JPH01229800A - Radiator - Google Patents

Radiator

Info

Publication number
JPH01229800A
JPH01229800A JP63054988A JP5498888A JPH01229800A JP H01229800 A JPH01229800 A JP H01229800A JP 63054988 A JP63054988 A JP 63054988A JP 5498888 A JP5498888 A JP 5498888A JP H01229800 A JPH01229800 A JP H01229800A
Authority
JP
Japan
Prior art keywords
heat
temperature
base plate
radiating board
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63054988A
Other languages
Japanese (ja)
Inventor
Genshiro Fujii
藤井 源四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63054988A priority Critical patent/JPH01229800A/en
Publication of JPH01229800A publication Critical patent/JPH01229800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Abstract

PURPOSE:To obtain a lighter radiator which enables automatic temperature control by means of a structure member composed of only a radiating board by closely attaching the radiating board made of a superconducting material to the member to be heat released of an artificial satellite. CONSTITUTION:A radiating board 13 is formed with a superconducting material and is closely attached to the surface on the space 12 side of a base plate 11 so that heat is surely transmitted from the base plate 11. Hence, when the temperature of the base plate 11 rises transmitting heat to the radiating board 13, the heat radiating quantity is small until the temperature of the radiating board 13 reaches a superconduction transition temperature, while getting larger as the temperature gets higher from that temperature. As the base plate 11 is cooled by the radiating board 13, the radiating board again returns to a superconducting condition making it hard to release the heat of the base plate 11. Thereby, the temperature of the base plate 1 can be automatically controlled, realizing automatic temperature control by means of a structure member of only the radiating board 13, to obtain a lighter radiator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は人工衛星等の宇宙空間で使用される機器に使用
される放熱器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat radiator used in equipment used in outer space such as artificial satellites.

〔従来の技術〕[Conventional technology]

人工衛星(以下単に衛星という)の温度は、衛星の表面
部材における太陽エネルギーを取り込む度合と熱エネル
ギーを吐き出す度合で決まシ、所望の温度が得られる性
能を有する表面部材を選択することによって調節されて
いる。さらに、宇宙空間において積極的に衛星の温度を
調節するためには、第3図(a) 、 (b)に示すよ
うなサーマルルーパが使用されている。このサーマルル
ーパは衛!表面に取付けられ、後述するブレードの開閉
によって衛星表面から発散する輻射熱量を変化させ放熱
量を制御するもので、同図において、1は衛星の表面部
材としてのペースプレート、2は宇宙空間、3はサーマ
ルルーパで、このサーマルルーパ3は、前記ペースプレ
ート1に固定され、ペースプレート1の放熱面1aを囲
むサイドフレーム3aと、このサイドフレーム3aにア
クチュエータ3bを介して回動自在に取付けられたブレ
ード3c とから構成されている。また、前記アクチュ
エータ3bは、例えばペースプレート1の温度によって
バイメタル(図示せず)が伸縮する動作を利用しブレー
ド3cを回動させる構造のもの等、ペースプレート1の
温度に対応してブレード3Cを回動させる機能を備えて
いる。すなわち、衛星の温度が上昇すると、その熱はペ
ースプレート1まで伝導され、アクチュエータ3bがそ
の温度に応じてブレード3cを回動させるため、ペース
プレート1が宇宙空間2に露出されることにな)、熱輻
射によって放熱されることになる。なお、図中Aは輻射
熱を示す。
The temperature of an artificial satellite (hereinafter simply referred to as a satellite) is determined by the degree to which the surface material of the satellite takes in solar energy and the degree to which it releases thermal energy, and is regulated by selecting surface materials that have the ability to obtain the desired temperature. ing. Furthermore, in order to actively adjust the temperature of a satellite in outer space, a thermal looper as shown in FIGS. 3(a) and 3(b) is used. This thermal looper is Mamoru! It is attached to the surface and controls the amount of radiant heat radiated from the satellite surface by opening and closing blades, which will be described later. In the figure, 1 is a pace plate as a surface member of the satellite, 2 is outer space, 3 is is a thermal looper, and this thermal looper 3 is fixed to the pace plate 1, and is rotatably attached to the side frame 3a surrounding the heat radiation surface 1a of the pace plate 1 via an actuator 3b. It is composed of a blade 3c. The actuator 3b may be of a structure that rotates the blade 3c by utilizing the expansion and contraction of a bimetal (not shown) depending on the temperature of the pace plate 1, for example, and rotates the blade 3C in response to the temperature of the pace plate 1. It has the ability to rotate. That is, when the temperature of the satellite increases, the heat is conducted to the pace plate 1, and the actuator 3b rotates the blade 3c according to the temperature, so the pace plate 1 is exposed to the outer space 2). , heat will be dissipated by thermal radiation. Note that A in the figure indicates radiant heat.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、このように構成されたサーマルルーバ3にお
いては、放熱量の制御をブレード3Cの開閉によって行
なっているため、アクチュエータ3bの調整が複雑であ
った。また、衛星に搭載される機器には、その小型化、
軽食化が要求されており、従来のサーマルルーバ3にお
いては、必要な放熱量を得るためにはペースプレート1
の放熱面1aを小さく形成するにも限度があシ、このた
めサーマルルーバ3の各構成部材を小さく軽食に形成す
ることができないという問題があった。
However, in the thermal louver 3 configured in this manner, the amount of heat radiation is controlled by opening and closing the blade 3C, making adjustment of the actuator 3b complicated. In addition, the equipment mounted on the satellite is becoming smaller and smaller.
There is a demand for light weight, and in order to obtain the necessary amount of heat dissipation in the conventional thermal louver 3, the pace plate 1 is required.
There is a limit to how small the heat dissipation surface 1a of the thermal louver 3 can be made, and therefore there is a problem in that each component of the thermal louver 3 cannot be made small and compact.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る放熱器は、人工衛星の被放熱部材に超電導
物質からなる放熱板を密着させたものである。
A heat radiator according to the present invention has a heat radiating plate made of a superconducting material closely attached to a heat radiating member of an artificial satellite.

〔作用〕[Effect]

超電導転移温度で輻射率が変化する超電導物質の性質に
よって、放熱板の温度が超電導転移温度より上昇すると
、熱輻射Iが増大し放熱量も増大され、被放熱部材の温
度が低下すると、放熱板の熱輻射量も低減されることに
なる。
Due to the property of superconducting materials that the emissivity changes with the superconducting transition temperature, when the temperature of the heat sink increases above the superconducting transition temperature, the thermal radiation I increases and the amount of heat radiation increases, and when the temperature of the heat radiated member decreases, the heat sink The amount of thermal radiation will also be reduced.

〔実施例〕〔Example〕

以下、その構成等を図に示す実施例によυ詳細に説明す
る。
Hereinafter, its configuration and the like will be explained in detail with reference to embodiments shown in the drawings.

第1図は本発明に係る放熱器を示す側断面図、第2図は
超電導体における赤外線輻射率の温度依存性を示すグラ
フである。これらの図において11は人工衛星等の被放
熱部材としてのペースプレート、12は宇宙空間、13
は前記ペースプレート11の温度を制御するための放熱
板で、この放熱板13は超電導物質によって形成されて
おシ、前記ベースプレート11の宇宙空間12側表面に
、ベースプレート11から確実に熱が伝導されるように
密着されている。なお図中Aは輻射熱を示す。
FIG. 1 is a side sectional view showing a heat sink according to the present invention, and FIG. 2 is a graph showing the temperature dependence of infrared emissivity in a superconductor. In these figures, 11 is a pace plate as a heat radiated member of an artificial satellite, 12 is outer space, and 13 is
is a heat dissipation plate for controlling the temperature of the pace plate 11, and this heat dissipation plate 13 is made of a superconducting material to ensure that heat is conducted from the base plate 11 to the surface of the base plate 11 on the outer space 12 side. It is closely attached as if it were Note that A in the figure indicates radiant heat.

一般に放熱器の放熱特性は、放熱量をQ1赤外線輻射率
をε、温度をTとすると Q”εT4 で表わされ、赤外線輻射率εを変化させることによって
放熱量Qを制御することができる。また、超電導体にお
ける赤外線輻射率ε(T)は第2図に示すように温度T
によって定まり、特に、超電導転移温度Tc付近で大き
く変化する。すなわち、超電導転移温度Teよシ超電導
体の温度が低く、超電導状態の場合には、赤外線輻射率
ε(T)は小さく、輻射熱量も少ないが、Tc よシ温
度が高くなり常電導状態になると、赤外線輻射率ε(T
)は大きくなり、輻射熱量も多くなる。
Generally, the heat radiation characteristic of a radiator is expressed as Q"εT4, where the heat radiation amount is Q1, the infrared emissivity is ε, and the temperature is T. The heat radiation amount Q can be controlled by changing the infrared radiation emissivity ε. In addition, the infrared emissivity ε(T) of a superconductor is determined by the temperature T as shown in Figure 2.
It is determined by , and changes significantly especially near the superconducting transition temperature Tc. In other words, when the temperature of the superconductor is lower than the superconducting transition temperature Te and it is in a superconducting state, the infrared emissivity ε(T) is small and the amount of radiated heat is small. , infrared emissivity ε(T
) becomes larger, and the amount of radiant heat also increases.

したがって、ベースプレート11の温度が上昇し、熱が
放熱板13に伝導されると、放熱板13の温度が超電導
転移温度Teに達するまで放熱量は少な(、’l’c 
より温度が高くなるにつn次第に多くなる。そして、放
熱板13によってペースプレート11が冷却されると、
放熱板13は再び超電導状態に戻り、ベースプレート1
1の熱を放熱しにくくなる。したがって、ペースプレー
ト11の温度が自動的に制御されることになる。
Therefore, when the temperature of the base plate 11 rises and heat is conducted to the heat sink 13, the amount of heat dissipated is small (,'l'c) until the temperature of the heat sink 13 reaches the superconducting transition temperature Te.
As the temperature becomes higher, n gradually increases. Then, when the pace plate 11 is cooled by the heat sink 13,
The heat sink 13 returns to the superconducting state again, and the base plate 1
It becomes difficult to dissipate heat from step 1. Therefore, the temperature of the pace plate 11 will be automatically controlled.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、人工衛星の被放熱
部材に超電導物質からなる放熱板を密着させたため、被
放熱板から伝導さnた熱によって放熱板の温度が超電導
転移温度より上昇すると、熱輻射量が増大し放熱量も増
大され、被放熱部材の温度が低下すると放熱板の熱輻射
量も低減されることになるから、被放熱部材の温度を自
動的【制御することができる。したがって、放熱板のみ
の構成部材で自動温度制御が実現さnるので、軽量化さ
れ念放熱器を得ることができる。
As explained above, according to the present invention, the heat sink made of a superconducting material is brought into close contact with the heat dissipated member of the artificial satellite, so that when the temperature of the heat sink rises above the superconducting transition temperature due to the heat conducted from the heat dissipation plate, , the amount of heat radiation increases and the amount of heat radiation increases, and when the temperature of the heat radiated member decreases, the amount of heat radiation of the heat sink also decreases, so the temperature of the heat radiated member can be automatically [controlled]. . Therefore, automatic temperature control can be realized with only the heat sink as a component, and a light heat sink can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る放熱器を示す側断面図、第2図は
超電導体における赤外線輻射率の温度依存性を示すグラ
フ、第3図(a) 、 (b)は従来のサーマルルーバ
を示す図で、同図(a)は斜視図、(b)は側断面図で
ある。 11・・・・ベースプレート、13・・・・放熱板。
Fig. 1 is a side cross-sectional view showing a heatsink according to the present invention, Fig. 2 is a graph showing the temperature dependence of infrared emissivity in a superconductor, and Figs. 3 (a) and (b) are graphs showing a conventional thermal louver. In the figures, (a) is a perspective view, and (b) is a side sectional view. 11... Base plate, 13... Heat sink.

Claims (1)

【特許請求の範囲】[Claims] 人工衛星の被放熱部材に超電導物質からなる放熱板を密
着させたことを特徴とする放熱器。
A heat sink characterized by having a heat sink made of a superconducting material closely attached to a heat-dissipating member of an artificial satellite.
JP63054988A 1988-03-10 1988-03-10 Radiator Pending JPH01229800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63054988A JPH01229800A (en) 1988-03-10 1988-03-10 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63054988A JPH01229800A (en) 1988-03-10 1988-03-10 Radiator

Publications (1)

Publication Number Publication Date
JPH01229800A true JPH01229800A (en) 1989-09-13

Family

ID=12986030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63054988A Pending JPH01229800A (en) 1988-03-10 1988-03-10 Radiator

Country Status (1)

Country Link
JP (1) JPH01229800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494241A (en) * 1993-01-26 1996-02-27 Matra Marconi Space France S.A. Device for cooling a satellite-mounted travelling-wave tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494241A (en) * 1993-01-26 1996-02-27 Matra Marconi Space France S.A. Device for cooling a satellite-mounted travelling-wave tube

Similar Documents

Publication Publication Date Title
JP3221412B2 (en) Thermal control method and device
JPH01229800A (en) Radiator
JP2003069065A (en) Photovoltaic power generation system
JPH0633633B2 (en) Heat storage building materials
JP2625821B2 (en) Satellite thermal control device
JPS591994A (en) Heat pipe for temperature control
US3075063A (en) Temperature control systems
JP2002120799A (en) Thermal control device and thermal control method
JPH0354097A (en) Thermal louver device
JPH05218250A (en) Heat dissipating apparatus with variable heat transfer rate
JPS59154515A (en) Thermal louver
JPS6148166B2 (en)
JPH0514125Y2 (en)
JP2988240B2 (en) Thermal control device for space vehicles
US3324940A (en) Thermal control mechanism
US20220333879A1 (en) System and method for thermal emission control using segmented array
CN116812174A (en) Satellite passive thermal management structure based on multistage nonlinear heat conduction
JPS59154516A (en) Opening and closing type heat radiation controller
JPS63249211A (en) Radiation control mechanism
JP2888994B2 (en) Insulating self-regulating wall
JPH01186499A (en) Thermal louver
JPS62219013A (en) Radiation controlling heat conduction surface
JPS641200Y2 (en)
JP2000211599A (en) Thermal louver
JPH03113212A (en) Heat storage type floor heater