JPS60117090A - Heat dissipation control device - Google Patents

Heat dissipation control device

Info

Publication number
JPS60117090A
JPS60117090A JP58224149A JP22414983A JPS60117090A JP S60117090 A JPS60117090 A JP S60117090A JP 58224149 A JP58224149 A JP 58224149A JP 22414983 A JP22414983 A JP 22414983A JP S60117090 A JPS60117090 A JP S60117090A
Authority
JP
Japan
Prior art keywords
heat
temperature
shape memory
control device
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58224149A
Other languages
Japanese (ja)
Inventor
Toshio Hatada
畑田 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58224149A priority Critical patent/JPS60117090A/en
Publication of JPS60117090A publication Critical patent/JPS60117090A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/46Arrangements or adaptations of devices for control of environment or living conditions
    • B64G1/50Arrangements or adaptations of devices for control of environment or living conditions for temperature control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Abstract

PURPOSE:To obtain a heat dissipation control device with high reliability such as an apparatus loaded in artificial satellite or the like by a structure wherein elastic spheres containing fluid heat transfer medium therein and interposed between an expansion container and a radiator plate. CONSTITUTION:Heat transfer medium 11 is a fluid made of single phase substance, which is excellent in heat conduction. In addition, three kinds of shape memory alloys 8, 9 and 10 have higher working temperatures in the order named. The heat transfer medium 11 excellent in heat conduction is encapsulated in elastic spheres 12. When an apparatus loaded develops heat and the temperature of a panel 2 rises, the temperature in an expansion container 14 also rises. When said temperature in the container 14 reaches the specified value, at first, a shape memory alloy spring 8 extends so as to press a contactor plate 5 against the elastic spheres 12. The heat in the expansion container 14 is transmitted in the order of the contactor plate 5, the elastic spheres 12 and a radiator plate 6 in order to be dissipated in cosmic space. In proportion to the further increase of the calofic value of the apparatus 1, the shape memory alloys 9 and 10 extend in the order named, resulting in making the elastic spheres 12 flatter and flatter and consequently the heat quantity to be conducted to the radiator plate 6 more and more. Thus, the quantity of heat dissipation increases in proportion to the calorific value of the apparatus 1, resulting in keeping the temperature in the apparatus 1 at the specified value.

Description

【発明の詳細な説明】 〔発明の利用分野〕 一本発明は、放熱制御装置に係り、特に人工衛星など宇
宙産業機器に用いるのに好適な放熱制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat radiation control device, and particularly to a heat radiation control device suitable for use in space industrial equipment such as artificial satellites.

〔発明の背景〕[Background of the invention]

宇宙産業は今後の成長産業であり、宇宙環境での熱制御
、特に人工衛星搭載機器の放熱制御技術の確立は重要な
課題となっている。
The space industry is a growing industry in the future, and establishing heat control technology in the space environment, especially heat radiation control technology for equipment onboard satellites, has become an important issue.

まず、従来の放熱制御装置を第1図および第2図を参照
して説明する。
First, a conventional heat radiation control device will be explained with reference to FIGS. 1 and 2.

第1図は、従来の放熱制御装置の略示断面図、第2図は
、そり動作特性図である。
FIG. 1 is a schematic cross-sectional view of a conventional heat radiation control device, and FIG. 2 is a warping operation characteristic diagram.

第1図において、1は人工衛星搭載機器等の搭載機器で
、2は搭載機器1の底部に設けられたノ(ネルである。
In FIG. 1, numeral 1 indicates onboard equipment such as equipment onboard an artificial satellite, and numeral 2 indicates a channel provided at the bottom of the onboard equipment 1.

3は温度により圧力の変化する作動媒体、4はイ41縮
容器で、蛇腹等の伸縮体4aと接離板5とで構成され、
パネル2に取付けられており、作動媒体3が入っている
。伸縮容器4の丁には放熱板6が設けられている。
3 is a working medium whose pressure changes depending on the temperature; 4 is a compression container; it is composed of an elastic body 4a such as a bellows and a contact/separation plate 5;
It is attached to the panel 2 and contains the working medium 3. A heat sink 6 is provided at the end of the expandable container 4.

搭載機器1の発熱量が増すと、作動媒体3の温度が上昇
するので伸縮容器4の内圧力が増す。このため伸縮容器
4は伸ばされ、容器内が一定温度以上になると、接離板
5が放熱板6に押しつけられる。このため、太い白矢印
7に示す放熱量が増し、伸縮容器4内温度及び搭載機器
1の温度は、ある発熱量の範囲で一定温度に保たれる。
When the amount of heat generated by the mounted equipment 1 increases, the temperature of the working medium 3 increases, and therefore the internal pressure of the expandable container 4 increases. Therefore, the expandable container 4 is stretched, and when the temperature inside the container reaches a certain level or higher, the contact/separation plate 5 is pressed against the heat sink 6. Therefore, the amount of heat radiation shown by the thick white arrow 7 increases, and the temperature inside the expandable container 4 and the temperature of the mounted equipment 1 are maintained at a constant temperature within a certain range of calorific value.

搭載機器1の温度変化を第2図に示す。ここで横軸のQ
は搭載機器発熱屋、縦軸のTは温度である。
Figure 2 shows the temperature change of the onboard equipment 1. Here, Q on the horizontal axis
is the heat generated by the onboard equipment, and T on the vertical axis is the temperature.

このような従来の放熱制御装置には、以下のような問題
点があった。
Such conventional heat radiation control devices have the following problems.

(1)作動媒体3は冷媒などが用いられるが、一般に温
度、圧力、かわき度によって熱伝達率が異なる。つまり
、伸縮容器4内の熱抵抗は状態によって異なるので、制
御性が悪い。
(1) A refrigerant or the like is used as the working medium 3, and the heat transfer coefficient generally varies depending on temperature, pressure, and degree of freshness. In other words, the thermal resistance inside the expandable container 4 varies depending on the state, so controllability is poor.

(2)接離板5と放熱板6は適宜材質の平板どうしの押
しつ番プによる接触形態をとっている。この場合、両平
板の表面あらさ、よごれなどにより接触熱抵抗は大きく
左右される。何回が接触。
(2) The contact/separation plate 5 and the heat dissipation plate 6 are in contact with each other by pressing and pressing flat plates made of an appropriate material. In this case, the contact thermal resistance is greatly influenced by the surface roughness, dirt, etc. of both flat plates. How many times is it in contact?

前説をくり返して行くうちに、上記表面性状は変化する
ことが子息され、接触熱抵抗もそれにともなって値が変
ることが懸念される。さらに、第1図の装置の例では、
小さなゴミなどが両平板の間にはさまると、たちまち接
触熱抵抗が大きく増太し、放熱効果が激減する可能性が
あった。
As the previous discussion is repeated, the surface properties mentioned above will change, and there is a concern that the value of the contact thermal resistance will change accordingly. Furthermore, in the example of the device shown in FIG.
If small particles were to get caught between the two flat plates, the contact thermal resistance would immediately increase significantly, potentially drastically reducing the heat dissipation effect.

〔発明の[1的〕 本発明は、前述の従来技術の問題点を解決するためにな
されたもので、人工衛星搭載機器等の内部温度を制御す
るための放熱制御性が良く、信頼性の高い放熱制御装置
を提供することを、その目的としている。
[Object 1 of the Invention] The present invention has been made to solve the problems of the prior art described above, and has good heat dissipation controllability and reliability for controlling the internal temperature of equipment on board an artificial satellite. The purpose is to provide a high heat radiation control device.

〔発明の概要〕[Summary of the invention]

本発明に係る放熱制御装置の構成は、熱伝導の優れた流
体の熱媒体および当該熱媒体の異なる温度で作動する複
数の形状記憶合金製弾性部材を内蔵し、当該記憶合金製
弾性部材の作動で伸縮する伸縮容器と、放熱板とを備え
、前記伸縮容器とnif記放熱板との間に、熱伝導の優
れた流体の熱媒体を内蔵する1個または複数個の伸縮体
を介在させるようにしたものである。
The configuration of the heat radiation control device according to the present invention includes a fluid heat medium with excellent heat conduction and a plurality of shape memory alloy elastic members that operate at different temperatures of the heat medium, and the memory alloy elastic members operate. The method includes an expandable container that expands and contracts at a temperature of 100 degrees, and a heat sink, and one or more expandable bodies containing a fluid heat medium with excellent thermal conductivity are interposed between the expandable container and the heat sink. This is what I did.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図ないし第5図を参照し
て説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 3 to 5.

第:3図は、本発明の一実施例に係る放熱制御装置の略
示断面p1、第4図は、第3図の装置の作動状況を示す
略示断面図、第5図は、その動作特性図である。図中、
第1図と同一番号のものは、従来技1tiと同等部分を
示している。
Figure 3 is a schematic cross-sectional view p1 of a heat radiation control device according to an embodiment of the present invention, Figure 4 is a schematic cross-sectional view showing the operating status of the device in Figure 3, and Figure 5 is its operation. It is a characteristic diagram. In the figure,
The same numbers as in FIG. 1 indicate parts equivalent to the conventional technique 1ti.

第3図において、14は伸縮容器で、蛇腹等の伸縮体1
4ζλと接離板5で構成され、搭載機器1のパネル2に
数句けられている。11は熱伝導の優れた流体の熱媒体
である。8,9.10は3種類の形状記憶合金製の弾性
部材に係るバネで、伸縮容s:+ 14内の熱媒体11
中に並列に装着さ扛ている。
In Fig. 3, 14 is a telescopic container, and a telescopic body 1 such as a bellows.
4ζλ and a contact/separation plate 5, which are marked on the panel 2 of the on-board equipment 1. 11 is a fluid heat medium with excellent heat conduction. 8, 9, and 10 are springs related to elastic members made of three types of shape memory alloys, and the heat medium 11 in the expansion/contraction volume s: + 14
They are mounted in parallel inside.

熱媒体11は、容器内部の圧力、温度によって大きく熱
伝導率が変化しない単相物質の流体である。また、3種
類の形状記憶合金は、特定の温度になると伸びるタイプ
のもので、それぞれ、その作動温度を異にする。本例で
は、8,9.j’、oの順に作動温度が高くなっている
。。
The heat medium 11 is a single-phase fluid whose thermal conductivity does not change significantly depending on the pressure and temperature inside the container. Additionally, the three types of shape memory alloys are types that elongate when a specific temperature is reached, and each has a different operating temperature. In this example, 8, 9. The operating temperature increases in the order of j' and o. .

12は伸縮体で、ゴム、プラスチック系材料など伸縮容
器の球体の内部に熱伝導の優れた熱媒体11が入ってお
り、伸縮容器14のJ底部に設けられている接離板5と
、その下部に位置する放熱板6との間に複数個介在する
。伸縮体12は接着板5の押し付は圧力により州内形に
変形し、接離板5から放熱板6への熱伝達面積を増すも
のである。
Reference numeral 12 denotes an elastic body, which contains a heat medium 11 with excellent thermal conductivity inside the spherical body of an elastic container made of rubber or plastic material. A plurality of heat dissipating plates 6 are interposed between the heat dissipating plate 6 and the heat dissipating plate 6 located at the bottom. The elastic body 12 is deformed into an inner shape by pressure when the adhesive plate 5 is pressed, increasing the heat transfer area from the contact/separation plate 5 to the heat dissipation plate 6.

このような放熱制御装置の作用について説明する。The operation of such a heat radiation control device will be explained.

放熱制御装置の使用される用途は多様であるが、主とな
るものは宇宙空間を移動する人工衛星においてその必要
性が大きい。このような用途において第3図に示す放熱
板6の外部は宇宙空間に暴露されており、輻射により熱
放射7が行われる。いま、搭載機器1が発熱し、パネル
2の温度が上Hすると、熱媒体11を、介した熱伝導に
より伸縮容器14の内部の温度も上昇する。伸縮容器1
4の内部が特定の温度に達すると、まず形状記憶合金製
バネ8が伸びて2接離板5を押しつける。このとき、接
離板5は伸縮体12を押しつけるので、伸縮体4aが伸
び伸縮体12は接離板5と放熱板6の間で楕円形に変形
して固定される。伸縮容器14内の熱は接離板4.伸縮
球12、放熱板6の順に伝わり、太い自矢印7のように
宇宙空間へ放射さiする。搭載機器1の発熱量が増すと
、伸縮容器14内温度は更に上昇し、今度は形状記憶合
金製バネ9が伸びる。このとき、伸縮線12は一層押シ
7−〕けらJbて扁平状に変形し、接離板5と放熱板6
に対する熱伝達接触面積が増すので伝導熱量が11η(
1,、放熱量が増す。この状況を示したのが第4図であ
る。搭載機器1の発熱量がもつと大きい場合は、同様の
作用によって形状記憶合金製バネ10が伸び、伸縮線1
2は更に扁平となって伝導熱上(が多くなる。
Heat radiation control devices are used for a variety of purposes, but are primarily needed in artificial satellites moving in outer space. In such applications, the outside of the heat sink 6 shown in FIG. 3 is exposed to outer space, and heat radiation 7 is performed by radiation. Now, when the mounted equipment 1 generates heat and the temperature of the panel 2 rises, the temperature inside the expandable container 14 also rises due to heat conduction through the heat medium 11. Expandable container 1
When the inside of 4 reaches a specific temperature, first, the shape memory alloy spring 8 stretches and presses the 2 contact and separation plates 5. At this time, the contact/separation plate 5 presses the expandable body 12, so that the expandable body 4a expands and the stretchable body 12 is deformed into an elliptical shape between the contact/separation plate 5 and the heat dissipation plate 6 and fixed. The heat inside the expandable container 14 is transferred to the separation plate 4. It is transmitted in this order to the extensible ball 12 and the heat sink 6, and is radiated into outer space as shown by the thick self-arrow 7. When the amount of heat generated by the mounted equipment 1 increases, the temperature inside the expandable container 14 further increases, and the shape memory alloy spring 9 expands. At this time, the elastic wire 12 is further pushed out and deformed into a flat shape, and the contact/separation plate 5 and the heat dissipation plate 6
Since the heat transfer contact area increases, the amount of conducted heat increases to 11η(
1. The amount of heat dissipation increases. Figure 4 shows this situation. When the amount of heat generated by the mounted equipment 1 is large, the shape memory alloy spring 10 expands due to the same action, and the expansion line 1
2 becomes even flatter and conductive heat increases.

以−1説明し、たよう1こ、本実施例による放熱制御′
iA暦では、搭載It$、器Jの発熱基に応じて放熱量
が増す作用をなし、搭載機塁1内部の温度を特定の値に
保つことができる。この模様を動作特性図としてグラフ
化したのが第5図である。
The heat radiation control according to this embodiment will be explained below.
In the iA calendar, the amount of heat dissipated increases according to the onboard It$ and the heat generation base of the vessel J, and the temperature inside the onboard base 1 can be maintained at a specific value. FIG. 5 is a graph of this pattern as an operating characteristic diagram.

第5図において、横軸のQは搭載機器lの発熱量、縦軸
のTは温度であり、第2図に示した従来の放熱制御装置
の動作特性にくらべ、制御範囲が長く安定していること
が明らかである。
In Figure 5, Q on the horizontal axis is the amount of heat generated by the onboard equipment l, and T on the vertical axis is the temperature.Compared to the operating characteristics of the conventional heat radiation control device shown in Figure 2, the control range is long and stable. It is clear that there are

本実施例の放熱制御装置によ汎ば、従来の放熱制御装置
にくらべ、次のような大きな利点がある。
The heat radiation control device of this embodiment has the following major advantages over conventional heat radiation control devices.

(1)伸縮容器14の内部は熱伝導率が知れた材質の単
相物体であるので、変動が小さく制御性が良い。
(1) Since the inside of the expandable container 14 is a single-phase object made of a material with known thermal conductivity, fluctuations are small and controllability is good.

(2)形状記憶合金製のバネ3,9.10を利用しでお
り、その動作が確実である。
(2) The springs 3, 9, and 10 made of shape memory alloy are used, and their operation is reliable.

(3)放熱は伸縮線12の接部面積の変化という明確な
メカニズムを用いて行われており、接離板5、放熱板6
の表面状況の変化に左右されず、放熱制御装置の安定性
が良い。
(3) Heat dissipation is carried out using a clear mechanism of changing the contact area of the elastic wire 12.
The heat radiation control device has good stability regardless of changes in surface conditions.

(4)接離板5.放熱板6の表面などに砂やゴミなどが
付着しても、制御性に大きな影響がなく放熱制御装置の
(d頼性が高い。
(4) Separation plate 5. Even if sand or dirt adheres to the surface of the heat sink 6, the controllability is not significantly affected and the reliability of the heat dissipation control device is high.

次に1本発明の他の実施例を第6図を参照して説明する
Next, another embodiment of the present invention will be described with reference to FIG.

第6図は、本発明の他の実施例に係る放熱制御装置の略
示断面図である。図中、第3図と同一・符号のものは先
の実施例と同等の部分であるから、その説明を省略する
FIG. 6 is a schematic cross-sectional view of a heat radiation control device according to another embodiment of the present invention. In the figure, the same parts and symbols as those in FIG. 3 are the same parts as in the previous embodiment, so the explanation thereof will be omitted.

第6図において、15は、伸縮容器で、伸縮体15aと
接離板5で構成され、搭載機器1のパネル2に取?=J
’ tブられている。16.17は2種類の形状記憶合
金製の弾性部材に係るバネで、伸縮容器15内の熱媒体
11中に直列に装着されており、16.17の順に作動
温度が高くなる形状記憶合金が用いられている。
In FIG. 6, reference numeral 15 denotes a telescoping container, which is composed of a telescoping body 15a and a detachable plate 5, and is attached to the panel 2 of the mounted equipment 1. =J
't has been blocked. Reference numerals 16 and 17 indicate springs made of two types of elastic members made of shape memory alloys, which are installed in series in the heat medium 11 in the expandable container 15, with the shape memory alloys having higher operating temperatures in the order of 16.17. It is used.

このような放熱制御装置の作用を説明する。The operation of such a heat radiation control device will be explained.

岳IJi機器1が発熱し、パネル2の温度が上昇すると
、熱媒体11を介した熱伝導により伸縮容器15の内部
の温度も上昇する。伸縮容器15の内部が特定の調度な
達すると、まず形状記憶合金製バネ16が沖びて、形状
記憶合金製バネ17を経て接離板5を押し、伸縮体15
aは伸び、伸縮線12は接m1反5と放熱板6の間で楕
円状に変形して固定される。伸縮容器15内の熱は接離
@5、伸縮ERJ2、放熱板6の順に伝わり、太い白矢
印7のよりに宇宙空間l\放射される。搭載機器1の発
熱量が増すと、伸縮容器15内温度は更に上昇し、今度
は形状記憶合金製バネ17が伸びる。そこで、形状記憶
合金製バネ16.17の重畳した伸び力で伸縮線12は
一層押しつけられて扁平状に変形し、接離板5と放熱板
6に対する接触面積が増すので伝導熱量が増し、放熱量
が増す。この状況を示したのが第6図である。
When the Gake IJi device 1 generates heat and the temperature of the panel 2 rises, the temperature inside the expandable container 15 also rises due to heat conduction via the heat medium 11. When the inside of the expandable container 15 reaches a certain level, the shape memory alloy spring 16 first moves out and pushes the contact/separation plate 5 via the shape memory alloy spring 17, and the expandable body 15
a is expanded, and the elastic wire 12 is deformed into an ellipse between the tangent m1 and the heat sink 6 and fixed. The heat inside the expandable container 15 is transmitted in the order of the contact/detachment@5, the expandable ERJ2, and the heat sink 6, and is radiated into outer space in the direction of the thick white arrow 7. When the amount of heat generated by the mounted equipment 1 increases, the temperature inside the expandable container 15 further increases, and the shape memory alloy spring 17 expands. Therefore, due to the superimposed stretching force of the shape memory alloy springs 16 and 17, the elastic wire 12 is further pressed and deformed into a flat shape, and the contact area between the separation plate 5 and the heat sink plate 6 increases, so the amount of heat conducted increases and is dissipated. The amount of heat increases. Figure 6 shows this situation.

このようにして、形状記憶合金製バネ16゜17が直列
に伸縮容器15内に装着された放熱制御装置の場合も、
先の第3図に示した形状記憶合金製バネ8,9.10が
伸縮容器14内に、並列に装着された放熱制御装置の場
合と同様の効果が達せられる。
In this way, also in the case of a heat radiation control device in which the shape memory alloy springs 16 and 17 are installed in the expandable container 15 in series,
The same effect as in the case of the heat radiation control device in which the shape memory alloy springs 8, 9, and 10 shown in FIG. 3 are mounted in parallel in the expandable container 14 can be achieved.

なお、前記の実施例では、形状記憶合金製バネは2個直
列(第6図)、3個並列(第3図)装着の例を説明した
が、その個数は必要に応じ設計すべきものであり、並列
と直列を組合わせた構造の装置でも、相応の効果が期待
されるものである。
In addition, in the above embodiment, two shape memory alloy springs were installed in series (Fig. 6) and three in parallel (Fig. 3), but the number should be designed according to necessity. Even devices with a combination of parallel and series structures are expected to have corresponding effects.

また、前記の実施例は、人工衛星搭載機器に供せられる
放熱制御装置の例を説明したが、本発明は人工衛星搭載
機器のみに限らず、同等の効果が期待でさるg:器に係
る放熱制御装置の範囲で汎用的なものである。
In addition, although the above-mentioned embodiment describes an example of a heat radiation control device provided for equipment onboard an artificial satellite, the present invention is not limited to equipment onboard an artificial satellite, and is expected to have similar effects. It is a general-purpose device in the range of heat radiation control devices.

〔発明の効果〕〔Effect of the invention〕

以上述パたように、本発明によれば、人工衛星搭載機器
等の内部温度を制御するための放熱制御性が良く、li
t頼性の高い放熱制御装置i!を提供することができる
As described above, according to the present invention, heat dissipation controllability for controlling the internal temperature of equipment onboard an artificial satellite, etc. is good, and li
tHighly reliable heat radiation control device i! can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の放熱制御装置の略示断面図、第2図は
、その動作特性図、第3図は1本発明の一実施例に係る
放熱制御装置の略示断面図、第4図は、第3図の装置の
作動状況を示す略示断面図、第5図は、その動作特性図
、第6図は、本発明の他の実施例に係る放熱制御装置の
略示断面図である。 ■・・・ig a機器、2・・・パネル、5・・・接離
板、6・・・放熱板、8,9..10.16.17・・
・形状記憶合金代理人 弁理士 高橋明矢 イ 1 巴 竿 2 n □ Q 竿4目 一一÷Q 穿乙邑
1 is a schematic cross-sectional view of a conventional heat radiation control device, FIG. 2 is a diagram of its operating characteristics, FIG. 3 is a schematic cross-sectional view of a heat radiation control device according to an embodiment of the present invention, and FIG. 3 is a schematic cross-sectional view showing the operating status of the device shown in FIG. 3, FIG. 5 is a diagram showing its operating characteristics, and FIG. 6 is a schematic cross-sectional view of a heat radiation control device according to another embodiment of the present invention. It is. ■...ig a equipment, 2... Panel, 5... Separation plate, 6... Heat sink, 8, 9. .. 10.16.17...
・Shape memory alloy agent Patent attorney Akiya Takahashi 1 Tomoe pole 2 n □ Q pole 4 eyes 11 ÷ Q Kakutsumura

Claims (1)

【特許請求の範囲】 ■、熱伝導の優れた流体の熱媒体および当該熱媒体の異
なる温度で作動する複数の形状記憶合金製弾性部材を内
蔵し、当該記憶合金製弾性部材の作動で伸縮する伸縮容
器と、放熱板とを備え、前記伸縮容器と前記放熱板との
間に、熱伝導の優れた流体の熱媒体を内蔵する1個また
は複数個の伸縮球を介在させるように構成したことを特
徴とする放熱制御装置。 2、複数の形状記憶合金製弾性部材を伸縮容器内に並列
に装着したものである特許請求の範囲第1項記載の放熱
制御装置。 3、複数の形状記憶合金製弾性部材を伸縮容器内に直列
に装着したものである特許請求の範囲第1項記載の放熱
制御装置。
[Claims] ■ Contains a fluid heat medium with excellent thermal conductivity and a plurality of shape memory alloy elastic members that operate at different temperatures of the heat medium, and expands and contracts by the operation of the memory alloy elastic members. A retractable container and a heat radiating plate are provided, and one or more retractable balls containing a fluid heat medium with excellent thermal conductivity are interposed between the retractable container and the heat radiating plate. A heat radiation control device featuring: 2. The heat radiation control device according to claim 1, wherein a plurality of elastic members made of shape memory alloy are mounted in parallel in an expandable container. 3. The heat radiation control device according to claim 1, wherein a plurality of elastic members made of shape memory alloy are mounted in series within an expandable container.
JP58224149A 1983-11-30 1983-11-30 Heat dissipation control device Pending JPS60117090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224149A JPS60117090A (en) 1983-11-30 1983-11-30 Heat dissipation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224149A JPS60117090A (en) 1983-11-30 1983-11-30 Heat dissipation control device

Publications (1)

Publication Number Publication Date
JPS60117090A true JPS60117090A (en) 1985-06-24

Family

ID=16809307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224149A Pending JPS60117090A (en) 1983-11-30 1983-11-30 Heat dissipation control device

Country Status (1)

Country Link
JP (1) JPS60117090A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272072A (en) * 1986-05-19 1987-11-26 工業技術院長 Selective cooling device
JPH0474199U (en) * 1990-11-09 1992-06-29
BE1008381A3 (en) * 1994-01-05 1996-04-02 Verhaert Paul Radiator equipment for transfer of heat in space
TWI785778B (en) * 2021-09-06 2022-12-01 可成科技股份有限公司 Heat dissipation mechanism and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272072A (en) * 1986-05-19 1987-11-26 工業技術院長 Selective cooling device
JPH0474199U (en) * 1990-11-09 1992-06-29
BE1008381A3 (en) * 1994-01-05 1996-04-02 Verhaert Paul Radiator equipment for transfer of heat in space
TWI785778B (en) * 2021-09-06 2022-12-01 可成科技股份有限公司 Heat dissipation mechanism and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US3651865A (en) Cooled electronic equipment mounting plate
US3463224A (en) Thermal heat switch
US3681929A (en) Thermoelectric device
US4212346A (en) Variable heat transfer device
US4602314A (en) Heat conduction mechanism for semiconductor devices
US3596713A (en) Liquid-solid heat transport system
US5535815A (en) Package-interface thermal switch
US10656688B2 (en) Thermal management system including an elastically deformable phase change device
US3399717A (en) Thermal switch
EP3509099A1 (en) Thermal heatsink
US3177933A (en) Thermal switch
JPS60117090A (en) Heat dissipation control device
US3390717A (en) Heat transfer device
US2808576A (en) Valve mounting structure
CN213755463U (en) Heat radiation structure and electronic equipment
CN105990274B (en) A kind of heat conducting film and preparation method thereof
CN110536586B (en) Immersed cooling device
JPH02166755A (en) Heat transfer sheet
JP2016008785A (en) Cooling plate
CN204577416U (en) A kind of heat conducting film
US3615848A (en) Thermal control for fuel cell module
JPH06510638A (en) Cooling system for multiple chip modules
JPS604244A (en) Semiconductor cooling device
US20200355442A1 (en) Heat sinks using memory shaping materials
JPH0334231B2 (en)