
このとき、放熱基板11接合前はその反り量Dがゼロ若しくは負の値であった放熱板10は、下方へ凸となる方向に湾曲させようとする力が作用することによって、図6(b)に示す如く、下面側に凸に反った状態であり、反り量Dは負の値となる。
【0032】
そして、放熱板10と絶縁基板11との接合工程が終了すれば、放熱板10は常温まで冷却される。
この放熱板10の冷却過程において、熱膨張した放熱板10の上面のはんだ接合部は、はんだ12が凝固した後は収縮が制限されるが、下面は自由に収縮可能である。そして、はんだ12の凝固温度は常温より遙かに高いため、常温に戻った放熱板10の上面と下面との収縮量が大きく異なることとなり、放熱板10は絶縁基板11の接着された側に凸となるように湾曲する。従って、図6(c)に示す如く、基板11が接合された常温の放熱板10は、上面側に凸に反った状態であり、反り量Dは正の値となる。
【0033】
なお、放熱板10として、絶縁基板11接合前に常温で下面側に凸であるもの(反り量Dが負の値であるもの)を採用とすると、平面状であるもの(反り量Dがゼロであるもの)と比較して、絶縁基板11が接合された常温の放熱板10が上面側に凸となる反り量を抑制させることができる。
【0034】
上述の如く基板11が接合された常温の放熱板10を、図7(a)に示す如く、冷却体16に対してボルト等の締結部材で固定する。放熱板10と冷却体16との間には放熱グリス15が介装される。このときの放熱板10は、上面側に凸に反った状態で反り量Dは正の値であり、放熱板10の下面は冷却体16と面している。
そして、半導体素子18が動作して発熱し、高温となっているときには、熱応力により放熱板10を下面側に凸となるように湾曲させようとする力が発生し、図7(b)に示す如く、放熱板10はやや下方に凸に反った状態となり、反り量Dは負の値となる。
【0035】
このように、半導体素子18が動作して発熱したときには、放熱板10は冷却体16側へ凸に反った状態となり、冷却体16と放熱板10との間隙が狭くなっている。従って、この部分の放熱グリス15の層は薄く、熱抵抗が小さくなっている。また、放熱板10を冷却体16に押しつけるようにするだけで、放熱板10と冷却体16の間の放熱グリス15の層を薄くすることができ、さらに、放熱グリス15内の空気を容易に押し出すことができるので、放熱グリス15内の気泡の残存が防止され、放熱グリス15や気泡による熱抵抗の増加を防止することができる。以上より、冷却体16による半導体素子18の冷却性能の向上が期待される。
【0036】
次に、本発明の放熱板の製造方法を適応するために好適な材料の例を示す。
【0037】
放熱板10を構成するクラッド板20として、モリブデン(Mo)又は銅−モリブデン複合材(Cu−Mo複合材)の両面を銅(Cu)でクラッドした、Cu/Mo/Cuクラッド板又はCu/Cu−Mo複合体/Cuクラッド板を採用する。この場合、クラッド板20の基板層22となる金属板22’はMo又はCu−Mo複合材であり、被板層21・23となる金属板21’・23’はCuである。
なお、クラッド板20をCu/Cu−Mo複合体/Cuクラッド板とするときには、前記圧延工程(S10)における圧着温度は約800℃であり、また、クラッド板20をCu/Mo/Cuクラッド板とするときには、前記圧延工程(S10)における圧着温度は850℃以上とする
【0038】
Cuは熱伝導率が高く、放熱板の材料として適している。また、Mo又はCu−Mo複合材は、Moの存在によってCuよりも小さな線膨張係数を有し、これに加え、Cu−Mo複合材ではCuとの複合材とすることでMo単体よりも高い熱伝導率を有している。
これらの理由により、クラッド板20としてCu/Mo/Cuクラッド板又はCu/Cu−Mo複合体/Cuクラッド板を採用することにより、良好な放熱板10を形成することができる。
【0039】
なお、Cu−Mo複合材は、平均粒径2〜5×10−6mのモリブデン粉末を100〜200MPaの圧力で加圧整形してモリブデン圧粉体とし、このモリブデン圧粉体の粉末間に、溶融した銅を非酸化性雰囲気において、1200℃〜1300℃で含浸することによって得られる。さらに、Cu−Mo複合体を、一次圧延して板状とし、放熱板10の製造に供する芯金属板22’とする。Cu−Mo複合材の組成は、Moの割合が70〜60重量%であり、残りがCuとされている。
【0040】
【発明の効果】
本発明は、以上のように構成したので、以下に示すような効果を奏する。
【0041】
即ち、請求項1に示す如く、素子を実装した絶縁基板が一側面に接合され、他側面が冷却体に接触固定される放熱板であって、放熱板を、芯材となる基板層の両面が金属層でクラッドされた少なくとも三層から成るクラッド板で構成し、絶縁基板接合面側にクラッドされた金属層と基板層との間で発生する熱応力より、他面側にクラッドされた金属層と基板層との間で発生する熱応力が大きくなるようにしたので、放熱板の膨脹時又は収縮時に放熱板に作用する曲げ荷重の方向を制御することが可能となる。
【0042】
請求項2に示す如く、前記基板層の一側面にクラッドされた金属層と、他側面にクラッドされた金属層との、厚みを異ならせたので、放熱板の膨脹時又は収縮時に放熱板に作用する曲げ荷重の方向を制御することが可能となる。
【0043】
請求項3に示す如く、前記基板層の一側面にクラッドされた金属層と、他側面にクラッドされた金属層との、線膨張係数を異ならせたので、放熱板の膨脹時又は収縮時に放熱板に作用する曲げ荷重の方向を制御することが可能となる。
【0044】
請求項4に示す如く、素子を実装した絶縁基板が一側面に接合され、他側面が冷却体に接触固定される放熱板の製造方法であって、芯材となる金属板の上下面に、同一材料から成り互いに厚みの異なる金属板をそれぞれ積層して、熱間圧着を行う圧延工程と、常温まで冷却したのち、所望の形状に成形する成形工程と、常温において塑性変形加工で反り量を修正する修正工程とで構成されるので、成形工程前の放熱板は必ず一方向に反った状態となり、確実で安定した塑性変形加工を施すことができる。
【0045】
請求項5に示す如く、素子を実装した絶縁基板が一側面に接合され、他側面が冷却体に接触固定される放熱板の製造方法であって、芯材となる金属板の上下面に、互いに膨張係数の異なる材料から成る金属板をそれぞれ積層して、熱間圧着を行う圧延工程と、常温まで冷却したのち、所望の形状に成形する成形工程と、常温において塑性変形加工で反り量を修正する修正工程とで構成されるので、成形工程前の放熱板は必ず一方向に反った状態となり、確実で安定した塑性変形加工を施すことができる。
【図面の簡単な説明】
【図1】本発明に係る放熱板製造工程を示す流れ図。
【図2】重ね合わせた放熱板構成材料の状態を示す側断面図。
【図3】圧延してクラッド板を形成する様子を示す側面図。
【図4】冷却後のクラッド板を示す側面図。
【図5】塑性変形加工後の放熱板を示す側面図。
【図6】(a)放熱板に絶縁基板を接合する様子を示す側面図、(b)常温における絶縁基板を接合した放熱板を示す側断面図、(c)高温における絶縁基板を接合した放熱板を示す側面図。
【図7】(a)常温における冷却体に固定した放熱板を示す側面図、(b)素子発熱時における冷却体に固定した放熱板を示す側面図。
【図8】(a)放熱板に半導体素子を実装した絶縁基板をはんだ接合する様子を示す側面図、(b)半導体素子を実装した絶縁基板をはんだ層を介して接合した放熱板を示す側面図。
【符号の説明】
S10 圧延工程
S11 成形工程
S12 修正工程
10 放熱板
11 絶縁基板
20 クラッド板
21 被板層
21’金属板
22 基板層
22’金属板
23 被板層
23’金属板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat sink for a semiconductor device and a method for manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a semiconductor device such as a power module mounted with an insulating substrate on which an electronic component that generates heat during operation is mounted, measures have been taken to dissipate heat so as to maintain the electronic component within a use temperature. For example, a structure is employed in which a large metal having a high thermal conductivity is bonded as a heat radiating plate to the back side of an insulating substrate on which a semiconductor element is mounted, and the heat generated on the insulating substrate is diffused and radiated.
In such a structure, the plurality of insulating substrates on which the semiconductor elements are mounted are fixed at appropriate positions on one side surface of the heat sink by soldering or the like, and one side surface of the heat sink is covered with a housing. The other side of the heat sink is fixed in contact with the cooling body.
Therefore, in order to securely adhere the semiconductor element to the heat sink and secure an effective contact area of the heat sink with the cooling body, it is desirable that the heat sink be flat in a completed state.
However, when the insulating substrate on which the semiconductor element is mounted is soldered to one side surface of the heat radiating plate, the heat radiating plate is heated to a temperature at which the solder melts, and thermally expands according to the heating temperature. When the heat radiating plate is cooled after the solder bonding, the contraction of the thermally expanded heat radiating plate bonding side of the insulating substrate after the solidification of the solder is limited, but the opposite side can be freely contracted. Since the solidification temperature of the solder is much higher than the room temperature, the amount of shrinkage between the side surface of the heat sink returned to room temperature and the opposite side surface of the heat sink is greatly different from that of the heat sink, and as shown in FIG. Is curved so as to be convex on the side where the insulating substrate 11 is bonded.
For this reason, it is difficult to effectively secure the contact area of the heat sink with the cooling body, and there is a problem that the cooling efficiency is reduced.
[0003]
On the other hand, as the characteristics of the heat sink, it is required to have a low coefficient of linear expansion together with high thermal conductivity (heat dissipation).
Among them, the linear expansion coefficient is desirably as close as possible to the linear expansion coefficient of the insulating substrate which is smaller than the linear expansion coefficient of the heat sink in order to improve the reliability of bonding with the insulating substrate on which the semiconductor element is mounted. Therefore, copper (Cu; linear expansion coefficient: 16.5 × 10 −6 m / K) having excellent thermal conductivity is used. For the purpose of suppressing the linear expansion coefficient, molybdenum (Mo; linear expansion coefficient: 5. A material using a copper-molybdenum composite (Cu-Mo composite), which is a composite of 1 × 10 −6 m / K), has been proposed as a heat sink material. For example, this is a technique described in Patent Document 1.
[0004]
The technique described in Patent Document 1 proposes a Cu-Mo composite material in which a composite of molybdenum and copper impregnated with molten copper in a gap between powders of a molybdenum green compact is rolled, and a method for producing the same. I have. Further, in this technique, a heat dissipating substrate material for mounting a copper clad type semiconductor, comprising a Cu / Cu-Mo composite material / Cu clad plate in which a copper plate is further pressed on both surfaces of a Cu-Mo composite material, has been proposed, which is expensive. In consideration of the balance between the performance of Mo, which is one of the metal materials, and the adoption cost, the linear expansion coefficient is maintained at a low value while suppressing the content of Mo.
[0005]
By the way, according to the technology described in Patent Document 2, the present inventor uses, as an insulating substrate on which a semiconductor element is mounted, a material in which a thermal stress generated on a bonding surface side with a heat sink is larger than a thermal stress generated on the other surface side. Adopting a three-layer clad plate that adopts the method of bonding the heat sink to the heat sink, using the fact that the bonding surface side of the insulating substrate with the heat sink becomes convex, There has been proposed a structure for removing bubbles existing in a bonding layer with a heat sink.
[0006]
[Patent Document 1]
JP 2001-358266 A [Patent Document 2]
JP-A-10-270612
[Problems to be solved by the invention]
When manufacturing a copper-clad type heat sink made of the above-mentioned Cu / Mo / Cu clad plate or Cu / Cu-Mo composite material / Cu clad plate, the thickness of the Cu layer clad on both surfaces is uniform. However, it is difficult to achieve complete uniformity, and individual products tend to vary. Due to the difference in the thickness of the Cu layer, the radiator plate in the manufacturing stage is curved to one side, and the amount of warpage (flatness) varies. Therefore, the heat sink in the manufacturing stage, which is curved to one side, is plastically deformed so that the heat sink is modified so as to be substantially flat.
However, when the amount of deformation during plastic deformation processing is small, stress release or the like occurs due to heat history, and the shape may return to the original state. In addition to this, there is variation in which one side of the heat sink in the manufacturing stage is curved. For these reasons, it is difficult to construct a repair process by plastic deformation of the heat sink in a stable curved state.
[0008]
Further, since there is a limit to the amount of change in the shape of the heat sink caused by thermal stress generated in the Cu layer clad on both sides of the copper clad heat sink, if the amount of warpage of the heat sink at a low temperature is large, heat Due to the amount of shape change of the heat sink caused by the stress, it is difficult to deform to the extent that the adhesion to the cooling part can be ensured at high temperature, and the adhesion to the cooling part cannot be ensured, resulting in a decrease in cooling efficiency. Invite.
[0009]
For these reasons, it is necessary to keep the warpage (shape) of the heatsink in the bonded state of the insulating substrate or alone in a certain range.
Therefore, in the present invention, by utilizing the thermal stress generated due to the Cu layer clad on both surfaces of the copper-clad type heat sink, variation in the shape of the heat sink at the manufacturing stage is suppressed. A method for manufacturing a radiator plate capable of performing a reliable and stable correction process on a radiator plate in a curved state within a range is proposed.
[0010]
[Means for Solving the Problems]
The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.
[0011]
That is, in claim 1, an insulating substrate on which an element is mounted is joined to one side surface, and the other side surface is a radiator plate fixed to a cooling body. A metal layer clad on the other side due to thermal stress generated between the metal layer clad on the insulating substrate bonding surface side and the substrate layer, composed of a clad plate consisting of at least three layers clad with a metal layer The thermal stress generated between the substrate and the substrate layer is increased.
[0012]
In claim 2, the thickness of the metal layer clad on one side of the substrate layer is different from the thickness of the metal layer clad on the other side.
[0013]
According to a third aspect, the metal layer clad on one side of the substrate layer and the metal layer clad on the other side have different linear expansion coefficients.
[0014]
Claim 4 is a method for manufacturing a heat sink in which an insulating substrate on which an element is mounted is bonded to one side surface and the other side surface is fixedly contacted with a cooling body. Rolling process of hot-press bonding by laminating metal plates made of different materials and having different thicknesses, forming process of cooling to room temperature and forming into a desired shape, and correcting warpage by plastic deformation at room temperature And a correction step.
[0015]
Claim 5 is a method for manufacturing a heat sink in which an insulating substrate on which elements are mounted is joined to one side surface and the other side surface is fixedly contacted with a cooling body. Rolling process of laminating metal plates made of materials with different coefficients of expansion and hot pressing, cooling process to room temperature, forming process to desired shape, and correcting deformation by plastic deformation at room temperature And a correction step.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the invention will be described.
FIG. 1 is a flowchart showing a heat sink manufacturing process according to the present invention, FIG. 2 is a side sectional view showing a state of superposed heat sink constituent materials, FIG. 3 is a side view showing a state of rolling to form a clad plate, FIG. 4 is a side view showing the clad plate after cooling, and FIG. 5 is a side view showing the heat sink after plastic deformation processing.
6A is a side view showing a state in which an insulating substrate is joined to a heat sink, FIG. 6B is a side sectional view showing a heat sink in which the insulating substrate is joined at room temperature, and FIG. FIG.
FIG. 7A is a side view showing a radiator plate fixed to a cooling body at room temperature, and FIG. 7B is a side view showing a radiator plate fixed to the cooling unit when the element generates heat.
8A is a side view showing a state in which an insulating substrate on which a semiconductor element is mounted is soldered to a heat sink, and FIG. 8B is a side view showing a heat sink in which the insulating substrate on which the semiconductor element is mounted is connected via a solder layer. It is.
[0017]
First, the radiator plate 10 according to the present invention will be described.
As shown in FIG. 5, the heat dissipation plate 10 is a clad plate having at least three layers, and both surfaces of a substrate layer 22 which is made of a material having a relatively small coefficient of linear expansion and serves as a core material have relatively high thermal conductivity. This is clad with plate layers 21 and 23 made of a high material. Due to the structure of the heat radiating plate 10, the thermal stress generated between the substrate layer 22 and the plate layer 21 and the thermal stress generated between the substrate layer 22 and the plate layer 23 are different from each other. And
[0018]
An insulating substrate 11 on which the semiconductor element 18 is mounted is soldered to one side surface (hereinafter, referred to as “upper surface”) of the heat radiating plate 10, and the other side surface (hereinafter, referred to as “lower surface”) of the heat radiating plate 10 When the plate 10 is fixed to the cooling body 16 by a fastening member such as a bolt, the plate 10 contacts the cooling body 16 via the grease layer.
Then, when the temperature is raised / heated or cooled in the same state, the upper surface of the radiator plate 10 is clad between the plate layer 21 (hereinafter referred to as “upper plate layer 21”) and the substrate layer 22. Due to the generated thermal stress, the thermal stress generated between the substrate layer 23 (hereinafter, referred to as “lower substrate layer 23”) clad on the lower surface side of the heat sink 10 and the substrate layer 22 is relatively large. It is set so as to apply a force to the heat radiating plate 10 to bend to the lower surface side when expanded, and to apply a force to the heat radiating plate 10 to bend to the upper surface side when contracted. .
[0019]
In the present embodiment, the thermal stress generated between the substrate layer 22 and the upper plate layer 21 is different from the thermal stress generated between the substrate layer 22 and the lower plate layer 23. For this purpose, the same material is used for both the plate layers 21 and 23, and the lower plate layer 23 is formed so as to have a large thickness.
Thereby, the thermal stress generated between the lower coated layer 23 and the substrate layer 22 becomes larger than the thermal stress generated between the upper coated layer 21 and the substrate layer 22, and the radiating plate at the time of expansion is increased. A bending load is applied to the heat radiating plate 10 when it is contracted, and a bending load is applied to the heat radiating plate 10 when it contracts.
In this case, the thicknesses of the plate layers 21 and 23 need to be determined so that the heat radiating plate 10 (cladding plate 20) is always curved to one side due to a difference in generated thermal stress.
[0020]
However, the form of the heat radiating plate 10 is not limited to the present embodiment. In order to generate thermal stress in the heat radiating plate 10, materials having different linear expansion coefficients between the upper plate layer 21 and the lower plate layer 23 are used. Can be selected so that the lower plate layer 23 has a larger linear expansion coefficient than the upper plate layer 21. As described above, the thermal stress generated between the upper cover layer 21 and the substrate layer 22 differs from the thermal stress generated between the lower cover layer 23 and the substrate layer 22 due to the difference in the coefficient of linear expansion for each material. be able to.
In this case, it is necessary to select the material of the plate layers 21 and 23 so that the heat radiating plate 10 (cladding plate 20) is necessarily curved to one side due to a difference in generated thermal stress.
[0021]
Next, a method for manufacturing the above-described heat radiating plate 10 will be described with reference to the flowchart of FIG.
The manufacturing process generally includes a rolling process (S10), a forming process (S11), and a correcting process (S12).
[0022]
First, the rolling step (S10) will be described.
As shown in FIG. 2, a metal plate 22 ′ serving as a core material of the radiator plate 10 and constituting a substrate layer 22 made of a material having a relatively low coefficient of thermal expansion, and an upper clad on the upper surface side of the substrate layer 22. A metal plate 21 'for forming the plate layer 21 and a metal plate 23' for forming the lower plate layer 23 clad on the lower surface side of the substrate layer 22 are laminated, and rivets 24 and the like are stacked. It is fixed by penetrating (S10a).
The three metal plates 21 ′, 22 ′, and 23 ′ fixed in this manner are held in an electric furnace in a hydrogen atmosphere heated to a pressing temperature, and the respective metal plates 21 ′, 22 ′ and 23 ′ are fixed. Heat until 23 ′ reaches the pressure bonding temperature (S10b).
Then, as shown in FIG. 3, the heated three metal plates 21 ', 22', 23 'are passed through a rolling mill and hot-pressed (S10c), and the metal plate 21' and the metal plate 22 'are pressure-bonded. At the same time, the metal plate 23 'and the metal plate 22' are pressure-bonded to form the three-layer clad plate 20.
[0023]
Next, the molding step (S11) will be described.
The clad plate 20 formed as described above is naturally cooled (S11a). At this time, the coefficient of linear expansion of the substrate layer 22 is smaller than that of the plate layers 21 and 23 clad on the upper and lower surfaces of the clad plate 20, so that the distance between the upper plate layer 21 and the substrate layer 22 and the lower plate Thermal stress is generated between the layer 23 and the substrate layer 22. However, since the layer thicknesses of the plate layers 21 and 23 are different from each other, a difference occurs in the thermal stress acting on the upper surface and the lower surface of the substrate layer 22. As a result, the heat sink 10 may be bent to the upper surface side. Force acts. Accordingly, as shown in FIG. 4, the clad plate 20 cooled to room temperature is curved so as to project toward the upper cover layer 21 side, and forms a cylindrical curved surface.
[0024]
The amount of warpage of the clad plate 20 at this time is D 0, and the value of the amount of warp D 0 is positive when the clad plate 20 is convex on the upper surface side (joining surface side of the insulating substrate 11), and the value of the clad plate 20 is on the lower surface side. When it is convex (on the side facing the cooling body 16), it is regarded as negative.
In the clad plate 20 of the present embodiment, since the upper plate layer 21 and the lower plate layer 23 have different layer thicknesses, they always curve to one side, and the lower plate layer 23 has a larger layer thickness. The clad plate 20 always has a shape that is convexly warped to the upper surface side. That is, it is possible to eliminate the variation in the warping direction (curving direction) of the clad plate 20.
[0025]
Further, the difference between the thermal stress generated between the clad plate 20 and the upper plate layer 21 during expansion or contraction and the thermal stress generated between the clad plate 20 and the lower plate layer 23 is determined by It is possible to control to some extent by the layer thicknesses of 21 and 23. Thus, during inflation or during contraction, it is possible to some extent control the bending load acting on the cladding plate 20, it becomes possible to control within a certain range warpage D 0 of the clad plate 20.
Warpage D 0 is the time of plastic deformation at room temperature to be described later, without returning to the original state by heat history, and, the amount of deformation that can be stably maintained in the form of the deformed ( "guaranteed amount of deformation ) Is controlled so as to fall within the range in which the value can be added.
That is, warpage D 0, a positive value, it is preferably controlled to be within a certain range (α max ≧ D 0 ≧ α min> 0). Note that the values of α max and α min differ depending on the material, thickness, and the like of the substrate layer 22 and the plate layers 21 and 23, and thus are set according to the material used.
[0026]
Subsequently, after performing surface treatment to remove oxides and the like on the surface of the clad plate 20, rolling is repeated (S11b) to obtain the clad plate 20 having a predetermined thickness. Then, the clad plate 20 is cut (S11c) and formed into a predetermined size of the heat sink 10.
[0027]
Next, the correcting step (S12) will be described.
In the correction step (S12), the clad plate 20 formed into the size of the heat sink 10 in the forming step (S11) is subjected to plastic deformation at room temperature to correct the amount of warpage (flatness) of the clad plate 20, The heat sink 10 is used (S12a).
In the plastic deformation processing, the clad plate 20 which is convex on the upper surface side is deformed so as to be substantially flat or convex on the lower surface side. Therefore, as shown in FIG. 5, the manufactured radiator plate 10 is in a state in which the radiator plate 10 is warped in a substantially flat surface or a lower surface side.
At this time, the amount of warpage of the heat sink is D, and when it is convex on the upper surface side (joining side of the insulating substrate 11), it is positive, and when it is convex on the lower surface side, it is negative. That is, the cladding plate 20 of warpage D 0 is the heat sink 10 of warpage D via the plastic deformation, warpage D at this time is formed so as to be zero or negative value.
[0028]
In this plastic deformation processing, since the warping direction of the clad plate 20 is constant, the applied deformation directions are unified. That is, the warp amount D 0 of the clad plate 20 is always set to a positive value, and the warp amount D is zero or a negative value by applying a load pressing the clad plate 20 from the upper surface side. The heat sink 10 is used.
Further, the amount of warp D of the heat sink 10 is such that when the shape of the heat sink changes due to thermal stress at the time of heat generation of the element, the heat sink has such a shape that the adhesion to the cooling body can be secured. value and is defined, therefore, in the plastic deformation process, the shape variation of the warp amount D from warpage D 0 is substantially constant.
Further, as described above, warpage D 0 of the clad plate 20, because it is a value within a range capable of providing a guaranteed amount of deformation, clad plate 20 after being deformed by plastic deformation (i.e. radiator plate The shape of 10) becomes stable.
[0029]
In this way, the plastic deformation processing can be made substantially constant processing through the product, and furthermore, it is possible to reliably secure the amount of deformation that can stabilize the shape after the deformation. A simple repairing step (S12) can be constructed, and through this repairing step (S12), the heat sink 10 can be formed stably at room temperature and in a substantially flat shape or a state in which it is warped to the lower surface side. it can.
[0030]
The insulating substrate 11 on which the semiconductor element 18 is mounted is joined to the upper surface of the heat sink 10 manufactured by the above manufacturing process.
As shown in FIG. 6A, the insulating substrate 11 on which the semiconductor element 18 is mounted is placed on the upper surface of the heat sink 10 via the solder foil 12 '. Then, the heat sink 10 and the insulating substrate 11 are soldered in a known soldering process.
[0031]
In the bonding step between the heat radiating plate 10 and the insulating substrate 11, the heat radiating plate 10 expands while the insulating substrate 11 and the heat radiating plate 10 are being heated.
At this time, the heat radiating plate 10 whose warpage D was zero or a negative value before the heat radiating substrate 11 was joined is acted on by a force acting to bend in a downwardly convex direction. As shown in ()), it is in a state of being convexly warped to the lower surface side, and the amount of warp D has a negative value.
[0032]
Then, when the step of joining the heat sink 10 and the insulating substrate 11 is completed, the heat sink 10 is cooled to room temperature.
In the cooling process of the heat radiating plate 10, the solder joint on the upper surface of the heat radiating plate 10 that has thermally expanded is restricted from shrinking after the solidification of the solder 12, but the lower surface can be freely contracted. Since the solidification temperature of the solder 12 is much higher than the normal temperature, the amount of shrinkage between the upper surface and the lower surface of the heat radiating plate 10 that has returned to the normal temperature is greatly different. It curves to be convex. Therefore, as shown in FIG. 6C, the normal-temperature radiator plate 10 to which the substrate 11 is joined is in a state of being convexly warped to the upper surface side, and the warp amount D is a positive value.
[0033]
If the heat radiating plate 10 has a convex shape on the lower surface side at room temperature before the bonding of the insulating substrate 11 (the amount of warpage D is a negative value), the heat radiating plate 10 has a planar shape (the amount of warping D is zero). ), It is possible to suppress the amount of warpage in which the normal-temperature radiator plate 10 to which the insulating substrate 11 is bonded is convex on the upper surface side.
[0034]
As shown in FIG. 7A, the radiator plate 10 at room temperature to which the substrate 11 is joined as described above is fixed to the cooling body 16 with a fastening member such as a bolt. A heat radiation grease 15 is interposed between the heat radiation plate 10 and the cooling body 16. At this time, the amount of warp D is a positive value in a state where the heat radiating plate 10 warps convexly to the upper surface side, and the lower surface of the heat radiating plate 10 faces the cooling body 16.
When the semiconductor element 18 operates to generate heat and is at a high temperature, a force is generated by the thermal stress so as to bend the heat radiation plate 10 so as to be convex toward the lower surface side. As shown in the figure, the heat radiating plate 10 is in a state of being slightly convexly warped downward, and the amount of warping D is a negative value.
[0035]
As described above, when the semiconductor element 18 operates and generates heat, the heat radiating plate 10 is warped to the cooling body 16 side, and the gap between the cooling body 16 and the heat radiating plate 10 is narrow. Therefore, the layer of the heat radiation grease 15 in this portion is thin, and the thermal resistance is small. Further, only by pressing the heat radiating plate 10 against the cooling body 16, the layer of the heat radiating grease 15 between the heat radiating plate 10 and the cooling body 16 can be thinned, and the air in the heat radiating grease 15 can be easily removed. Since it can be extruded, bubbles in the heat radiation grease 15 are prevented from remaining, and an increase in thermal resistance due to the heat radiation grease 15 and the bubbles can be prevented. As described above, improvement of the cooling performance of the semiconductor element 18 by the cooling body 16 is expected.
[0036]
Next, examples of materials suitable for applying the method for manufacturing a heat sink of the present invention will be described.
[0037]
As the clad plate 20 constituting the heat sink 10, a Cu / Mo / Cu clad plate or Cu / Cu in which both surfaces of molybdenum (Mo) or a copper-molybdenum composite (Cu-Mo composite) are clad with copper (Cu). -Mo composite / Cu clad plate is adopted. In this case, the metal plate 22 'serving as the substrate layer 22 of the clad plate 20 is Mo or a Cu-Mo composite material, and the metal plates 21' and 23 'serving as the plate layers 21 and 23 are Cu.
When the clad plate 20 is a Cu / Cu-Mo composite / Cu clad plate, the pressing temperature in the rolling step (S10) is about 800 ° C., and the clad plate 20 is a Cu / Mo / Cu clad plate. , The pressing temperature in the rolling step (S10) is 850 ° C. or higher.
Cu has a high thermal conductivity and is suitable as a material for a heat sink. In addition, the Mo or Cu-Mo composite material has a smaller linear expansion coefficient than Cu due to the presence of Mo, and in addition to this, the Cu-Mo composite material is higher than Mo alone by using a composite material with Cu. Has thermal conductivity.
For these reasons, by using a Cu / Mo / Cu clad plate or a Cu / Cu-Mo composite / Cu clad plate as the clad plate 20, a good heat sink 10 can be formed.
[0039]
The Cu-Mo composite material is formed by pressing and shaping molybdenum powder having an average particle size of 2 to 5 × 10 −6 m at a pressure of 100 to 200 MPa to form a molybdenum green compact, and between the powders of the molybdenum green compact. And obtained by impregnating molten copper at 1200 ° C. to 1300 ° C. in a non-oxidizing atmosphere. Further, the Cu-Mo composite is subjected to primary rolling to form a plate, which is used as a core metal plate 22 ′ for manufacturing the heat sink 10. In the composition of the Cu—Mo composite material, the proportion of Mo is 70 to 60% by weight, and the rest is Cu.
[0040]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
[0041]
That is, as set forth in claim 1, an insulating substrate on which the element is mounted is joined to one side surface, and the other side surface is a radiator plate fixed to a cooling body. Is composed of a clad plate consisting of at least three layers clad with a metal layer, and a metal clad on the other surface side due to thermal stress generated between the metal layer clad on the insulating substrate bonding surface side and the substrate layer. Since the thermal stress generated between the layer and the substrate layer is increased, it becomes possible to control the direction of the bending load acting on the heat sink when the heat sink expands or contracts.
[0042]
As shown in claim 2, the thickness of the metal layer clad on one side of the substrate layer and the thickness of the metal layer clad on the other side are made different, so that the heat radiating plate expands or contracts when the heat radiating plate expands or contracts. It is possible to control the direction of the bending load that acts.
[0043]
As described in claim 3, since the metal layer clad on one side of the substrate layer and the metal layer clad on the other side have different coefficients of linear expansion, heat is radiated when the heat sink expands or contracts. It is possible to control the direction of the bending load acting on the plate.
[0044]
As described in claim 4, a method of manufacturing a heat sink in which an insulating substrate on which elements are mounted is joined to one side surface and the other side surface is fixedly contacted with a cooling body. Rolling steps of laminating metal plates made of the same material and having mutually different thicknesses, a rolling step of performing hot pressing, a cooling step of cooling to room temperature, and forming into a desired shape, and a warping amount by plastic deformation processing at room temperature. Since the heat radiating plate before the forming step is always warped in one direction, the heat radiating plate before the forming step can be reliably and stably subjected to plastic deformation processing.
[0045]
As described in claim 5, a method of manufacturing a heat sink in which an insulating substrate on which elements are mounted is joined to one side surface and the other side surface is fixedly contacted with a cooling body. A metal sheet made of a material having a different expansion coefficient is laminated, and a rolling step of performing hot pressing, a cooling step of cooling to room temperature, and a forming step of forming into a desired shape, and a warping amount by plastic deformation processing at room temperature. Since the heat radiating plate before the forming step is always warped in one direction, the heat radiating plate before the forming step can be reliably and stably subjected to plastic deformation processing.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a heat sink manufacturing process according to the present invention.
FIG. 2 is a side cross-sectional view showing a state of a heat sink constituent material that is superimposed.
FIG. 3 is a side view showing a state in which a clad plate is formed by rolling.
FIG. 4 is a side view showing the clad plate after cooling.
FIG. 5 is a side view showing the heat sink after plastic deformation processing.
6A is a side view showing a state in which an insulating substrate is joined to a heat sink, FIG. 6B is a side sectional view showing a heat sink in which the insulating substrate is joined at room temperature, and FIG. The side view which shows a board.
7A is a side view showing a radiator plate fixed to a cooling body at a normal temperature, and FIG. 7B is a side view showing a radiator plate fixed to the cooling unit when the element generates heat.
8A is a side view showing a state in which an insulating substrate on which a semiconductor element is mounted is joined to a heat sink by soldering; FIG. 8B is a side view showing a heat sink in which the insulating substrate on which the semiconductor element is mounted is joined via a solder layer; FIG.
[Explanation of symbols]
S10 Rolling process S11 Forming process S12 Modification process 10 Heat sink 11 Insulating substrate 20 Clad plate 21 Covered layer 21 'Metal plate 22 Substrate layer 22' Metal plate 23 Covered layer 23 'Metal plate

Claims (5)

素子を実装した絶縁基板が一側面に接合され、他側面が冷却体に接触固定される放熱板であって、
放熱板を、芯材となる基板層の両面が金属層でクラッドされた少なくとも三層から成るクラッド板で構成し、絶縁基板接合面側にクラッドされた金属層と基板層との間で発生する熱応力より、他面側にクラッドされた金属層と基板層との間で発生する熱応力が大きくなるようにしたことを特徴とする放熱板。
An insulating board on which the element is mounted is joined to one side, and the other side is a heat sink that is fixedly contacted with a cooling body,
The heatsink is constituted by a clad plate composed of at least three layers in which both surfaces of a substrate layer serving as a core material are clad with a metal layer, and is generated between the metal layer clad on the insulating substrate bonding surface side and the substrate layer. A heat radiating plate wherein thermal stress generated between a metal layer clad on the other surface side and a substrate layer is larger than thermal stress.
前記基板層の一側面にクラッドされた金属層と、他側面にクラッドされた金属層との、厚みを異ならせた、請求項1に記載の放熱板。The heat sink according to claim 1, wherein a thickness of the metal layer clad on one side of the substrate layer is different from a thickness of the metal layer clad on the other side of the substrate layer. 前記基板層の一側面にクラッドされた金属層と、他側面にクラッドされた金属層との、線膨張係数を異ならせた、請求項1に記載の放熱板。2. The heat sink according to claim 1, wherein the metal layer clad on one side of the substrate layer and the metal layer clad on the other side have different coefficients of linear expansion. 素子を実装した絶縁基板が一側面に接合され、他側面が冷却体に接触固定される放熱板の製造方法であって、
芯材となる金属板の上下面に、同一材料から成り互いに厚みの異なる金属板をそれぞれ積層して、熱間圧着を行う圧延工程と、
常温まで冷却したのち、所望の形状に成形する成形工程と、
常温において塑性変形加工で反り量を修正する修正工程とで構成されることを特徴とする放熱板の製造方法。
A method for manufacturing a radiator plate in which an insulating substrate on which elements are mounted is joined to one side and the other side is fixedly contacted with a cooling body,
Rolling step of laminating metal plates made of the same material and having different thicknesses on the upper and lower surfaces of the metal plate serving as the core material and performing hot pressing,
After cooling to room temperature, a molding step of molding into a desired shape,
A process of correcting the amount of warpage by plastic deformation at room temperature.
素子を実装した絶縁基板が一側面に接合され、他側面が冷却体に接触固定される放熱板の製造方法であって、
芯材となる金属板の上下面に、互いに膨張係数の異なる材料から成る金属板をそれぞれ積層して、熱間圧着を行う圧延工程と、
常温まで冷却したのち、所望の形状に成形する成形工程と、
常温において塑性変形加工で反り量を修正する修正工程とで構成されることを特徴とする放熱板の製造方法。
A method for manufacturing a radiator plate in which an insulating substrate on which elements are mounted is joined to one side and the other side is fixedly contacted with a cooling body,
Rolling step of laminating metal plates made of materials having different expansion coefficients from each other on the upper and lower surfaces of the metal plate serving as the core material and performing hot pressing,
After cooling to room temperature, a molding step of molding into a desired shape,
A process of correcting the amount of warpage by plastic deformation at room temperature.
JP2003070364A 2003-03-14 2003-03-14 Heat radiator and its producing method Pending JP2004281676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003070364A JP2004281676A (en) 2003-03-14 2003-03-14 Heat radiator and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003070364A JP2004281676A (en) 2003-03-14 2003-03-14 Heat radiator and its producing method

Publications (1)

Publication Number Publication Date
JP2004281676A true JP2004281676A (en) 2004-10-07

Family

ID=33287134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070364A Pending JP2004281676A (en) 2003-03-14 2003-03-14 Heat radiator and its producing method

Country Status (1)

Country Link
JP (1) JP2004281676A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086818A (en) * 2009-10-16 2011-04-28 Fujitsu Ltd Semiconductor device
WO2012127958A1 (en) * 2011-03-22 2012-09-27 住友電気工業株式会社 Composite member provided with substrate formed from composite material
WO2015182385A1 (en) * 2014-05-29 2015-12-03 株式会社アライドマテリアル Heat spreader and process for producing same
JP2016162836A (en) * 2015-02-27 2016-09-05 パナソニックIpマネジメント株式会社 Package for mounting electronic component, electronic device and electronic module
EP3057125A4 (en) * 2013-10-10 2017-05-31 Mitsubishi Materials Corporation Substrate for heat sink-equipped power module, and production method for same
CN114284857A (en) * 2021-11-25 2022-04-05 佛山华智新材料有限公司 Secondary heat sink and liquid cooling heat sink integration method, integrated heat sink and application

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086818A (en) * 2009-10-16 2011-04-28 Fujitsu Ltd Semiconductor device
US9347120B2 (en) 2011-03-22 2016-05-24 Sumitomo Electric Industreis, Ltd. Composite member including substrate made of composite material
WO2012127958A1 (en) * 2011-03-22 2012-09-27 住友電気工業株式会社 Composite member provided with substrate formed from composite material
JP2012197496A (en) * 2011-03-22 2012-10-18 Sumitomo Electric Ind Ltd Composite member
CN103443315A (en) * 2011-03-22 2013-12-11 住友电气工业株式会社 Composite member provided with substrate formed from composite material
EP3057125A4 (en) * 2013-10-10 2017-05-31 Mitsubishi Materials Corporation Substrate for heat sink-equipped power module, and production method for same
US10032648B2 (en) 2013-10-10 2018-07-24 Mitsubishi Materials Corporation Method of manufacturing power-module substrate with heat-sink
CN106460191A (en) * 2014-05-29 2017-02-22 联合材料公司 Heat spreader and process for producing same
JPWO2015182385A1 (en) * 2014-05-29 2017-04-20 株式会社アライドマテリアル Heat spreader
WO2015182385A1 (en) * 2014-05-29 2015-12-03 株式会社アライドマテリアル Heat spreader and process for producing same
US10215512B2 (en) 2014-05-29 2019-02-26 A.L.M.T. Corp. Heat spreader and method for manufacturing the same
JP2016162836A (en) * 2015-02-27 2016-09-05 パナソニックIpマネジメント株式会社 Package for mounting electronic component, electronic device and electronic module
CN114284857A (en) * 2021-11-25 2022-04-05 佛山华智新材料有限公司 Secondary heat sink and liquid cooling heat sink integration method, integrated heat sink and application
CN114284857B (en) * 2021-11-25 2023-11-17 佛山华智新材料有限公司 Method for integrating secondary heat sink and liquid cooling heat sink, integrated heat sink and application

Similar Documents

Publication Publication Date Title
JP4558012B2 (en) Semiconductor package heat dissipation plate and semiconductor device
JP6201827B2 (en) Manufacturing method of power module substrate with heat sink
JP6617265B2 (en) HEAT CONDUCTIVE STRUCTURE, HEAT CONDUCTIVE STRUCTURE MANUFACTURING METHOD, COOLING DEVICE, AND SEMICONDUCTOR MODULE
JP2008235852A (en) Ceramic substrate and semiconductor module using the same
JP6361532B2 (en) Manufacturing method of power module substrate with heat sink
JP6455056B2 (en) Manufacturing method and pressure device for power module substrate with heat sink
JP7024331B2 (en) A method for manufacturing an insulated circuit board, a method for manufacturing an insulated circuit board with a heat sink, and a method for manufacturing a laminated structure of an insulated circuit board.
JP6201828B2 (en) Manufacturing method of power module substrate with heat sink
WO2018180159A1 (en) Method for producing insulated circuit board with heat sink
JP7342371B2 (en) Insulated circuit board and method for manufacturing an insulated circuit board
JP2004356625A (en) Semiconductor device and method for manufacturing the same
JP2004281676A (en) Heat radiator and its producing method
CN112823073B (en) Joined body, insulated circuit board with heat sink, and heat sink
US11222835B2 (en) Insulating circuit substrate and method for producing insulating circuit substrate
JP2010238963A (en) Substrate for power module, method for manufacturing substrate for power module, and power module
JP2005328087A (en) Power module substrate
JP4146736B2 (en) Manufacturing method of semiconductor device
JP2018041868A (en) Heat dissipation substrate
WO2020245975A1 (en) Warpage control structure for metal base plate, semiconductor module, and inverter device
JP2004288828A (en) Manufacturing method for substrate for power module, substrate for power module and power module
JP4876612B2 (en) Insulated heat transfer structure and power module substrate
JP5949817B2 (en) Power module substrate manufacturing method
JP2003258167A (en) Structure
JP2012049437A (en) Substrate for power module and method of manufacturing the same
JP2013211288A (en) Manufacturing method of substrate for power module with heat sink