JPS62213228A - Manufacture of film capacitor - Google Patents
Manufacture of film capacitorInfo
- Publication number
- JPS62213228A JPS62213228A JP5723286A JP5723286A JPS62213228A JP S62213228 A JPS62213228 A JP S62213228A JP 5723286 A JP5723286 A JP 5723286A JP 5723286 A JP5723286 A JP 5723286A JP S62213228 A JPS62213228 A JP S62213228A
- Authority
- JP
- Japan
- Prior art keywords
- film
- capacitor
- film capacitor
- heat
- pps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims description 67
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 19
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 7
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 2
- 229920006269 PPS film Polymers 0.000 description 27
- 239000010408 film Substances 0.000 description 24
- 238000005476 soldering Methods 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 7
- 238000004804 winding Methods 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000011104 metalized film Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、電子機器、電気機器に用いられるフィルムコ
ンデンサの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a film capacitor used in electronic equipment and electrical equipment.
従来の技術
近年、電子機器、電気機器の小型化、薄型化および高密
度化に伴い、電子部品のチップ化および面実装化が進展
しつつあり、コンデンサにおいては、チップ型のセラミ
ックコンデンサ、固体電解コンデンサ等が市場に普及し
ている。しかし、フィルムコンデンサにおいては実用化
に至っていない。その主な理由/I′i、フィルムコン
デンサに使用される誘電体がポリエチレンテレフタレー
ト(以下PETと称す)、ポリプロピレン(以下PPと
称す)などの有機高分子材料であり、セラミックコンデ
ンサや固体電解コンデンサに使用される無機材料にくら
べて耐熱性が低いため、チップコンデンサに要求される
はんだ付は時の耐熱性を充分に満足することができない
からである。Conventional technology In recent years, with the miniaturization, thinning, and high density of electronic and electrical equipment, the use of chips and surface mounting of electronic components is progressing. Capacitors etc. are becoming popular in the market. However, it has not been put to practical use in film capacitors. The main reason/I'i is that the dielectric used in film capacitors is an organic polymer material such as polyethylene terephthalate (hereinafter referred to as PET) and polypropylene (hereinafter referred to as PP), and is used in ceramic capacitors and solid electrolytic capacitors. This is because the heat resistance is lower than that of the inorganic materials used, and therefore the soldering required for chip capacitors cannot fully satisfy the heat resistance required for chip capacitors.
しかしながら、近年、耐熱性が高く、しかも低誘電損失
で、比誘電率の温度依存性が低いポリフェニレンサルフ
ァイドフィルム(以下p p s ト称丁)が開発され
、チップフィルムコンデンサ用誘電体として注目されて
いる。However, in recent years, polyphenylene sulfide film (hereinafter referred to as PP S), which has high heat resistance, low dielectric loss, and low temperature dependence of dielectric constant, has been developed and is attracting attention as a dielectric material for chip film capacitors. There is.
発明が解決しようとする問題点
しかしながら、従来のPPSフィルムコンデンサは、は
んだ耐熱性試験時にフィルムに熱による収縮がおこり、
静電容量の減少や、ばらつきが起った。また、金属化P
PSフィルムコンデンサでは同じくはんだ耐熱性試験時
に、PPSフィルム上に設けられた蒸着金属と、リード
線引出しのための金属溶射による電極部(以下メタリコ
ン部と称t)との接触が損なわれて誘電損失が増大、あ
るいは断線不良が発生する問題があった。Problems to be Solved by the Invention However, in conventional PPS film capacitors, the film shrinks due to heat during the soldering heat resistance test.
A decrease in capacitance and variations occurred. Also, metallized P
Similarly, during the soldering heat resistance test for PS film capacitors, the contact between the vapor deposited metal provided on the PPS film and the metal sprayed electrode part (hereinafter referred to as the metallized part) for drawing out the lead wires was impaired, resulting in dielectric loss. There was a problem in that the number of wires increased or disconnection occurred.
本発明は、上記不良の原因が5はんだ耐熱試験時にうけ
る220〜270℃の熱によって、PPSフィルムが熱
収縮することにあり、これ全防ぐことによって、PPS
フィルムコンデンサのはんだ付は時の静電容量の低下、
ばらつき、および誘電損失の増大、断線不良を低減し、
従来最も大きな問題であったはんだ耐熱性の良好なチッ
プ型のPPSフィルムコンデンサを提供することを目的
とする。The cause of the above-mentioned defects is heat shrinkage of the PPS film due to heat of 220 to 270°C during the soldering heat resistance test.
When soldering a film capacitor, the capacitance decreases,
Reduces variations, increases in dielectric loss, and disconnection defects,
The purpose of the present invention is to provide a chip-type PPS film capacitor that has good soldering heat resistance, which has been the biggest problem in the past.
問題点を解決するための手段
PPSフィルムコンデンサの耐熱性と、PPSフィルム
の密度、および熱処理条件を種々検討した結果、これら
の間に一定の関係があることが判明した。すなわちPP
Sフィルムもしくは、PPSフィルムコンデンサ素子を
180”C〜270”Cの温度で熱処理することにより
、PPSフィルムの密度を1.346〜1.370y/
dにすることで、PPSフィルムコンデンサのはんだ耐
熱性が向上することが判明した。Means for Solving the Problems As a result of various studies on the heat resistance of PPS film capacitors, the density of PPS films, and heat treatment conditions, it was found that there is a certain relationship between them. That is, P.P.
By heat-treating the S film or PPS film capacitor element at a temperature of 180"C to 270"C, the density of the PPS film can be increased to 1.346 to 1.370y/
It was found that the soldering heat resistance of the PPS film capacitor was improved by setting the temperature to d.
前記目的を達成するため、本発明のフィルムコンデンサ
の製造方法は、PPSフィルムの密度が。In order to achieve the above object, the method for manufacturing a film capacitor of the present invention provides a method for manufacturing a film capacitor in which the density of the PPS film is increased.
1.346〜1.syog/dになるまで熱処理を行う
工程を含んでいる。1.346-1. It includes a step of performing heat treatment until it reaches syog/d.
作用
チップ型フイルムコンデンサが通常のディップ法または
りフロー法によりはんだ付けされる時に、コンデンサ内
部のフィルムがうける熱は、およそ210〜260’C
である。本発明によるPPSフィルムコンデンサは、1
80〜270’C(真空中では280’Cまで)の温度
で熱処理することでP P S 7 、(k A密度が
、1.345〜1.37og/iまで高められているの
で、前記210〜260°Cでの温度範囲でのフィルム
の熱収縮が従来のPPSフィルムより低く抑えられてい
る。したがって静電容量の低下、ばらつき、および誘電
損失の増大、断線不良等を起すことなく、はんだ耐熱性
にすぐれたチップ型のフィルムコンデンサとなることが
できる。Operation When a chip-type film capacitor is soldered by the normal dip method or reflow method, the heat that the film inside the capacitor receives is approximately 210-260'C.
It is. The PPS film capacitor according to the present invention comprises 1
By heat treatment at a temperature of 80 to 270'C (up to 280'C in vacuum), the PPS7, (kA density is increased to 1.345 to 1.37 og/i, so the 210 The thermal shrinkage of the film in the temperature range of ~260°C is suppressed to be lower than that of conventional PPS films.Therefore, it is possible to solder without reducing capacitance, dispersion, increasing dielectric loss, or disconnection defects. It can be a chip-type film capacitor with excellent heat resistance.
実施例
前記したように、熱処理条件とPPSフィルム密度、お
よびPPSフィルムコンデンサの耐熱性には相関がある
。すなわち、熱処理温度を高くするほど、また時間を長
くするほどPPSフィルムの密度は高くなシコンデンサ
の耐熱性は向上した。Example As mentioned above, there is a correlation between the heat treatment conditions, the PPS film density, and the heat resistance of the PPS film capacitor. That is, the higher the heat treatment temperature and the longer the heat treatment time, the higher the density of the PPS film and the better the heat resistance of the capacitor.
従来の熱処理前のPPSフィルムの密度は約1、s 4
y /−であるがこれil 80”C以上の温度で熱
処理により密度を上げていくと、1.345f/−以上
からはんだ耐熱性に効果が現われ始め51.349y/
d以上で更にその効果が顕著となった。The density of PPS film before conventional heat treatment is about 1, s 4
y/-, but when the density is increased by heat treatment at a temperature of 80"C or higher, the effect on soldering heat resistance starts to appear from 1.345f/- or higher, which is 51.349y/-.
The effect became even more remarkable at d or higher.
しかしながら、温度に対しては限界が存在することもわ
かった。すなわち、270℃以上の温度での熱処理では
、PPSフィルムの酸化による劣化がおこり、コンデン
サの絶縁抵抗の低下、耐電圧の低下、および誘電損失の
増大をまねく。However, it was also found that there is a limit to temperature. That is, heat treatment at a temperature of 270° C. or higher causes deterioration of the PPS film due to oxidation, resulting in a decrease in insulation resistance, a decrease in withstand voltage, and an increase in dielectric loss of the capacitor.
但し、真空中では酸化による劣化が抑制されるためさら
に温度を280℃まで上げることができるが、それ以上
は熱変形等が発生するため、280℃が限界となる。However, in a vacuum, deterioration due to oxidation is suppressed, so the temperature can be further raised to 280°C, but if it exceeds that temperature, thermal deformation etc. will occur, so 280°C is the limit.
以上の熱処理条件を検討した結果、ppsフィルムの酸
化劣化や熱変形等のない範囲で最適の条件で熱処理を行
ったとき、ppsフィルムの密度は、1.37oy/l
*に達し、最高のはんだ耐熱性を示した。しかしながら
、はんだ付は条件が特に厳しい条件以外では、ここまで
密度を上げる必要はなく、目標とする耐熱性と、製造上
の必要経費を考慮して必要十分な熱処理を施せばよい。As a result of examining the above heat treatment conditions, the density of the PPS film was 1.37 oy/l when heat treatment was performed under the optimal conditions without oxidative deterioration or thermal deformation of the PPS film.
*, demonstrating the highest soldering heat resistance. However, unless the soldering conditions are particularly severe, it is not necessary to increase the density to this extent, and it is sufficient to perform necessary and sufficient heat treatment in consideration of the target heat resistance and the necessary manufacturing costs.
また、熱処理は単一温度だけで行う必要はなく。Also, heat treatment does not need to be performed at only a single temperature.
複数の温度9時間条件を組合わせて行ってもよいし1時
間に伴って温度を上昇させていく方法でもよい。特に時
間に伴って温度を上昇させる方法は。A combination of a plurality of temperature conditions for 9 hours may be used, or a method may be used in which the temperature is increased over an hour. Especially how to increase the temperature over time.
その最高到達温度のみで行う方法より、熱経費を下げら
れるうえ、耐熱性もほとんど差がなく良好になる。Compared to the method using only the maximum temperature reached, the heat cost can be lowered, and the heat resistance is also better with almost no difference.
なお、前記フィルム密度の値は、フィルムコンデンサ素
子より微小片を切り取り、この密度を測定し、その値か
ら蒸着金属のまたは箔電極の重貴分さしひいて求めた。The value of the film density was determined by cutting out a minute piece from the film capacitor element, measuring the density, and subtracting the weight of the vapor-deposited metal or foil electrode from that value.
以下1本発明の具体的実施例について説明する。A specific embodiment of the present invention will be described below.
(実施例1)
巻回型片面金属化フィルムコンデンサの例について述べ
る。厚さ4μm9幅4.6fiの1対の片面アルミニウ
ム蒸着PPSフィルムを、いわゆるずらし巻きを行って
巻回した後、126℃の加熱プレスを行って偏平形状と
し、両端面に亜鉛(第1層)およびスズ(第2層)を金
属溶射してメタリコン電極を設けてコンデンサ素子とし
た。第1図は巻回時の素子を展間した斜視図で、第2図
はメタリコン部を設けたコンデンサ素子を示す。以上の
ようにして得たコンデンサ素子t−1熱風循環式恒温槽
中で240’C,6時間の熱処理を行った。(Example 1) An example of a wound type single-sided metalized film capacitor will be described. A pair of single-sided aluminum vapor-deposited PPS films with a thickness of 4 μm and a width of 4.6 fi were wound using so-called staggered winding, then hot pressed at 126°C to form a flat shape, and zinc (first layer) was applied to both end surfaces. A capacitor element was prepared by metal spraying tin (second layer) and providing a metallicon electrode. FIG. 1 is an exploded perspective view of the element during winding, and FIG. 2 shows a capacitor element provided with a metallic contact portion. The capacitor element t-1 obtained as described above was heat-treated at 240'C for 6 hours in a hot air circulation constant temperature bath.
その後メタリコン部に金属板状電極を溶接し、エポキシ
樹脂によるモールド外装した後、金属板状電極を切断し
、外装に沿って折り曲げ加工してチップ型コンデンサと
した。第3図にその外観図を示す。図において、1は片
面金属化PP!574ルム、2は巻回した素子本体、3
は偏平に加工しメタリコン電極4t−形成したコンデン
サ素子、6はコンデンサ本体、6は金属板状電極である
。Thereafter, a metal plate-like electrode was welded to the metallicon part, and the metal plate-like electrode was molded and covered with epoxy resin. The metal plate-like electrode was then cut and bent along the case to form a chip-type capacitor. Figure 3 shows its external view. In the figure, 1 is one-sided metallized PP! 574 lums, 2 is the wound element body, 3
1 is a capacitor element formed into a flat metal electrode 4t, 6 is a capacitor body, and 6 is a metal plate electrode.
このようにして完成したチップ型コンデンサ10個’1
260’c、5秒間溶融はんだ槽に浸種し、その前後の
特性の比較を行った。その結果を第7図(IL)〜(C
)に示す。なお比較例として、熱処理を行わないコンデ
ンサを同じはんだ耐熱試験に供した結果を同時に示す。10 chip type capacitors completed in this way'1
It was immersed in a molten solder bath for 5 seconds at 260'C, and the characteristics before and after were compared. The results are shown in Figure 7 (IL) to (C
). As a comparative example, the results of a capacitor that was not subjected to heat treatment and subjected to the same solder heat resistance test are also shown.
次に1本実施例で作製したチップ型コンデンサと前記比
較例10個ずつ?:125℃の恒温槽中で。Next, one chip type capacitor manufactured in this example and ten each in the comparative example? : In a constant temperature bath at 125°C.
126vの直流電圧を印加して、高温負荷試験に供した
。その結果を第9図(IL)〜(0)に示す。A high temperature load test was performed by applying a DC voltage of 126v. The results are shown in FIGS. 9(IL) to (0).
(実施例2)
次に積層型の金属化PPSフィルムコンデンサの例につ
いて述べる。厚さ4μm9幅4.6Mの1対の片面アル
ミニウム蒸着して得た金属化ppsフィルムを、ずらし
巻きにより、大きな外周をもつ円筒状のボビンに巻取る
。その後1両端面に亜鉛(第1層)およびスズ(第2層
)t−金属溶射しメタリコン電極を設けてコンデンサ素
体とした。(Example 2) Next, an example of a laminated metallized PPS film capacitor will be described. A pair of metallized pps films obtained by vapor deposition of aluminum on one side and having a thickness of 4 μm and a width of 4.6 M are wound onto a cylindrical bobbin with a large outer circumference by staggered winding. Thereafter, zinc (first layer) and tin (second layer) were thermally sprayed with t-metal on both end faces to provide metallicon electrodes to form a capacitor body.
第4図は円筒状ボビンへの巻取る状態を示す斜視図で、
7は巻回物である。第6図はメタリコン電極4を設けた
コンデンサ素体8を示す。以上のようにして得たコンデ
ンサ素体を熱風循環式恒温槽中で260”C,2時間の
熱処理を行った。熱処理したコンデンサ素体を切断のこ
により切断して第6図のようにコンデンサ素子9とした
。その後。FIG. 4 is a perspective view showing the state of winding onto a cylindrical bobbin.
7 is a roll. FIG. 6 shows a capacitor body 8 provided with a metallicon electrode 4. As shown in FIG. The capacitor body obtained as described above was heat-treated at 260"C for 2 hours in a hot air circulation constant temperature bath.The heat-treated capacitor body was cut with a cutting saw to form a capacitor as shown in Figure 6. It was set as element 9. After that.
実施例1と同様の後半工程にてチップ型コンデンサとし
た。A chip-type capacitor was obtained through the same latter half process as in Example 1.
このようにして完成したチップ型コンデンサ10個を、
実施例1と同様のはんだ耐熱試験、並びに高温負荷試験
に供した。その結果をそれぞれ第8図(sL)〜(C)
、第10図(IL)〜(C)に示す。なお比較例として
、熱処理を行わず作製したコンデンサ10個を同じ試験
に供した。The 10 chip capacitors completed in this way are
It was subjected to the same solder heat resistance test and high temperature load test as in Example 1. The results are shown in Figures 8 (sL) to (C).
, shown in FIGS. 10(IL) to (C). As a comparative example, 10 capacitors produced without heat treatment were subjected to the same test.
以上のようにして完成した本発明のコンデンサは、第7
図、第8図に示すように、はんだ耐熱試験において、絶
縁抵抗、静電容量、誘電損失について異常が全く認めら
れないうえに、従来の熱処理を行わないコンデンサより
優れたはんだ耐熱性を示した。特に積層型フィルムコン
デンサにおいては、フィルムの熱収縮がコンデンサ特性
に与える影響が大きいため1本発明の効果が大きかった
。The capacitor of the present invention completed as described above is the seventh
As shown in Figure 8, in the soldering heat resistance test, no abnormalities were observed in insulation resistance, capacitance, or dielectric loss, and the capacitor exhibited better soldering heat resistance than conventional capacitors that were not subjected to heat treatment. . Particularly in the case of laminated film capacitors, the effect of the present invention was great because the thermal shrinkage of the film has a large effect on the capacitor characteristics.
また、第9図、第10図に示すように、高温負荷試験に
おいては、絶縁抵抗、静電容量、誘電損失ともに正常な
傾向を示し、実用上問題がないことが確認できた。Furthermore, as shown in FIGS. 9 and 10, in the high-temperature load test, insulation resistance, capacitance, and dielectric loss all showed normal trends, and it was confirmed that there were no practical problems.
なお実施例では、メタリコン電極を施した後。In the example, after applying a metallicon electrode.
熱処理を行ったが、これは巻回もしくは積層した後に行
ってもよく、また、ppsフィルム原反に施してもよい
。また、コンデンサの構成は、実施例のほかに両面金属
化PPSフィルムの巻回型。Although heat treatment was performed, this may be performed after winding or lamination, or may be performed on the original pps film. In addition to the structure of the embodiment, the structure of the capacitor is a wound type of double-sided metallized PPS film.
積層型でも、あるいは両面金属化PPSフィルムの少な
くとも片面に耐熱性の誘電体層を形成した複合フィルム
を用いた巻回型、積層型コンデンサでも、あるいは非金
属化ppsフィルムと金属箔を合わせて巻回するタイプ
のコンデンサでもよい。It can be a laminated type, a wound type or a laminated type capacitor using a composite film with a heat-resistant dielectric layer formed on at least one side of a double-sided metallized PPS film, or a combination of a non-metalized PPS film and a metal foil. A rotating type capacitor may also be used.
また、外装方法も、実施例の他、耐熱性のある熱可塑性
樹脂(たとえばppsなど)ft用いた射出成型法等で
もよい。また、はんだ付は方法は実施例で述べたはんだ
ディップ法に限られるものでなく、リフロー法、ペーハ
ーンルダリング法、レーザーンルダリング法等、種々の
はんだ付は法に対応できる。In addition to the embodiments, the packaging method may also be an injection molding method using a heat-resistant thermoplastic resin (such as pps). Further, the soldering method is not limited to the solder dip method described in the embodiments, and various soldering methods such as a reflow method, a hard soldering method, and a laser soldering method can be used.
発明の効果
以上のように本発明は、PPSフィルムの密度が、1.
345〜1.3roy/atになるまで熱処理を行う工
程を含むことにより、PPSフィルムコンデンサのはん
だ耐熱性を向上させることができ。Effects of the Invention As described above, the present invention provides that the density of the PPS film is 1.
By including the step of performing heat treatment until the temperature reaches 345 to 1.3 roy/at, the solder heat resistance of the PPS film capacitor can be improved.
実用上はとんどのはんだ付は法(はんだディップ法、す
70−法など)に対応ができるようになシ、フィルムコ
ンデンサの面実装化に対して極めて大きな効果をもたら
し、工業的に著しい効果をもたらすものである。In practice, it can be used with most soldering methods (solder dip method, 70-method, etc.), which has an extremely large effect on the surface mounting of film capacitors, and has a significant industrial effect. It brings about
第1図は本発明の一実施例によるフィルムコンデンサに
おいて片面金属化フィルムを示す斜視図。
第2図は同じく巻回型コンデンサ素子を示す斜視図、第
3図は同じくモールド外装したコンデンサの斜視図、第
4図は本発明の他の実施例において片面金属化フィルム
を大きな外周をもつボビンに巻取る状態を示す斜視図、
第6図は同じくメタリコン電極を設けたコンデンサ素体
を示す斜視図。
第6図は同じく積層型コンデンサ素子の斜視図。
第7図、第8図はそれぞれ本発明の各実施例のはんだ耐
熱試験結果を示す特性図、第9図、第10図はそれぞれ
本発明の各実施例の高温負荷試験結果を示す特性図であ
る。
1・・・・・・片面金属化PPSフィルム、2・・・・
・・巻回した素子本体、3・・曲コンデンサ素子、4・
・曲メタリコン電極、8・・・・・・コンデンサ素体。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第
15!J
第2図
第3図
第4図
第6図
第7図
yB図FIG. 1 is a perspective view showing a single-sided metallized film in a film capacitor according to an embodiment of the present invention. FIG. 2 is a perspective view showing a wound type capacitor element, FIG. 3 is a perspective view of a capacitor similarly packaged with a mold, and FIG. 4 is a bobbin with a large outer circumference in which a single-sided metallized film is applied in another embodiment of the present invention. A perspective view showing the state of winding the
FIG. 6 is a perspective view showing a capacitor body similarly provided with metallicon electrodes. FIG. 6 is a perspective view of the multilayer capacitor element. Figures 7 and 8 are characteristic diagrams showing the results of the soldering heat resistance test for each example of the present invention, and Figures 9 and 10 are characteristic diagrams showing the results of the high temperature load test of each example of the present invention, respectively. be. 1... One side metallized PPS film, 2...
・Wound element body, 3. Curved capacitor element, 4.
・Curved metal contact electrode, 8... Capacitor body. Name of agent: Patent attorney Toshio Nakao and 1 other person
15! J Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 yB diagram
Claims (5)
ムを用い、前記ポリフェニレンサルファイドフィルムの
密度が1.345〜1.370g/cm^3になるまで
熱処理を行う工程を含むことを特徴とするフィルムコン
デンサの製造方法。(1) A method for producing a film capacitor, which uses a polyphenylene sulfide film as a dielectric and includes the step of heat-treating the polyphenylene sulfide film until its density becomes 1.345 to 1.370 g/cm^3.
真空中で行うことを特徴とする特許請求の範囲第1項に
記載のフィルムコンデンサの製造方法。(2) The method for manufacturing a film capacitor according to claim 1, wherein the heat treatment is performed in air, reduced pressure air, or vacuum.
いたことを特徴とする特許請求の範囲第1項または第2
項に記載のフィルムコンデンサの製造方法。(3) Claim 1 or 2 characterized in that a metallized polyphenylene sulfide film is used.
The method for manufacturing a film capacitor described in Section 1.
数枚積層されていることを特徴とする特許請求の範囲第
3項に記載のフィルムコンデンサの製造方法。(4) The method for manufacturing a film capacitor according to claim 3, wherein a plurality of metallized polyphenylene sulfide films are laminated.
面金属化ポリフェニレンサルファイドフィルムの少なく
とも片面に誘電体層を形成した複合フィルムであること
を特徴とする特許請求の範囲第3項または第4項に記載
のフィルムコンデンサの製造方法。(5) The film capacitor according to claim 3 or 4, wherein the metallized polyphenylene sulfide film is a composite film in which a dielectric layer is formed on at least one side of a double-sided metalized polyphenylene sulfide film. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5723286A JPS62213228A (en) | 1986-03-14 | 1986-03-14 | Manufacture of film capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5723286A JPS62213228A (en) | 1986-03-14 | 1986-03-14 | Manufacture of film capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62213228A true JPS62213228A (en) | 1987-09-19 |
JPH0461485B2 JPH0461485B2 (en) | 1992-10-01 |
Family
ID=13049782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5723286A Granted JPS62213228A (en) | 1986-03-14 | 1986-03-14 | Manufacture of film capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62213228A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0296319A (en) * | 1988-09-30 | 1990-04-09 | Toray Ind Inc | Manufacture of metallized film capacitor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5249449A (en) * | 1975-10-16 | 1977-04-20 | Matsushita Electric Ind Co Ltd | Method of manufacturing metallized film capacitor |
JPS595100A (en) * | 1982-06-30 | 1984-01-11 | 富田 重助 | Apofocus rule and drawing plate |
JPS5931018A (en) * | 1982-08-16 | 1984-02-18 | ニツセイ電機株式会社 | Method of producing metallized plastic film condenser |
JPS6071663A (en) * | 1983-09-28 | 1985-04-23 | Toray Ind Inc | Polyphenylene sulfide film |
JPS60257510A (en) * | 1984-06-04 | 1985-12-19 | 東レ株式会社 | Condenser |
JPS611008A (en) * | 1985-01-14 | 1986-01-07 | 東レ株式会社 | Condenser |
JPS62183105A (en) * | 1986-02-06 | 1987-08-11 | 岡谷電機産業株式会社 | Manufacture of chip-type film capacitor |
-
1986
- 1986-03-14 JP JP5723286A patent/JPS62213228A/en active Granted
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5249449A (en) * | 1975-10-16 | 1977-04-20 | Matsushita Electric Ind Co Ltd | Method of manufacturing metallized film capacitor |
JPS595100A (en) * | 1982-06-30 | 1984-01-11 | 富田 重助 | Apofocus rule and drawing plate |
JPS5931018A (en) * | 1982-08-16 | 1984-02-18 | ニツセイ電機株式会社 | Method of producing metallized plastic film condenser |
JPS6071663A (en) * | 1983-09-28 | 1985-04-23 | Toray Ind Inc | Polyphenylene sulfide film |
JPS60257510A (en) * | 1984-06-04 | 1985-12-19 | 東レ株式会社 | Condenser |
JPS611008A (en) * | 1985-01-14 | 1986-01-07 | 東レ株式会社 | Condenser |
JPS62183105A (en) * | 1986-02-06 | 1987-08-11 | 岡谷電機産業株式会社 | Manufacture of chip-type film capacitor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0296319A (en) * | 1988-09-30 | 1990-04-09 | Toray Ind Inc | Manufacture of metallized film capacitor |
JPH0638379B2 (en) * | 1988-09-30 | 1994-05-18 | 東レ株式会社 | Method for manufacturing metallized film capacitor |
Also Published As
Publication number | Publication date |
---|---|
JPH0461485B2 (en) | 1992-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6400556B1 (en) | Solid electrolytic capacitor and method of fabricating the same | |
JPS62213228A (en) | Manufacture of film capacitor | |
JPH0130286B2 (en) | ||
JP2693754B2 (en) | Method for producing a thermally stabilized plastic film capacitor | |
JPS59127828A (en) | Chip film capacitor | |
JPH0142617B2 (en) | ||
JP2000049056A (en) | Solid-state electrolytic capacitor | |
JPH04348016A (en) | Manufacture of lamination type solid electrolytic capacitor | |
JP2964628B2 (en) | Metallized film for capacitor and capacitor provided with the same | |
JPH10125558A (en) | Solid-state capacitor using conductive functional high polymer film as solid electrolyte | |
JP3098244B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
JPH04284617A (en) | Manufacture of solid electrolytic capacitor | |
JPH04277609A (en) | Method for manufacture of solid electrolytic capacitor | |
JPS58153322A (en) | Condenser | |
JPH0770416B2 (en) | Method of manufacturing chip type film capacitor | |
JP2002043165A (en) | Heat-radiating mechanism in electronic component | |
JPH04253314A (en) | Solid electrolytic capacitor | |
JPS62203314A (en) | Capacitor | |
JPS62203319A (en) | Capacitor | |
JPH03241806A (en) | Chip type metallized film capacitor | |
JPH04152614A (en) | Manufacture of chip film capacitor | |
JPH0770414B2 (en) | Method of manufacturing film capacitor | |
JPS59167008A (en) | Film capacitor | |
JPS61102021A (en) | Capacitor | |
JPS61119024A (en) | Laminated capacitor |