JPS5875220A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPS5875220A
JPS5875220A JP17147781A JP17147781A JPS5875220A JP S5875220 A JPS5875220 A JP S5875220A JP 17147781 A JP17147781 A JP 17147781A JP 17147781 A JP17147781 A JP 17147781A JP S5875220 A JPS5875220 A JP S5875220A
Authority
JP
Japan
Prior art keywords
container
heat
substrate
contact
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17147781A
Other languages
Japanese (ja)
Inventor
Yoshiro Miyazaki
芳郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP17147781A priority Critical patent/JPS5875220A/en
Publication of JPS5875220A publication Critical patent/JPS5875220A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/008Variable conductance materials; Thermal switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To improve the heat conduction between a substrate and a contact plate, by forming a thin and wide liquid film which has no change due to the expansion of a container at a place between the substrate and the contact plate. CONSTITUTION:When the heating value of a device 1 increases, a working fluid 10 within a container 7 is heated. As a result, the pressure increases within the container 7, and therefore a bellows 8 forming the container 7 expands. Then a contact plate 9' has a contact with a heat sink 6 by the expansion of the bellows 8 when the pressure within the container 7 increases up to a certain level. Thus the heat transmitted to a substrate 2' from the device 1 is transmitted to a projected part 16 of the plate 9' put into the grooves 17 and 18 from a projected part 15 through a liquid film formed in a gap 19 of the fluid 10 within the grooves 17 and 18. The heat heats up the plate 9' and is discharged to outside through the heat sink 6 that has a contact with the plate 9'.

Description

【発明の詳細な説明】 本発明は真空中で使用される機器の温度を一定に制御す
る@度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control device for controlling the temperature of equipment used in a vacuum to a constant value.

真空中、特に宇宙空間での温度制御は、故射熱伝達によ
って放熱することにより行っている為放熱量を制御1−
て機器の温度を所定値に保持することが難1−い、この
為、本発明者は第1図1c示す温度制御装置を提案して
いる。この温度制御装置の構造及び機構を図を用いて説
明する。
Temperature control in a vacuum, especially in outer space, is done by dissipating heat through radiation heat transfer, so controlling the amount of heat dissipation1-
Therefore, it is difficult to maintain the temperature of the equipment at a predetermined value, and for this reason, the present inventor has proposed a temperature control device shown in FIG. 1c. The structure and mechanism of this temperature control device will be explained using the drawings.

儒呟制御すべき機器1を塔載した熱伝導性に勝れた部材
でなる基板2け、その隅部に設けた断熱スペーサ3を介
してボルト4とナツト5により図中下方に配置した良熱
伝導性部材で1杉[関され図中下面が高熱放射率に表向
処理された放熱板6に間隔をお14て断熱的に固定され
ている。7は1A;4反2と放熱板6との間に配置され
た伸縮rif能な容器で。
Two substrates made of a material with excellent thermal conductivity on which the equipment 1 to be controlled is mounted are placed at the bottom in the figure with bolts 4 and nuts 5 through heat insulating spacers 3 provided at the corners. It is made of a thermally conductive material and is adiabatically fixed at a distance of 14 to a heat dissipation plate 6 whose lower surface in the figure has been surface-treated to have high thermal emissivity. 7 is a 1A; retractable container placed between the 4x2 and the heat sink 6.

この容器7は、一端を基板2の裏面に固定したベローズ
8ととのベローズ8の他端を閉塞側−1前記放熱板6と
接離するように設けらJ′した良熱伝導部材で成る接触
板9とから構成されている。す4にこの容器7内には、
比較的低沸点の作動流体1oが封入され、基板2の裏面
に設けられた凸部2oがその一部が少なくとも作動流体
10(で浸されており、作動流体10の蒸気圧によって
容器7が伸縮するよう(でなっている。なお図において
11は接触板9が放熱板6に接触する温1更を設定する
ための調整バネで、接触板9のフランジと基板2に一端
が固着されたバネ11のガイドピン12の他端大径部の
111 IC設けられている。まだ図においては湛75
1 ?h11伺すべき機器1は機器本体21をパネル2
2に装着して構1戊されている。まださらに符号13は
作動流体10が収納された容器7内に形成された気相で
、1.47’l:液相である。
This container 7 is made of a good heat conductive member with a bellows 8 having one end fixed to the back surface of the substrate 2, and the other end of the bellows 8 being provided so as to be in contact with and away from the heat dissipation plate 6 on the closed side. It is composed of a contact plate 9. In this container 7,
A working fluid 1o with a relatively low boiling point is sealed, and a convex portion 2o provided on the back surface of the substrate 2 is partially immersed in at least the working fluid 10, and the container 7 expands and contracts due to the vapor pressure of the working fluid 10. In the figure, reference numeral 11 denotes an adjustment spring for setting the temperature at which the contact plate 9 contacts the heat sink 6, and is a spring whose one end is fixed to the flange of the contact plate 9 and the substrate 2. 111 IC is provided at the other end of the large diameter portion of the guide pin 12.
1? h11 The device 1 that should be visited is the device body 21 and the panel 2.
It is installed on the 2nd and 1st part is installed. Further, reference numeral 13 indicates a gas phase formed in the container 7 containing the working fluid 10, and 1.47'l: liquid phase.

次にト記構成の放熱量制御装置((訃いて、その作用を
説明する。
Next, we will explain the operation of the heat radiation amount control device with the above configuration.

温度制御すべへ発熱体となる機器1からの発熱は基板2
に伝達され、更lて伸縮可能な容57内の作動流体10
を加熱する。この場合放熱板6と対向する容器7の接触
板9の位置は、調整バネ11とベローズ8によって定ま
るバネ力と、容器7内の作動流体10の蒸気圧とが平衡
する条件で定まる。
The heat generated from device 1, which is the heating element for temperature control, is transferred to board 2.
The working fluid 10 in the retractable volume 57 is further transmitted to the
heat up. In this case, the position of the contact plate 9 of the container 7 facing the heat sink 6 is determined under the condition that the spring force determined by the adjustment spring 11 and the bellows 8 and the vapor pressure of the working fluid 10 in the container 7 are balanced.

作動流体10が所定温度以上にυ11熱されて、蒸気圧
が上昇するとベローズ8が伸びて容器7が膨張し、接触
板9が押されて放熱板6に接触し、との接触面で熱伝達
が行なわれ、史(/C放熱板6から、放射熱伝達により
放熱され1機器1の冷却が行なわれも。
When the working fluid 10 is heated to a predetermined temperature υ11 and the vapor pressure increases, the bellows 8 expands and the container 7 expands, and the contact plate 9 is pushed and comes into contact with the heat sink 6, and heat transfer occurs at the contact surface. The heat is radiated from the heat sink plate 6 by radiant heat transfer, and the equipment 1 is cooled.

このように1〜で機器1が所定のに−Alf以t1て冷
却されると、これに伴って容器7内の作11if+流体
10の蒸気トFが減少し、調整バネ11とベローズ8に
よって定まるバネ力tc 1:って容器7が収縮して、
接触板9が放熱板6から離比、放熱が停止する。
In this way, when the equipment 1 is cooled to a predetermined value -Alf or more from 1 to t1, the work force 11if in the container 7 + the steam tF of the fluid 10 decreases, which is determined by the adjustment spring 11 and the bellows 8. Spring force tc 1: The container 7 contracts,
The contact plate 9 is separated from the heat sink 6, and heat radiation stops.

以下設定温度を境として容器7 (rN接触板9と放熱
板6とが接離を繰りν十こと1でLす、機器1を所定の
l晶度に自動的に1fll仰することが出来ろ。
Below, the container 7 (rN contact plate 9 and heat sink 6 repeatedly come into contact and separate from each other with the set temperature as a boundary), and the device 1 can be automatically raised to a predetermined crystallinity. .

ところで、温IK市11昂11器がこの、にうな1%r
)1作全しているとき、作動流体10は気相13と液(
l1114が共存している状態である。
By the way, On IK City 11 Gong 11 is this Niuna 1%r
) When one operation is complete, the working fluid 10 has a gas phase 13 and a liquid (
l1114 coexists.

そして基板2から接触板9へ良好な熱伝達を行なりせる
だめにけ、基板2の作動流体に接してい    :ゐる
面即ち凸部20け、液相の作+R#流体1てよって檀わ
れていなければならない。
In order to achieve good heat transfer from the substrate 2 to the contact plate 9, the surface of the substrate 2 that is in contact with the working fluid, that is, the convex portion 20, is exposed by the action of the liquid phase + R# fluid 1. There must be.

もし基板2の作動流体10に接している而が全て気相の
作動流体1(榎われれば、基板2から接触板9への熱伝
達は著しく低下し、温間制御器の性能低下をもたらすこ
とが考えられる。
If all the parts of the substrate 2 that are in contact with the working fluid 10 are drained of the gas phase working fluid 1, the heat transfer from the substrate 2 to the contact plate 9 will be significantly reduced, resulting in a decrease in the performance of the warm controller. is possible.

このため基板2の凸部′シOの一部は常に液相の作動流
体に覆われるよう(ですることが必要である。
For this reason, it is necessary to ensure that a portion of the convex portion O of the substrate 2 is always covered with the liquid-phase working fluid.

この場合基板2と接触板9との間の熱伝達能力は王に凸
部20と接触板9の間に形成される液膜の厚さと面積に
よって定1ろ、液膜は出来るだけ薄くシ、面積は出来る
だけ広くするのが熱伝達性能−ヒ望ましい。
In this case, the heat transfer ability between the substrate 2 and the contact plate 9 is determined by the thickness and area of the liquid film formed between the convex portion 20 and the contact plate 9, and the liquid film should be made as thin as possible. It is desirable to make the area as wide as possible to improve heat transfer performance.

ところが、基板2の@度が高くなり、放熱能力が最も要
求される時に、容器は伸び%液膜の厚さも厚くなり放熱
能力の低下の虞がある。
However, when the degree of heat dissipation of the substrate 2 increases and heat dissipation capability is most required, the container elongates and the thickness of the liquid film increases, which may reduce the heat dissipation capability.

本発明はこのような事情に鑑みてなされたものでちり、
基板と接触板の間に容器の伸びによって変化しない薄く
て広い液膜を形成し、基板から接触板への熱伝達を良好
ならしめようとするものである。
The present invention has been made in view of these circumstances.
The purpose is to form a thin and wide liquid film between the substrate and the contact plate that does not change due to the elongation of the container, thereby improving heat transfer from the substrate to the contact plate.

以下本発明の一実施例を第2図を用いて説明する。なお
、第1図と同一部位については同符号を付けて説明を省
略する。
An embodiment of the present invention will be described below with reference to FIG. Note that the same parts as in FIG. 1 are given the same reference numerals and their explanation will be omitted.

図において符号15は機器1を塔載した基板2′の裏面
に設けられた断面形状が矩形の複数個の突出部でちり、
16は放熱板6と接離するように容器7に設けられた接
触板9′の容器内■側に突出した複数の突出部で1両方
の突出部15.16は各々に形成される対応する溝17
 、181//: 1ulI面に狭い間隙19を有して
配置されろ。突+t1部15.16の突出高さは容器7
が伸縮し7ても各対応する側面に充分な間隙19を形成
する寸法に設定され、作動流体10の液膜け′f4器7
が伸縮しても間隙19が液内から出ない曖(て設定され
る。これにより間隙19の突出部15.16の側面には
常に液膜が形成されろ。
In the figure, reference numeral 15 denotes a plurality of protrusions with a rectangular cross section provided on the back side of the substrate 2' on which the device 1 is mounted.
Reference numeral 16 denotes a plurality of protrusions protruding toward the inner side of the container of the contact plate 9' provided on the container 7 so as to come into contact with and separate from the heat sink 6. Both protrusions 15 and 16 correspond to each other. Groove 17
, 181//: be arranged with a narrow gap 19 in the 1ulI plane. The protrusion height of the protrusion +t1 part 15.16 is the height of the protrusion of the container 7.
The dimensions are set to form a sufficient gap 19 on each corresponding side surface even if the 7 expands and contracts, and the liquid film of the working fluid 10 is
The gap 19 is set so that it does not come out of the liquid even when the gap 19 expands and contracts.As a result, a liquid film is always formed on the side surfaces of the protruding parts 15 and 16 of the gap 19.

このような構成であると、機器1の発熱喰が増大すると
、機器1で発生した熱によって容器7内の作動流体10
が加熱され、この結果、容器7内の圧力が上昇する。こ
のため、容器7を構成するベローズ8が伸長し、容器7
内のFE力がある値まで上昇すると、上記伸長によって
接触板9′が放熱板6に接触する。こうなると、機器1
から基板グを介して伝えられた熱I4、作動流体10の
突出部15.16の表面t(形成された薄い液膜の伝導
作用で接触板qを介して放熱板6に伝達される。すなわ
ち基板2′に伝えられた熱はその突出部15から溝17
.18内の作動流体10の間隙19に形成されだ液膜を
通じて溝17.18に挿入された接触板9″の突出部1
6に伝えられ、接触板9′を加熱し、この接触板9が接
触した放熱板6から外1で対し放熱されろ。これによっ
て機器上の温間がある値に抑えられろこと1(なる。な
お上記液膜の厚さは容器7が伸縮しても変化しないので
安定した薄い液膜を得ることが出来ろ。一方、機器1の
発熱量が少ない場合(でtは1作動流体10に伝えられ
る熱駿も少なくなり、この熱1がある値より少なくなる
と容器7内の千カが低下し、この結果、ベローズ8が収
縮して接触板9′が放熱板6から離れる。こうなると、
機器1の冷却が抑えられ、機器1け発熱量と放熱板6を
含まない放熱Wtとがバランスする温度に保たれること
になる。しだがって、予め、温度と容器7の伸縮特性と
を所望に設電しておけば機器上の温度を一定に保つこと
ができろ。又基板2′と接触板9′に設けた突出部15
.16を小さなピッチで設ければその突出部15.16
に形成される液膜の面積即ち熱伝達面積を著しく拡大す
ることが出来、大きな伝達能力を1!4ることか出来る
With such a configuration, when the heat generation of the device 1 increases, the working fluid 10 in the container 7 is caused by the heat generated in the device 1.
is heated, and as a result, the pressure inside the container 7 increases. Therefore, the bellows 8 forming the container 7 expands, and the container 7
When the FE force within increases to a certain value, the contact plate 9' comes into contact with the heat dissipation plate 6 due to the above expansion. In this case, device 1
The heat I4 transferred from the surface of the protrusion 15, 16 of the working fluid 10 to the heat dissipation plate 6 via the contact plate q due to the conductive action of the thin liquid film formed on the surface t of the protrusion 15, 16 of the working fluid 10. The heat transferred to the substrate 2' is transferred from the protrusion 15 to the groove 17.
.. The protrusion 1 of the contact plate 9'' inserted into the groove 17.18 through the saliva film formed in the gap 19 of the working fluid 10 in 18
6 and heats the contact plate 9', and the heat is radiated to the outside 1 from the heat radiating plate 6 with which the contact plate 9 is in contact. As a result, the temperature on the equipment can be suppressed to a certain value (1).The thickness of the liquid film does not change even if the container 7 expands and contracts, so a stable and thin liquid film can be obtained. , when the calorific value of the device 1 is small (t = 1), the heat transferred to the working fluid 10 also decreases, and when this heat 1 becomes less than a certain value, the temperature inside the container 7 decreases, and as a result, the bellows 8 contracts and the contact plate 9' separates from the heat sink 6.When this happens,
Cooling of the device 1 is suppressed, and the temperature is maintained at a temperature where the heat generation amount of the device 1 and the heat radiation Wt not including the heat sink 6 are balanced. Therefore, if the temperature and the expansion/contraction characteristics of the container 7 are set as desired in advance, the temperature on the device can be kept constant. Also, the protrusion 15 provided on the substrate 2' and the contact plate 9'
.. 16 with a small pitch, the protrusion 15.16
The area of the liquid film formed, that is, the heat transfer area, can be significantly expanded, and the transfer capacity can be increased by 1!4.

以上説明したように本発明(Cよれば、部用な構成でよ
り良好な熱伝達特性が得られ、安定1.九機能を発揮さ
せることが出来、しかも信頼性に富んだ温度制御装置を
提供出来る。
As explained above, the present invention (C) provides a temperature control device that can obtain better heat transfer characteristics with a simple configuration, can perform stable functions, and is highly reliable. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度制御II装置を示す断面図、第2図は本発
明の一実施例を示す断面図である。 ↓・・・機器、2′・・・塙板、6・・・放熱板、7川
容姦、8・・・ベローズ、9′・・・接触板、10・・
作・動流体。 15.16・・・突出部、17.18・・・溝、19・
・・間隙。 代理人 弁理士 則 近 憲 佑 (ほか1名)
FIG. 1 is a sectional view showing a temperature control II device, and FIG. 2 is a sectional view showing an embodiment of the present invention. ↓...Equipment, 2'...Hanawa board, 6...Radiation plate, 7 River continuation, 8...Bellows, 9'...Contact plate, 10...
Working/working fluid. 15.16... Protrusion, 17.18... Groove, 19.
··gap. Agent: Patent attorney Kensuke Chika (and 1 other person)

Claims (1)

【特許請求の範囲】 温度制御すべき発熱体となる機器を一面に搭載する基板
と、この基板の他面側に位置し、とれと間隔を訃いて断
熱的に固定された放熱板と、この放熱板と前記隻板との
間(で位置し、一方の端部渣板1c 1iA1定し、他
方の端面が放熱板と接離するように設けられた伸縮可能
な容器と、この容器内に封入された作動流体と、前記基
板と、この基板に対向し放熱板に接触する前記容器底面
とにそれぞれ前記容器の内側で容器の伸縮方向に側部に
微小間隙を有して咬合突出して没けられた複数の突出部
端面と放熱板とが接触して、機器の発熱を放熱す訃 るよう+C+@成したことを特徴とする温ば制御装置。
[Scope of Claims] A board on which a device serving as a heat generating element whose temperature is to be controlled is mounted on one side, a heat sink located on the other side of this board and fixed in an insulating manner at intervals, and this A retractable container is located between the heat sink and the above-mentioned ship board, one end of which is fixed at the edge plate 1c 1iA1, and the other end surface is in contact with and separates from the heat sink; The sealed working fluid, the substrate, and the bottom surface of the container that faces the substrate and contacts the heat sink are respectively interlocked and protruded and sunk inside the container with a minute gap on the side in the direction of expansion and contraction of the container. 1. A heating control device characterized in that the end faces of a plurality of cut protrusions come into contact with a heat radiating plate to radiate heat from the equipment.
JP17147781A 1981-10-28 1981-10-28 Temperature controller Pending JPS5875220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17147781A JPS5875220A (en) 1981-10-28 1981-10-28 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17147781A JPS5875220A (en) 1981-10-28 1981-10-28 Temperature controller

Publications (1)

Publication Number Publication Date
JPS5875220A true JPS5875220A (en) 1983-05-06

Family

ID=15923824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17147781A Pending JPS5875220A (en) 1981-10-28 1981-10-28 Temperature controller

Country Status (1)

Country Link
JP (1) JPS5875220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3979776A1 (en) * 2020-10-02 2022-04-06 Commissariat à l'Energie Atomique et aux Energies Alternatives Thermal switch with passive actuator for thermal link between two elements, on-board system comprising such a switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3979776A1 (en) * 2020-10-02 2022-04-06 Commissariat à l'Energie Atomique et aux Energies Alternatives Thermal switch with passive actuator for thermal link between two elements, on-board system comprising such a switch
FR3114871A1 (en) * 2020-10-02 2022-04-08 Commissariat A L Energie Atomique Et Aux Energies Alternatives Passive actuator thermal switch for thermal connection between two elements, Embedded system comprising such a switch.

Similar Documents

Publication Publication Date Title
US5508884A (en) System for dissipating heat energy generated by an electronic component and sealed enclosure used in a system of this kind
US3463224A (en) Thermal heat switch
US3525386A (en) Thermal control chamber
JP2000124374A (en) Plate type heat pipe and cooling structure using the same
US4414604A (en) Heat radiation system for electronic devices
JPS5875220A (en) Temperature controller
JP4499984B2 (en) High temperature valve
JP2003179296A5 (en)
JPS5987520A (en) Temperature control device
JPS5876911A (en) Radiation quantity controller
JPS6148166B2 (en)
US3615848A (en) Thermal control for fuel cell module
JPS5844755A (en) Forcibly cooling heat sink
JP2946718B2 (en) Thermal switch for satellite
JPS5822421A (en) Controller for quantity of radiated heat
JPH07169889A (en) Heat sink
US1639708A (en) Thermostat
US2181726A (en) Apparatus for transferring heat
JPS62219013A (en) Radiation controlling heat conduction surface
JPS63149297A (en) Heat controller for artificial satellite
JPH08230797A (en) Heat flow switch of satellite
JPH0682768B2 (en) Heat dissipation control device
JPH02117044A (en) Thermal switch
JPS6328485B2 (en)
JPH07104110B2 (en) Heat dissipation device