JPS5987520A - Temperature control device - Google Patents

Temperature control device

Info

Publication number
JPS5987520A
JPS5987520A JP19768082A JP19768082A JPS5987520A JP S5987520 A JPS5987520 A JP S5987520A JP 19768082 A JP19768082 A JP 19768082A JP 19768082 A JP19768082 A JP 19768082A JP S5987520 A JPS5987520 A JP S5987520A
Authority
JP
Japan
Prior art keywords
heat
substrate
container
projecting parts
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19768082A
Other languages
Japanese (ja)
Inventor
Yuko Saito
斉藤 祐幸
Tomiya Sasaki
富也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19768082A priority Critical patent/JPS5987520A/en
Publication of JPS5987520A publication Critical patent/JPS5987520A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To raise a transfer capacity of heat by forming a thin and wide liquid film which is not varied by elongation of a vessel between a substrate on which a heating element is loaded, and a contact plate which is provided on the bottom part of an elastic vessel and contacts with and is separated from a radiator plate. CONSTITUTION:Plural projecting parts 15 consisting of a good heat conductive member are provided on the reverse side of a substrate 2' on which a heating apparatus 1 is loaded, and also plural projecting parts 16 consisting of a good heat conductive member are provided on a contact plate 9' which is provided on a vessel 7 so as to contact with and be separated from a radiator plate 6. The projecting parts 15, 16 have a narrow gap 19 and are placed on the side face of corresponding grooves 17, 18 which are formed respectively, and a liquid quantity of an operating fluid 10 is set to a quantity by which the gap 19 does not go out from the liquid even if the vessel 7 expands and contracts by a bellows 8. As a result, a liquid film is always formed on the side face of the projecting parts 15, 16 of the gap 19, a heat transfer area formed on the projecting parts 15, 16 is expanded, and a large heat transfer capacity can be obtained.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本9発明け、真空中で使用される機器の温度を一定に制
御する温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a temperature control device for controlling the temperature of equipment used in a vacuum to a constant level.

〔従来技術とその問題点〕[Prior art and its problems]

真空中、特に宇宙空間での温度制御は、放射熱伝達によ
って放熱することにより行っている為放熱量を制御して
機器の温度を所定値に保持することが難しい。又、宇宙
空間にて作動する装置とじては、小板、軽量で、さらに
長い寿命も必要とされる。この為、本発明者に第1図に
示す温度制御装置を提案している。この温度制御装置の
構造及び機構を図を用いて説明する。
Temperature control in a vacuum, especially in outer space, is performed by dissipating heat through radiant heat transfer, so it is difficult to maintain the temperature of equipment at a predetermined value by controlling the amount of heat dissipation. Additionally, equipment operating in space requires small plates, light weight, and long life. For this reason, we proposed the temperature control device shown in FIG. 1 to the present inventor. The structure and mechanism of this temperature control device will be explained using the drawings.

温度制御すべき機器1を搭載した熱伝導性に勝れた部材
と、強度部材との溶接材からなる基板2は、その隅部に
設けた断熱スペーサ3を介してボルト4とナツト5によ
シ図中下方に配置した良熱伝導性部材で形成され図中下
面が高熱放射率に表面処理された放熱板6に間隔をおい
て断熱的に固定されている。7は基板2と放熱板6との
間に配置された伸縮可能な容器で、この容器7は、一端
を基板2の裏面に固定した強度部材でできたベローズ8
とこのベローズ8の他端を閉塞し、前記放熱板6と接離
するように設けられた良熱伝導部材と強度部材との溶接
材で成る接触板9とから構成されている。更にこの容器
7内には、比較的低沸点の作動流体10が封入され、基
板2の裏面に設けられた凸部加がその一部が少なくとも
作動流体10に浸されておシ、作動流体10の蒸気圧に
よって容器7が伸縮するようになっている。なお図にお
いて11は接触板9が放熱板6に接触する温度を設定す
るための調整バネで、接触板9のフランジと基板2に一
端が固着されたバネ11のガイドビン12の他端大径部
の間に設けられている。また図においては温度制御すべ
き機器1は機器本体21をパネル22に装着して構成さ
れている。
A board 2, which is made of a welded material of a member with excellent thermal conductivity and a strength member, on which a device 1 to be temperature controlled is mounted, is connected to a bolt 4 and a nut 5 through a heat insulating spacer 3 provided at its corner. It is adiabatically fixed at intervals to a heat dissipation plate 6 which is made of a member with good thermal conductivity and whose lower surface in the figure has been surface-treated to have a high thermal emissivity. Reference numeral 7 denotes an expandable container placed between the substrate 2 and the heat sink 6, and this container 7 has a bellows 8 made of a strength member fixed to the back surface of the substrate 2 at one end.
It is comprised of a contact plate 9 which closes the other end of the bellows 8 and is made of a welded material of a good heat conductive member and a strength member, which are provided so as to be in contact with and separate from the heat sink plate 6. Further, a working fluid 10 having a relatively low boiling point is sealed in the container 7, and a convex portion provided on the back surface of the substrate 2 is at least partially immersed in the working fluid 10. The container 7 expands and contracts due to the steam pressure. In the figure, reference numeral 11 denotes an adjustment spring for setting the temperature at which the contact plate 9 contacts the heat dissipation plate 6. One end of the spring 11 is fixed to the flange of the contact plate 9 and the substrate 2, and the other end of the guide pin 12 has a large diameter. It is located between the sections. Further, in the figure, the device 1 whose temperature is to be controlled is constructed by mounting a device body 21 on a panel 22.

またさらに符号13は作動流体10が収納された容器7
内に形成された気相で、14ハ液相である。又、図にお
いて、 23.24の部分は、強度部材で、20と9の
部分は熱伝導性にすぐれた部材でなる。
Further, reference numeral 13 denotes a container 7 in which the working fluid 10 is stored.
It is a gas phase formed within the 14-phase liquid phase. Further, in the figure, parts 23 and 24 are strength members, and parts 20 and 9 are members with excellent thermal conductivity.

次に上記構成の放熱量制御装置において、その作用を説
明する。
Next, the operation of the heat radiation amount control device having the above configuration will be explained.

温度制御すべき発熱体となる機器工からの発熱は基板2
に伝達され、更に伸縮可能な容器7内の作動流体10を
加熱する。この場合放熱板6と対向ローズ8によって定
まるバネ力と、容器7内の作動流体10の蒸気圧とが平
衡する条件で定まる。
The heat generated from the equipment, which is the heating element whose temperature should be controlled, is transferred to the board 2.
The working fluid 10 in the expandable container 7 is further heated. In this case, the spring force determined by the heat radiating plate 6 and the opposed rose 8 and the vapor pressure of the working fluid 10 in the container 7 are determined under a condition that they are in equilibrium.

作動流体10が所定温度以上に加熱されて、蒸気圧が上
昇するとベローズ8が伸びて容器7が膨張し、接触板9
が押されて放熱板6に接触し、この接触面で熱伝達が行
なわれ、更に放熱板6から、放射熱伝達により放熱され
、機器1の冷却が行なわれる。
When the working fluid 10 is heated to a predetermined temperature or higher and its vapor pressure increases, the bellows 8 stretches, the container 7 expands, and the contact plate 9
is pressed and comes into contact with the heat radiating plate 6, heat is transferred on this contact surface, and heat is further radiated from the heat radiating plate 6 by radiant heat transfer, thereby cooling the device 1.

このようにして機器1が所定の温度以下に冷却されると
、こnに伴って容器7内の作動流体10の蒸気圧が減少
し、調整バネ11とベローズ8によって定まるバネ力に
よって容器7が収縮して、接触板9が放熱板6から離れ
、放熱が停止する。
When the equipment 1 is cooled to a predetermined temperature or lower in this way, the vapor pressure of the working fluid 10 in the container 7 decreases, and the container 7 is cooled by the spring force determined by the adjustment spring 11 and the bellows 8. Upon contraction, the contact plate 9 separates from the heat sink 6, and heat radiation stops.

以下設定温度を境として容器7の接触板9と放熱板6と
が接離を繰り返すことにより、機器1を所定の温度に自
動的に制御することが出来る。
By repeating contact and separation between the contact plate 9 of the container 7 and the heat sink 6 after reaching the set temperature, the device 1 can be automatically controlled to a predetermined temperature.

ところで、温度制御器がこのような動作をしているとき
、作動流体10は気相13と液相14が共存している状
態である。
By the way, when the temperature controller operates in this manner, the working fluid 10 is in a state where the gas phase 13 and the liquid phase 14 coexist.

そして基板2から接触板9へ良好な熱伝達を行なわせる
ためには、基板2の作動流体に接している面即ち凸部2
0は、液相の作動流体によって覆われていなければなら
ない。
In order to perform good heat transfer from the substrate 2 to the contact plate 9, the surface of the substrate 2 that is in contact with the working fluid, that is, the convex portion 2
0 must be covered by the working fluid in liquid phase.

もし基板2の作動流体10に接している面が全て気相の
作動流体に覆われれば、基板2から接触板9への熱伝達
Fi著しく低下し、温度1itlJ ′@J器の性能低
下をもkら丁ことか考えられる。
If the entire surface of the substrate 2 that is in contact with the working fluid 10 is covered with the gas-phase working fluid, the heat transfer Fi from the substrate 2 to the contact plate 9 will drop significantly, and the temperature 1itlJ'@J will also deteriorate in performance. I can think of it as k-ra-ding.

このため基板2の凸部20の一部は常に液相の作動流体
に覆われるようにすることが必要である。
For this reason, it is necessary that a portion of the convex portion 20 of the substrate 2 is always covered with the liquid-phase working fluid.

この場合基板2と接触板9との間の熱伝達能力は主に凸
部20と接触板9の間に形成される液膜の厚さと面積に
よって定まる。液膜は出来るだけ薄くし、面積は出来る
だけ広くするのが熱伝達性能上望ましい。
In this case, the heat transfer ability between the substrate 2 and the contact plate 9 is determined mainly by the thickness and area of the liquid film formed between the convex portion 20 and the contact plate 9. In terms of heat transfer performance, it is desirable to make the liquid film as thin as possible and make the area as wide as possible.

ところが、基板2の温度が高(なり、放熱能力が最も要
求される時に、容器は伸び、液膜の厚さも厚くなり放熱
能力の低下の虞がある。
However, when the temperature of the substrate 2 becomes high and heat dissipation capability is most required, the container stretches and the liquid film becomes thicker, which may reduce the heat dissipation capability.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みてなされたものであシ、
基板と接触板の間に容器の伸びによって変化しない薄(
て広い液膜を形成し、基板から接触板への熱伝達を良好
ならしめようとするものである。
The present invention has been made in view of these circumstances.
There is a thin (
The purpose is to form a wide liquid film and improve heat transfer from the substrate to the contact plate.

以下本発明の一実施例を第2図を用いて説明する。なお
、第1図と同一部位についてに同符号を付けて説明を省
略する。
An embodiment of the present invention will be described below with reference to FIG. Note that the same parts as in FIG. 1 are given the same reference numerals and their explanations will be omitted.

図において符号15は機器1を搭載した基板2′の裏面
に設けられた断面形状が矩形の複数個の熱伝導性にすぐ
れた部材でなる突出部であシ、16は放熱板6と接離す
るように容器7に設けられた接触板9′の容器内面側に
突出した複数の15同様、良熱伝導部材でなる突出部で
、両方の突出部15.16Fi各々に形成される対応す
る溝17 、18に側面に狭い間隙19を有して配置さ
れる。突出部1.5 、16の突出高さは容器7が伸縮
しても各対応する側面に光分な間隙19を形成する寸法
に設定され、作動流体10の液量は容器7が伸縮しても
間隙19が液内から出ない量に設定される。これにより
間隙19の突出部15 、16の側面には常に液膜が形
成される。
In the figure, reference numeral 15 indicates a protrusion made of a plurality of highly thermally conductive members with a rectangular cross-sectional shape provided on the back surface of the board 2' on which the device 1 is mounted, and 16 indicates a protrusion that connects and separates from the heat sink 6. Similar to the plurality of protrusions 15 protruding from the inner surface of the container 9' of the contact plate 9' provided on the container 7, these protrusions are made of a material with good thermal conductivity, and the corresponding grooves formed in each of the protrusions 15 and 16Fi are 17 and 18 with a narrow gap 19 between the sides. The protrusion heights of the protrusions 1.5 and 16 are set to such a size that even when the container 7 expands and contracts, a light-sized gap 19 is formed on each corresponding side surface, and the amount of the working fluid 10 is adjusted so that the volume of the working fluid 10 is determined according to the expansion and contraction of the container 7. The gap 19 is also set to an amount that does not come out from within the liquid. As a result, a liquid film is always formed on the side surfaces of the protrusions 15 and 16 in the gap 19.

このような構成であると、機器1の発熱量が増大すると
、機器1で発生した熱によって容器7内の作動流体10
が加熱され、この結果、容器7内の圧力が上昇する。こ
のため、容器7そ構成するベローズ8が伸長し、容器7
内の圧力がある値まで上昇すると、上記伸長によって接
触板9′が放熱板6に接触する。こうなると、機器1か
ら基板2′を介して伝えられた熱は、作動流体10の突
出部15゜16の表面に形成された薄い液膜の伝導作用
で接触板9′を介して放熱板6に伝達される。すなわち
基板2′に伝えられた熱はその突出部15から溝17 
、18内の作動流体10の間隙19に形成された液膜を
通じて溝17 、1.8に挿入された接触板9′の突出
部16に伝えられ、接触板9′を加熱し、この接触板9
′が接触した放熱板6から外に対し放熱される。これに
よって機器1の温度がある値に抑えられることになる。
With such a configuration, when the amount of heat generated by the device 1 increases, the heat generated by the device 1 causes the working fluid 10 in the container 7 to
is heated, and as a result, the pressure inside the container 7 increases. For this reason, the bellows 8 constituting the container 7 expands, and the container 7
When the internal pressure rises to a certain value, the contact plate 9' comes into contact with the heat sink 6 due to the above expansion. In this case, the heat transferred from the device 1 through the substrate 2' is transferred to the heat sink 6 through the contact plate 9' due to the conduction effect of the thin liquid film formed on the surface of the protruding portions 15 and 16 of the working fluid 10. transmitted to. That is, the heat transferred to the substrate 2' is transferred from the protrusion 15 to the groove 17.
, 18 through the liquid film formed in the gap 19 of the working fluid 10 to the protrusion 16 of the contact plate 9' inserted in the groove 17, 1.8, heating the contact plate 9' and causing the contact plate to heat up. 9
' is radiated to the outside from the heat sink 6 that is in contact with the heat dissipation plate 6. This allows the temperature of the device 1 to be suppressed to a certain value.

々お上記液膜の厚さは容器7が伸縮しても変化しないの
で安定した薄い液膜を得ることが出来る。一方、機器1
の発熱量が少ない場合には、作動流体10に伝えられる
熱量も少なくなシ、この熱量がある値より少なくなると
容器7内の圧力が低下し、この結果、ベローズ8〃5収
縮して接触板9′が放熱板6から離れる。こうなると、
機器1の冷却が抑えられ、機器1は発熱量と放熱板6を
含まない放熱量とがバランスする温度に保たれることに
なる。し穴がって、予め、温度と容器7の伸縮特性とを
所望に設定しておけば機器1の温度を一定に保つことが
できる。又基板2′と接触板9′に設けた突出部15 
、16を小さなピッチで設ければその突出部15 、1
6に形成される液膜の面積即ち熱伝達面積を著しく拡大
することが出来、大きな伝達能力を得ることが出来る。
Since the thickness of the liquid film does not change even if the container 7 expands and contracts, a stable and thin liquid film can be obtained. On the other hand, device 1
When the amount of heat generated is small, the amount of heat transferred to the working fluid 10 is also small. When this amount of heat becomes less than a certain value, the pressure inside the container 7 decreases, and as a result, the bellows 8 5 contracts and the contact plate 9' is separated from the heat sink 6. This happens when,
Cooling of the device 1 is suppressed, and the device 1 is maintained at a temperature where the amount of heat generated and the amount of heat radiated without the heat sink 6 are balanced. However, if the temperature and the expansion/contraction characteristics of the container 7 are set as desired in advance, the temperature of the device 1 can be kept constant. Also, the protrusion 15 provided on the substrate 2' and the contact plate 9'
, 16 are provided at a small pitch, the protrusions 15 , 1
The area of the liquid film formed in 6, that is, the heat transfer area can be significantly expanded, and a large transfer capacity can be obtained.

以上説明したように本発明によれば、簡単な構成でより
良好な熱伝達特性が得られ、小型、軽量で、長時間安定
した機能を発揮させることが出来、しかも信頼性に富ん
だ温度制御装置を提供出来る。
As explained above, according to the present invention, it is possible to obtain better heat transfer characteristics with a simple configuration, to be compact and lightweight, to exhibit stable functions for a long time, and to achieve highly reliable temperature control. We can provide equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度制御装置を示す断面図、第2図は本発明の
一実施例を示す断面図である。 去・・・機器、2′・・・基板、6・・・放熱板、7・
・・容器、8・・・ベローズ、9′・・・接触板、1o
・・・作動流体、15゜16・・・突出部、17 、1
8・・・溝、19・・・間隙。
FIG. 1 is a sectional view showing a temperature control device, and FIG. 2 is a sectional view showing an embodiment of the present invention. Left...equipment, 2'...board, 6...heat sink, 7.
...Container, 8...Bellows, 9'...Contact plate, 1o
...Working fluid, 15°16...Protrusion, 17, 1
8...Groove, 19...Gap.

Claims (1)

【特許請求の範囲】[Claims] 温度制御すべき発熱体となる機器を一面に搭載する基板
と、この基板の他面側に位置し、これと間隔をおいて断
熱的に固定された放熱板と、この放熱板と前記基板との
間に位置し、一方の端部基板に固定し、他方の端面が放
熱板と接触するように設けられた伸縮可能な容器と前記
基板と、この基板に対向し放熱板に接触する前記容器底
面とに、強度的に丁ぐれた部材と軽くて熱伝導の丁ぐれ
た部材とからなる溶接材を使って、装置全体を署量かつ
コンパクトな構成としたことを特徴とする温度制御装置
A board on which a device serving as a heat generating element whose temperature is to be controlled is mounted on one side, a heat sink located on the other side of the board and fixed adiabatically at a distance from the board, and a heat sink and the board mounted on one side. an expandable container located between the substrate and fixed to one end of the substrate and provided with the other end surface in contact with the heat sink; and the container facing the substrate and in contact with the heat sink. A temperature control device characterized in that the entire device has a simple and compact structure by using a welded material made of a strong material and a light and heat conductive material on the bottom surface.
JP19768082A 1982-11-12 1982-11-12 Temperature control device Pending JPS5987520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19768082A JPS5987520A (en) 1982-11-12 1982-11-12 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19768082A JPS5987520A (en) 1982-11-12 1982-11-12 Temperature control device

Publications (1)

Publication Number Publication Date
JPS5987520A true JPS5987520A (en) 1984-05-21

Family

ID=16378551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19768082A Pending JPS5987520A (en) 1982-11-12 1982-11-12 Temperature control device

Country Status (1)

Country Link
JP (1) JPS5987520A (en)

Similar Documents

Publication Publication Date Title
US3463224A (en) Thermal heat switch
US5508884A (en) System for dissipating heat energy generated by an electronic component and sealed enclosure used in a system of this kind
US3532158A (en) Thermal control structure
US4162701A (en) Thermal control canister
US3399717A (en) Thermal switch
US4212346A (en) Variable heat transfer device
US4104507A (en) PTC heater for enhancing thermal actuator response
JPH02125457A (en) Heat transfer device
US3673306A (en) Fluid heat transfer method and apparatus for semi-conducting devices
US4414604A (en) Heat radiation system for electronic devices
US3502138A (en) Means for regulating thermal energy transfer through a heat pipe
US3269875A (en) Thermoelectric assembly with heat sink
US4454910A (en) Heat radiation control device
JPS5987520A (en) Temperature control device
KR101684327B1 (en) Complex Specifics Testing Apparatus for Thermoelectric Element
JP2004162733A (en) Valve coping with high temperature
JPS5876911A (en) Radiation quantity controller
US3615848A (en) Thermal control for fuel cell module
JPS5875220A (en) Temperature controller
JPS6148166B2 (en)
JPH02117044A (en) Thermal switch
CA1086078A (en) Thermal actuator and heater for same
KR200240139Y1 (en) thermoelectric use of heating and cooling with realization unit
JP2001053342A (en) Thermoelectric heater and cooler
JPS60117090A (en) Heat dissipation control device