JPH03241806A - Chip type metallized film capacitor - Google Patents

Chip type metallized film capacitor

Info

Publication number
JPH03241806A
JPH03241806A JP3866990A JP3866990A JPH03241806A JP H03241806 A JPH03241806 A JP H03241806A JP 3866990 A JP3866990 A JP 3866990A JP 3866990 A JP3866990 A JP 3866990A JP H03241806 A JPH03241806 A JP H03241806A
Authority
JP
Japan
Prior art keywords
film
dielectric film
surface roughness
high molecular
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3866990A
Other languages
Japanese (ja)
Inventor
Shuji Otani
修司 大谷
Michiharu Kamiya
三千治 神谷
Shinsuke Itoi
真介 糸井
Kazuhiko Takahashi
和彦 高橋
Yasuo Iijima
飯島 康男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3866990A priority Critical patent/JPH03241806A/en
Publication of JPH03241806A publication Critical patent/JPH03241806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To alleviate the deterioration by heat of a high molecular dielectric film, to satisfy heat-resisting characteristics when a surface-mounting reflow treatment is conducted, to improve potential inclination, and to make it possible to miniaturize the title film capacitor by a method wherein a high molecular dielectric film, having the specific value or lower of average surface roughness on both surfaces, is used. CONSTITUTION:In a chip type metallized film capacitor formed by winding or laminating a metallized film having a vapor-deposited metal 7 on one side or both sides of a high molecular dielectric film 6, a high molecular dielectric film 6, having the average surface roughness on both surfaces of 0.04mum or less, is used. For example, polyethylene naphthalate film, having average surface roughness of 0.04mum or less, is used as the high molecular dielectric film 6, and a metallized plastic film is obtained by forming an aluminum thin film metal 5 on the surface of the above-mentioned film 6. The metallized plastic film is laminated, and after an external electrode 8 has been formed by conducting a metal flame-spraying operation, a heat-treatment process is finished, solder-plating 9 is provided on top of the external electrode 8, and a simple outer covering is provided by coating ultraviolet-ray-hardening resin 10 on the laminated cut surface.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子機器、電気機器に用いられるチップ形金
属化フィルムコンデンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a chip-shaped metallized film capacitor used in electronic and electrical equipment.

従来の技術 近年、エレクトロニクス技術の進歩は著しく、エレクト
ロニクス技術を使用した電気機器2通信機器、IIJi
[機器等は多機能化、小型化が進んでいる。従ってこれ
らの機器の小型化の推進に当たっては回路を構成するた
め、受動部品への小型化が強く要望されている。
Conventional technology In recent years, electronics technology has made remarkable progress, and electrical equipment using electronics technology2 communication equipment, IIJi
[Equipments are becoming more multi-functional and smaller. Therefore, in promoting miniaturization of these devices, there is a strong demand for miniaturization of passive components to form circuits.

その代表が抵抗器、コンデンサ、コイル等の受動部品の
チップ化である。又、受動部品のチップ化と共に回路を
構成するプリント基板への部品実装方法も、従来より高
密度に実装できる面実装工法へと移ってきている。この
工法は基板の片面あるいは両面に部品を接着剤もしくは
クリームはんだで固定し、はんだ浴槽内、高熱炉内を通
過させる(以降面実装リフローと略す〉ことにより、は
んだ付けを行っている。したがって、部品本体が直接高
温に晒され部品本体に加わる温度は従来のリード付き部
品のリード線のみはんだ浴槽に浸漬させるものに比べ非
常に高くなる。例えばフィルムコンデンサの場合、従来
のリード付きでリード線のみはんだ付けを行った時のコ
ンデンサ内部温度は100〜130℃であるのに対し、
チップフィルムコンデンサの内部温度は210〜240
℃であり、約100℃高くなっている。また機器を小型
化するために機器内の空間部を削減し基板構成密度を高
くする方法を用いていることから、使用に際しては能動
電子部品(IC,トランジスタ、ダイオード等)による
発熱は機器内にこもり、温度は上昇する。
A typical example of this is the chipping of passive components such as resistors, capacitors, and coils. In addition, as passive components have been made into chips, the method for mounting components on printed circuit boards constituting circuits has also shifted to a surface mounting method that allows for higher density mounting than before. In this method, parts are fixed to one or both sides of a board with adhesive or cream solder, and soldered by passing them through a solder bath or high-temperature furnace (hereinafter abbreviated as surface mount reflow).Therefore, The component body is directly exposed to high temperatures, and the temperature applied to the component body is much higher than that of a conventional leaded component in which only the lead wire is immersed in a soldering bath.For example, in the case of a film capacitor, a conventional leaded component with only the lead wire immersed in the solder bath. While the internal temperature of the capacitor during soldering is 100 to 130℃,
The internal temperature of chip film capacitor is 210~240℃
℃, which is about 100℃ higher. In addition, in order to miniaturize devices, methods are used to reduce the space inside the device and increase the density of the board structure, so when using the device, heat generated by active electronic components (ICs, transistors, diodes, etc.) is kept inside the device. It becomes muffled and the temperature rises.

以上のようにチップ部品の使用状況は従来のリード付き
部品に比べ温度的に非常に厳しくなっている。
As described above, the usage conditions for chip components are much more severe in terms of temperature than for conventional leaded components.

従来、フィルムコンデンサは誘電体としてポリエチレン
テレフタレート(以下PETと略す〉。
Conventionally, film capacitors use polyethylene terephthalate (hereinafter abbreviated as PET) as a dielectric material.

ポリプロピレン(以下PPと略す)等のフィルムを用い
ていたが、耐熱性の面で難があり新たな耐熱性に対応し
た誘電体フィルムとしてポリフェニレンサルファイドフ
ィルム(以下PPSと略す)が開発され、あるいはポリ
エチレンナフタレート(以下PEN)が注目され用いら
れるようになってきた。
Films such as polypropylene (hereinafter abbreviated as PP) were used, but they had problems in terms of heat resistance, and polyphenylene sulfide film (hereinafter abbreviated as PPS) was developed as a new heat-resistant dielectric film. Naphthalate (hereinafter referred to as PEN) has been attracting attention and being used.

以下図面を参照しながら、従来のチップコンデンサにつ
いて説明する。
A conventional chip capacitor will be described below with reference to the drawings.

第4図は、モールドレスタイプのチップフィルムコンデ
ンサの構成図である。誘電体フィルム1の表面にアルミ
ニウムなどの薄膜金属2を形成して金属化プラスチック
フィルムとし、前記金属化プラスチックフィルムを積層
し、内部電極から電極を引き出すための外部電極3を金
属溶射することにより形威し、その後、高温による熱処
理を施す工程を経て前記外部電極の最上部に半田メツキ
4を設け、切断面に紫外線硬化形樹脂5をコートした簡
易的な外装を施してモールドレスタイプのチップフィル
ムコンデンサを得ている。
FIG. 4 is a configuration diagram of a moldless type chip film capacitor. A thin metal film 2 such as aluminum is formed on the surface of the dielectric film 1 to form a metallized plastic film, the metallized plastic film is laminated, and an external electrode 3 for drawing out the electrode from the internal electrode is formed by metal spraying. After that, through a heat treatment process at high temperature, solder plating 4 is provided on the top of the external electrode, and a simple exterior coated with ultraviolet curable resin 5 is applied to the cut surface to form a moldless type chip film. I'm getting a capacitor.

第4図においては、誘電体フィルム1の両表面における
平均表面粗度を大きくしたもので構成されている。
In FIG. 4, the dielectric film 1 is constructed by increasing the average surface roughness on both surfaces.

一般に、高分子誘電体フィルムは、高温雰囲気中では、
収縮を起こし熱的経時変化をきたす。特に、面実装リフ
ロー時に高温となるチップフィルムコンデンサは高熱に
よる高分子誘電体フィルムの収縮を押さえるために、上
記製造工程において高温による熱処理工程を設け、高温
実装時における熱的素子変形を抑制し、耐熱特性を得る
事を特徴としている。概して、−度ある温度で熱処理を
施された高分子誘電体フィルムは、その処理温度を超え
ない限り、その範囲内の温度であれば、収縮の度合いは
非常に小さくなるということは公知の事実である。よっ
て上記熱処理工程の温度は、実装リフロー温度もしくは
それ以上の温度に設定される。
In general, polymer dielectric films are
It causes contraction and thermal changes over time. In particular, for chip film capacitors that are exposed to high temperatures during surface mount reflow, in order to suppress shrinkage of the polymer dielectric film due to high heat, a high temperature heat treatment step is provided in the manufacturing process to suppress thermal element deformation during high temperature mounting. It is characterized by its heat resistance properties. Generally speaking, it is a well-known fact that a polymer dielectric film that has been heat-treated at a certain temperature will have a very small degree of shrinkage at temperatures within that range, as long as the processing temperature is not exceeded. It is. Therefore, the temperature in the heat treatment step is set to the mounting reflow temperature or higher.

発明が解決しようとする課題 ところが、チップフィルムコンデンサの場合、高分子誘
電体フィルムゆえの課題も多々生じてきている。
Problems to be Solved by the Invention However, in the case of chip film capacitors, many problems have arisen due to the polymer dielectric film.

それらの課題の中で、大きな課題のひとつに、面実装リ
フロー時の高分子誘電体フィルムの熱収縮を失くすため
に、チップフィルムコンデンサの製造工程中において熱
処理を施しているか、高温の熱処理により高分子誘電体
フィルムが熱劣化を起こし、耐電圧特性のレベルを著し
く低下させる。よって、耐熱性確保のために、逆に電位
傾度(ミクロン単位当りの耐電圧〉が低くなり、素子の
大型化を招く結果となっている。
Among these issues, one of the major issues is whether heat treatment is applied during the manufacturing process of chip film capacitors in order to eliminate the thermal shrinkage of polymer dielectric films during surface mount reflow. Polymer dielectric films undergo thermal deterioration, significantly reducing the level of withstand voltage characteristics. Therefore, in order to ensure heat resistance, the potential gradient (withstand voltage per micron unit) is reduced, resulting in an increase in the size of the device.

最近の機器の小型化に合せ、チップフィルムコンデンサ
にも益々の小型化が課せら゛れつつあり、耐熱特性を要
求されるチップフィルムコンデンサにおいては大きな足
カセとなっている。
In line with the recent miniaturization of equipment, chip film capacitors are also becoming increasingly smaller, and this has become a major drawback for chip film capacitors that require heat resistance characteristics.

これらの課題に対し、特にチップフィルムコンデンサに
おいては、耐熱性の確保および耐電圧特性向上のために
、種々の提案がなされているが、その大半は、コンデン
サ素子への外装工法、耐熱電極構造、耐熱板挿入に関す
る考察である。
To address these issues, particularly for chip film capacitors, various proposals have been made to ensure heat resistance and improve withstand voltage characteristics, but most of them involve methods for exterior coating of capacitor elements, heat-resistant electrode structures, This is a consideration regarding the insertion of heat-resistant plates.

しかしながら、完全には素子内部に温度を通さないとい
う事は不可能で、また任意の熱処理を行い、それ以上の
高温である場合、高分子誘電体フィルム自体の高温によ
る熱収縮を抑制する事は非常に困難であり、耐熱性の確
保と耐電圧特性の向上は、チップフィルムコンデンサに
とっては非常に厳しい要求となっている。
However, it is impossible to completely prevent temperature from passing through the inside of the element, and if an arbitrary heat treatment is performed and the temperature is higher than that, it is impossible to suppress the thermal shrinkage of the polymer dielectric film itself due to the high temperature. This is extremely difficult, and ensuring heat resistance and improving withstand voltage characteristics are extremely demanding requirements for chip film capacitors.

課題を解決するための手段 上記の課題を解決するために本発明のチップ形金属化フ
ィルムコンデンサは、両表面の平均表面粗度が0.04
μm以下である高分子誘電体フィルムを用いたことを特
徴とするものである。
Means for Solving the Problems In order to solve the above problems, the chip-type metallized film capacitor of the present invention has an average surface roughness of 0.04 on both surfaces.
It is characterized by using a polymeric dielectric film having a diameter of μm or less.

作用 高分子誘電体フィルムの表面粗度の違いについては、表
面粗度が大きなもの程密着性が弱く、フラットなもの程
密着性は良く強固となる。
Regarding the difference in surface roughness of the working polymer dielectric film, the larger the surface roughness, the weaker the adhesion, and the flatter the surface, the better and stronger the adhesion.

従来、これらの違いによるコンデンサ特性は主として、
表面粗度のフラットな高分子誘電体フィルムの密着性を
活かし、水分の浸入を防ぎ対湿性を向上させる他、コロ
ナ発生(蒸着金属電極が空気層の介在により放電を生じ
、それにより蒸着金属が酸化し電極部の機能を失くし容
量変化をきたす)を抑制する効果に注目されてきた。し
かし、高分子誘電体フィルムの表面粗さの違いによる耐
熱特性の検討については殆ど威されていない。
Conventionally, capacitor characteristics due to these differences were mainly determined by
Taking advantage of the adhesion of a polymer dielectric film with a flat surface roughness, it prevents moisture from entering and improves moisture resistance. The effect of suppressing oxidation, which causes the electrode to lose its function and cause a change in capacitance, has been attracting attention. However, little attention has been paid to the study of heat resistance characteristics due to differences in surface roughness of polymer dielectric films.

発明者らは、鋭意研究の結果、高分子誘電体フィルムの
両表面の表面粗度のより小さいものを使用する事により
、チップフィルムコンデンサの製造工程中に必要とされ
る熱処理工程の温度を低く押さえる事により、高分子誘
電体フィルムの熱的劣化を緩和し、電位傾度の向上を図
り、かつ目的の耐熱特性を満足させる事を見出した。
As a result of intensive research, the inventors succeeded in lowering the temperature of the heat treatment process required during the manufacturing process of chip film capacitors by using a polymer dielectric film with a smaller surface roughness on both surfaces. It has been found that by pressing the film, thermal deterioration of the polymer dielectric film can be alleviated, the potential gradient can be improved, and the desired heat resistance properties can be satisfied.

この理由として、発明者らは、表面粗度がより小さい高
分子誘電体フィルムは、表面粗度が大きいものと比較し
て、同一条件の高温熱処理を行っても、高分子誘電体フ
ィルム相互の層間接着が強固となり、それにより熱によ
る誘電体フィルム自体の収縮を互いに抑制し合う効果が
発生し、耐熱特性を飛躍的に向上させるという事を見出
した。
The reason for this is that a polymer dielectric film with a smaller surface roughness has a higher surface roughness than a polymer dielectric film with a larger surface roughness, even when subjected to high temperature heat treatment under the same conditions. It has been discovered that the interlayer adhesion becomes strong, which has the effect of mutually suppressing the shrinkage of the dielectric film itself due to heat, and the heat resistance properties are dramatically improved.

高分子誘電体フィルムとして、両表面の表面粗度が0.
04μm以下のフラットなものを用いることによって、
電位傾度を大幅に向上させ、より小型のチップフィルム
コンデンサを実現することができる。特に、耐熱性に対
応した高分子誘電体フィルムのPPSフィルム及びPE
Nフィルムを用いる事で、更なる高温の面実装リフロー
の耐熱特性を可能とし、しかも小型化を推進できる。
As a polymer dielectric film, the surface roughness of both surfaces is 0.
By using a flat material with a diameter of 0.4 μm or less,
It is possible to significantly improve the potential gradient and realize a smaller chip film capacitor. In particular, PPS film and PE film of polymeric dielectric film corresponding to heat resistance.
By using N film, it is possible to achieve even higher heat resistance characteristics for surface mounting reflow at higher temperatures, and furthermore, it is possible to promote miniaturization.

実施例 以下本発明の一実施例について図面を参照しながら説明
を行う。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例におけるモールドレスタイプ
のチップフィルムコンデンサの構成図である。
FIG. 1 is a block diagram of a moldless type chip film capacitor in one embodiment of the present invention.

高分子誘電体フィルム6としては、厚み3.5μmのP
ENフィルムを使用した。このPENフィルム4の表面
に、アルミニウムの薄膜金属5を形成して金属化プラス
チックフィルムとし、前記金属化プラスチックフィルム
を積層し、内部電極から電極を引き出すための外部電極
8を金属溶射することにより形成し、その後高温による
熱処理を施す工程を経て、前記外部電極の最上部に半田
メツキ9を設け、積層切断面に紫外線硬化形樹脂10を
コートした簡易的な外装を施してモールドレスタイプの
チップフィルムコンデンサを得る。
As the polymer dielectric film 6, P with a thickness of 3.5 μm is used.
EN film was used. A thin metal film 5 of aluminum is formed on the surface of this PEN film 4 to form a metallized plastic film, the metallized plastic film is laminated, and an external electrode 8 for drawing out the electrode from the internal electrode is formed by metal spraying. After that, through a process of heat treatment at high temperature, solder plating 9 is provided on the top of the external electrode, and a simple exterior coated with ultraviolet curable resin 10 is applied to the laminated cut surface, resulting in a moldless type chip film. Get a capacitor.

特に、チップフィルムコンデンサの面実装リフロー時に
おける耐熱確保のために、上記製造工程中において高温
による熱処理工程を設けている。
In particular, in order to ensure heat resistance during surface mounting reflow of chip film capacitors, a heat treatment process at high temperature is provided during the above manufacturing process.

この時、用いられるPENフィルム4の両表面の平均表
面粗度は0.04μm以下であり、目的の耐熱特性を満
足させ、耐電圧特性を向上させる。
At this time, the average surface roughness of both surfaces of the PEN film 4 used is 0.04 μm or less, which satisfies the desired heat resistance properties and improves the withstand voltage properties.

本発明の構成によるコンデンサの作用について図面を参
照しながら説明を行う。
The operation of the capacitor configured according to the present invention will be explained with reference to the drawings.

第2図はPEN3.5μmフィルムの平均表面粗度を0
.08ttm、0.04μm、0.01μmの3種類に
ついて、高温負荷寿命試験によって求めた電位傾度(ミ
クロン単位当りの耐電圧)結果を示す。縦軸に電位傾度
、横軸は製造工程中に実施した熱処理温度を表わしてい
る。試験条件は温度105℃の大気雰囲気中で、直流電
圧を連続的に印加し、1000時間経過後、初期静電容
量に対し±5%、絶縁抵抗lXl0IOΩを満足する場
合を合格とする。第2図かられかるように、フィルムの
平均表面粗度の大小にかかわらず、熱処理温度が高温に
なるにつれ、誘電体フィルムの熱的劣化により、電位傾
度は低下する。第3図は製造工程中の熱処理工程におい
て、220℃、240℃。
Figure 2 shows the average surface roughness of the PEN 3.5μm film as 0.
.. The potential gradient (withstand voltage per micron unit) results obtained by high temperature load life test are shown for three types: 08 ttm, 0.04 μm, and 0.01 μm. The vertical axis represents the potential gradient, and the horizontal axis represents the heat treatment temperature performed during the manufacturing process. The test conditions are that a DC voltage is continuously applied in an air atmosphere at a temperature of 105° C., and after 1000 hours, the test is passed if the initial capacitance is ±5% and the insulation resistance is 1X10IOΩ. As can be seen from FIG. 2, irrespective of the average surface roughness of the film, as the heat treatment temperature increases, the potential gradient decreases due to thermal deterioration of the dielectric film. Figure 3 shows temperatures at 220°C and 240°C during the heat treatment process during the manufacturing process.

260℃各々5時間の熱処理を行った場合の面実装リフ
ロー試験結果を示している。縦軸に、面実装リフロー耐
熱保証温度を表し、横軸はPENフィルムの平均表面粗
度を表している。試験条件は、試料を温度85℃、湿度
95%雰囲気中で、初期容量に対し4%吸湿(PENフ
ィルムを用いコンデンサとした場合の年間を通じての容
量変化率に相当)させた後、最高温度200℃〜280
℃の雰囲気中で、1分間保持した後、外観不良(寸法変
化2割れ〉なし吸湿後静電容量に対し±5%以内を満足
する場合を合格とし、耐熱保証温度とした。第3図より
わかるように、フィルムの平均表面粗度が0.04μm
より大きくなると、面実装リフロー耐熱保証温度は低く
なり、平均表面粗度が0.04μm以下になると耐熱保
証温度は向上する。平均表面粗度が0.04μm以下に
なると、誘電体フィルム相互の層間接着が強固となり、
熱による誘電体フィルム自身の収縮を互いに抑制するこ
とになる。
The surface mounting reflow test results are shown when heat treatment was performed at 260° C. for 5 hours each. The vertical axis represents the guaranteed temperature for surface mounting reflow heat resistance, and the horizontal axis represents the average surface roughness of the PEN film. The test conditions were that the sample was allowed to absorb 4% of its initial capacity in an atmosphere at a temperature of 85°C and a humidity of 95% (corresponding to the rate of change in capacity throughout the year when a PEN film was used as a capacitor), and then at a maximum temperature of 200°C. ℃~280
After being held in an atmosphere at ℃ for 1 minute, the case where there is no appearance defect (dimensional change in 2 cracks) and the capacitance after moisture absorption satisfies within ±5% is considered to be a pass, and the heat resistance is guaranteed.From Figure 3. As can be seen, the average surface roughness of the film is 0.04 μm
As the surface mounting reflow temperature increases, the guaranteed heat resistance temperature decreases, and when the average surface roughness becomes 0.04 μm or less, the guaranteed heat resistance temperature increases. When the average surface roughness is 0.04 μm or less, the interlayer adhesion between dielectric films becomes strong,
This mutually suppresses shrinkage of the dielectric film itself due to heat.

以上のことから面実装リフロー時の耐熱特性を考慮しか
つ電位傾度を向上するには、高分子誘電体フィルム両表
面の平均表面粗度は0.04μm以下に設定する必要が
あることが理解される。
From the above, it is understood that the average surface roughness of both surfaces of the polymer dielectric film needs to be set to 0.04 μm or less in order to consider the heat resistance characteristics and improve the potential gradient during surface mounting reflow. Ru.

発明の効果 以上の結果から明らかなように本発明のチップフィルム
コンデンサは、両表面の平均表面粗度が0.04μm以
下のフラットな高分子誘電体フィルムを用いる事により
、面実装リフロー時における耐熱特性を満足させ、電位
傾度を飛躍的に向上させ、大幅な小型化を可能とする。
Effects of the Invention As is clear from the above results, the chip film capacitor of the present invention has excellent heat resistance during surface mounting reflow by using a flat polymer dielectric film with an average surface roughness of 0.04 μm or less on both surfaces. It satisfies the characteristics, dramatically improves the potential gradient, and enables significant downsizing.

よって、電子機器、電気機器の小型化に多大に貢献する
事ができ、産業上に与える効果は非常に大きいものがあ
る。
Therefore, it can greatly contribute to the miniaturization of electronic devices and electrical devices, and has a very large effect on industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるモールドレスタイプの
チップフィルムコンデンサの一部切欠斜視図、第2図、
第3図は本発明のチップコンデンサの特性図、第4図は
従来のモールドレスタイプのチップフィルムコンデンサ
の一部切欠斜視図である。 6・・・・・・高分子誘電体フィルム、7・・・・・・
蒸着金属、8・・・・・・外部電極、9・・・・・・半
田メツキ電極、10・・・・・・簡易外装。
FIG. 1 is a partially cutaway perspective view of a moldless type chip film capacitor according to an embodiment of the present invention, FIG.
FIG. 3 is a characteristic diagram of the chip capacitor of the present invention, and FIG. 4 is a partially cutaway perspective view of a conventional moldless type chip film capacitor. 6... Polymer dielectric film, 7...
Vapor deposited metal, 8... External electrode, 9... Solder plating electrode, 10... Simple exterior.

Claims (2)

【特許請求の範囲】[Claims] (1)高分子誘電体フィルムの片面又は両面に蒸着金属
を形成してなる金属化フィルムを巻回または積層してな
るチップ形金属化フィルムコンデンサにおいて、両表面
の平均表面粗度が0.04μm以下である高分子誘電体
フィルムを用いたことを特徴とするチップ形金属化フィ
ルムコンデンサ。
(1) In a chip-type metallized film capacitor formed by winding or laminating a metallized film formed by forming vapor-deposited metal on one or both sides of a polymeric dielectric film, the average surface roughness of both surfaces is 0.04 μm. A chip-shaped metallized film capacitor characterized by using the following polymeric dielectric film.
(2)高分子誘電体フィルムとして、ポリエチレンナフ
タレートフィルムを用いることを特徴とする請求項1記
載のチップ形金属化フィルムコンデンサ。
(2) The chip-shaped metallized film capacitor according to claim 1, wherein a polyethylene naphthalate film is used as the polymeric dielectric film.
JP3866990A 1990-02-20 1990-02-20 Chip type metallized film capacitor Pending JPH03241806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3866990A JPH03241806A (en) 1990-02-20 1990-02-20 Chip type metallized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3866990A JPH03241806A (en) 1990-02-20 1990-02-20 Chip type metallized film capacitor

Publications (1)

Publication Number Publication Date
JPH03241806A true JPH03241806A (en) 1991-10-29

Family

ID=12531681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3866990A Pending JPH03241806A (en) 1990-02-20 1990-02-20 Chip type metallized film capacitor

Country Status (1)

Country Link
JP (1) JPH03241806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026260A1 (en) * 1997-11-18 1999-05-27 Matsushita Electric Industrial Co., Ltd. Laminate and capacitor
JP2009157273A (en) * 2007-12-27 2009-07-16 Nippon Shokubai Co Ltd Light selective transmission filter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026260A1 (en) * 1997-11-18 1999-05-27 Matsushita Electric Industrial Co., Ltd. Laminate and capacitor
EP1041590A1 (en) * 1997-11-18 2000-10-04 Matsushita Electric Industrial Co., Ltd. Laminate and capacitor
US6388865B1 (en) 1997-11-18 2002-05-14 Matsushita Electric Industrial Co., Ltd. Laminate and capacitor
US6577493B2 (en) 1997-11-18 2003-06-10 Matsushita Electric Industrial Co., Ltd. Layered product and capacitor
US6611420B2 (en) 1997-11-18 2003-08-26 Matsushita Electric Industrial Co., Ltd. Layered product and capacitor
US6704190B2 (en) 1997-11-18 2004-03-09 Matsushita Electric Industrial Co., Ltd. Layered product and capacitor
US6710997B2 (en) 1997-11-18 2004-03-23 Matsushita Electric Industrial Co., Ltd. Layered product and capacitor
EP1041590A4 (en) * 1997-11-18 2004-09-22 Matsushita Electric Ind Co Ltd Laminate and capacitor
US6879481B2 (en) 1997-11-18 2005-04-12 Matsushita Electric Industrial Co., Ltd. Layered product and capacitor
JP2009157273A (en) * 2007-12-27 2009-07-16 Nippon Shokubai Co Ltd Light selective transmission filter

Similar Documents

Publication Publication Date Title
US9972439B2 (en) Ceramic electronic component and method of manufacturing the same
US8139342B2 (en) Laminated electronic component and method for manufacturing the same
US9418790B2 (en) Method for manufacturing a multilayer ceramic electronic component
US10515765B2 (en) Multilayer ceramic capacitor
US10217568B2 (en) Multilayer ceramic capacitor
JP2015050452A (en) Multilayer ceramic electronic component to be embedded in board and printed circuit board having multilayer ceramic electronic component embedded therein
JP7302900B2 (en) Multilayer ceramic capacitor
US20170099727A1 (en) Composite electronic component and board on which composite electronic component is mounted
US20220165497A1 (en) Multilayer electronic component
JPH06168845A (en) Chip type laminated film capacitor
JPS5969907A (en) Temperature compensating laminated layer ceramic condenser
JPH03241806A (en) Chip type metallized film capacitor
KR20200064860A (en) Multi-layered ceramic capacitor and method of manufacturing the same
JPH03296205A (en) Ceramic capacitor
JP2023056764A (en) Multilayer ceramic electronic component and circuit board
JP3246166B2 (en) Thin film capacitors
JPS59197120A (en) Ultrafine film condenser
JPS5931018A (en) Method of producing metallized plastic film condenser
JPH03241804A (en) Chip type metallized film capacitor
US20230113834A1 (en) Multilayer electronic component
JP2000260654A (en) Ultra-small chip type electronic component
JPH04152614A (en) Manufacture of chip film capacitor
CN112908697A (en) Multilayer ceramic capacitor and method for manufacturing same
JPS62226612A (en) Capacitor
JPS61102021A (en) Capacitor