JPS622124B2 - - Google Patents
Info
- Publication number
- JPS622124B2 JPS622124B2 JP10259281A JP10259281A JPS622124B2 JP S622124 B2 JPS622124 B2 JP S622124B2 JP 10259281 A JP10259281 A JP 10259281A JP 10259281 A JP10259281 A JP 10259281A JP S622124 B2 JPS622124 B2 JP S622124B2
- Authority
- JP
- Japan
- Prior art keywords
- steam
- reheater
- turbine
- temperature
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 40
- 230000008646 thermal stress Effects 0.000 claims description 18
- 230000035882 stress Effects 0.000 claims description 8
- 239000002184 metal Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/22—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
- F01K7/24—Control or safety means specially adapted therefor
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
Description
【発明の詳細な説明】
本発明は、原子力発電所における再熱器を有す
る蒸気タービンプラントの制御装置に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a steam turbine plant having a reheater in a nuclear power plant.
発電用の原子炉プラントで発生する蒸気は、化
石燃料源による蒸気発生器で発生する蒸気より、
一般に温度が低く、飽和温度近傍にある。原子炉
プラントで発生した蒸気は、高圧力タービンに導
かれてそのエネルギーを動力に変換したのち、さ
らに、低圧力タービンにて動力を発生するのに用
いられる場合があるが、この場合、高圧力タービ
ンから排出された蒸気は、温度・圧力ともに低
く、かつ湿り度も高いので、湿分を分離するとと
もに、原子炉発生蒸気を加熱源とする再熱器を用
いることがある。この再熱器において、高圧力タ
ービンからの排出蒸気を加熱し、低圧力タービン
に導いて動力を得ることにより、低圧力タービン
の駆動動力を増加させ、原子炉プラントと蒸気タ
ービンプラントからなる原子力発電所の熱効率を
改善することができる。この再熱器の制御装置と
して
従来技術の例では、空気作動の加熱蒸気の制御
弁と、空気信号を加熱蒸気の制御弁へ伝達するモ
ーター動作のカムから構成している。そしてこれ
らの装置を運転者が操作し、加熱蒸気の制御弁を
制御するようにしている。 The steam produced in nuclear reactor plants for power generation is more
Generally, the temperature is low and near the saturation temperature. The steam generated in a nuclear reactor plant is led to a high-pressure turbine to convert its energy into power, and then is sometimes used to generate power in a low-pressure turbine; in this case, the high-pressure The steam discharged from the turbine has low temperature and pressure, and high humidity, so in addition to separating the moisture, a reheater that uses reactor generated steam as a heating source is sometimes used. This reheater heats the exhaust steam from the high-pressure turbine and guides it to the low-pressure turbine to obtain power, thereby increasing the driving power of the low-pressure turbine. Thermal efficiency of the area can be improved. In a prior art example, the control device for this reheater consists of an air-operated heating steam control valve and a motor-operated cam that transmits an air signal to the heating steam control valve. The driver operates these devices to control the heating steam control valve.
また、特公昭53−47842、特会昭55−21243の例
では、蒸気再熱作業を連続的・自動的に制御する
方式を示している。前記2つの例では、それぞ
れ、タービン温度検出器、加熱蒸気の量を制御す
るための制御システムを備え、温度基準信号源、
比較器、積分回路、関係発生器を含み、複数の制
御モードのうちの1つによつて、再熱システムを
制御するものである。これらの例の制御上の重要
なパラメーターは、タービン入口部温度であつ
て、温度変化率の制御、低圧タービン部端部及び
入口部の最高温度制御、低圧タービンを過度に冷
却することを防ぐ制御を行なつている。しかしな
がら、従来例では実際に監視が必要とされる再熱
器内部と低圧タービンのロータの熱応力監視が出
来ないという欠点がある。即ち、最も熱応力監視
が必要なのは、再熱器内部と、低圧タービンのロ
ーターである。再熱器内部には一般にチユーブが
配置され、チユーブ内面を加熱蒸気が通り、チユ
ーブ外側を流れる高圧タービン排気から導かれる
蒸気を加熱する。チユーブに急激な温度変化を与
えると、変形により、チユーブの支持具との間に
過大な熱応力を発生したり、あるいは、チユーブ
自身に熱応力が発生する。タービンの静止体側に
比較すれば再熱器内部構造であるチユーブやチユ
ーブ支持具の方が、蒸気との熱伝達がよいから、
再熱器内部の方が、熱応力監視の必要性が高くな
るものである。また、同様にタービンローターの
方が、タービン静止体側より熱伝達が高いので、
タービンローターの方が流入する蒸気により温度
変化しやすく、熱応力も高くなる。 In addition, the examples of Japanese Patent Publication No. 53-47842 and Special Publication No. 55-21243 show methods for continuously and automatically controlling steam reheating work. The two examples each include a turbine temperature detector, a control system for controlling the amount of heated steam, a temperature reference signal source,
It includes a comparator, an integrator circuit, and a relational generator to control the reheat system according to one of a plurality of control modes. The important control parameters in these examples are the turbine inlet temperature, which includes temperature change rate control, maximum temperature control at the end and inlet of the low pressure turbine, and control to prevent excessive cooling of the low pressure turbine. is being carried out. However, the conventional method has a drawback in that it is not possible to monitor the thermal stress inside the reheater and the rotor of the low-pressure turbine, which actually requires monitoring. That is, the areas that require the most thermal stress monitoring are the inside of the reheater and the rotor of the low-pressure turbine. A tube is generally disposed inside the reheater, and heating steam passes through the inner surface of the tube to heat steam led from the high-pressure turbine exhaust flowing outside the tube. If a sudden temperature change is applied to the tube, excessive thermal stress may be generated between the tube and the supporting device due to deformation, or thermal stress may be generated in the tube itself. Compared to the stationary side of the turbine, the tube and tube support that are the internal structure of the reheater have better heat transfer with the steam.
The need for thermal stress monitoring is greater inside the reheater. Similarly, the turbine rotor has higher heat transfer than the turbine stationary body side, so
The temperature of the turbine rotor is more likely to change due to the inflowing steam, and the thermal stress is also higher.
本発明の目的は、再熱器内部及び低圧タービン
ローターの熱応力を許容範囲内に入るよう、再熱
器へ供給される加熱蒸気量を制御すると共に、低
圧タービンローターと再熱器内部の過冷却・過加
温を避けて両者を保護することを可能にした再熱
器を有する蒸気タービンプラントの制御装置を提
供するにある。 The purpose of the present invention is to control the amount of heating steam supplied to the reheater so that the thermal stress inside the reheater and the low pressure turbine rotor is within an allowable range, and to An object of the present invention is to provide a control device for a steam turbine plant having a reheater that can protect both by avoiding cooling and overheating.
次に本発明の一実施例である再熱器を有する蒸
気タービンプラントの制御装置を説明する。 Next, a control device for a steam turbine plant having a reheater, which is an embodiment of the present invention, will be described.
第1図は、本発明の対象となる原子力発電用の
蒸気タービンプラントを示すものである。図にお
いて、蒸気発生器1で発生した蒸気は、主蒸気止
め弁2、蒸気加減弁3を通つて、高圧タービン6
に導かれる。主蒸気止め弁2と蒸気加減弁3は、
蒸気タービンローターの速度検出器4からの速度
信号により、目標速度となるよう制御及び駆動装
置5により開閉する。高圧タービン6で仕事を
し、高圧タービンを駆動した蒸気は、圧力・温度
ともに低下して、蒸気中の湿り分も増加している
ので、湿分分離器7で湿分を分離した後、再熱器
8に導かれる。再熱器8の加熱源は、蒸気発生器
1で発生した蒸気を用い、主蒸気止め弁の上流側
から分岐する。再熱器8で加熱蒸気と熱交換し、
温度上昇した蒸気は、再熱蒸気と呼ばれ、低圧タ
ービン9に導かれる。高圧タービン6と低圧ター
ビン9は発電機10に結合され、発電機を駆動す
る。低圧タービン内で仕事をし、駆動動力を発生
した蒸気は、復水器11へ導かれ、凝結して水と
なつて給水加熱器12へ導かれる。この給水加熱
器には、再熱器で熱交換した加熱蒸気も導かれ、
復水器からの水を加熱する。加熱された水は、蒸
気発生器1へ供給される。 FIG. 1 shows a steam turbine plant for nuclear power generation, which is the object of the present invention. In the figure, steam generated in a steam generator 1 passes through a main steam stop valve 2 and a steam control valve 3 to a high-pressure turbine 6.
guided by. The main steam stop valve 2 and the steam control valve 3 are
Based on the speed signal from the speed detector 4 of the steam turbine rotor, the control and drive device 5 opens and closes the rotor so as to reach the target speed. The steam that does work in the high-pressure turbine 6 and drives the high-pressure turbine has a lower pressure and temperature and an increased moisture content, so after separating the moisture in the moisture separator 7, the steam is recycled. It is guided to the heating device 8. The heat source of the reheater 8 uses steam generated by the steam generator 1, and branches from the upstream side of the main steam stop valve. Exchange heat with heated steam in reheater 8,
The steam whose temperature has increased is called reheated steam and is guided to the low pressure turbine 9. The high pressure turbine 6 and the low pressure turbine 9 are coupled to a generator 10 to drive the generator. Steam that performs work in the low-pressure turbine and generates driving power is led to a condenser 11, condensed into water, and led to a feedwater heater 12. The heated steam that has been heat exchanged in the reheater is also guided to this feed water heater.
Heat the water from the condenser. The heated water is supplied to the steam generator 1.
加熱蒸気の配管には、加熱蒸気止め弁13と加
熱蒸気加減弁14が設置され、制御及び駆動装置
15により閉関する。 A heating steam stop valve 13 and a heating steam control valve 14 are installed in the heating steam piping, and are closed by a control and driving device 15.
第2図は本発明の一実施例である蒸気タービン
プラントの制御装置を示す。加熱蒸気止め弁13
は、止め弁駆動及び弁位置決定器16により開閉
され、開閉は全開又は全閉のいずれかである。開
閉は、止め弁制御装置17により指示される。再
熱蒸気制御弁14は、制御弁駆動及び弁位置決定
器18により開閉され、開閉は、全開・全閉のみ
ならず中間開度の場合もあり、開度は、制御弁制
御装置19により指示される。制御弁制御装置1
9は各種検出器からの検出値に基づき、低圧ター
ビンローター及び再熱器内部の熱応力を演算し、
最適となるよう加熱蒸気制御弁14の開度を設定
し、開度を指示する。各種検出器の検出値は、検
出値中継器20を径由して制御弁制御装置19へ
送られる。 FIG. 2 shows a control device for a steam turbine plant, which is an embodiment of the present invention. Heating steam stop valve 13
is opened and closed by the stop valve drive and valve position determiner 16, and the opening and closing are either fully open or fully closed. Opening and closing are instructed by the stop valve control device 17. The reheat steam control valve 14 is opened and closed by a control valve drive and valve position determiner 18, and the opening and closing may be not only fully open/closed but also an intermediate opening, and the opening is instructed by the control valve controller 19. be done. Control valve control device 1
9 calculates the thermal stress inside the low pressure turbine rotor and reheater based on the detected values from various detectors,
The opening degree of the heating steam control valve 14 is set to be optimal, and the opening degree is instructed. The detected values of the various detectors are sent to the control valve control device 19 via the detected value repeater 20.
検出器中継器20では、信号の伝達を行なう。
さらに同一検出点に複数の検出器をおいて、高値
を選択しあるいは低値を選択し、あるいは測定中
に過度の検出値の変化を示した検出値を除外する
ことを検出器中継器20で行ない、検出値の信頼
性を高めている。 The detector repeater 20 transmits signals.
Furthermore, when multiple detectors are placed at the same detection point, the detector repeater 20 can select a high value, select a low value, or exclude a detected value that shows an excessive change in detected value during measurement. This increases the reliability of detected values.
また、保護用検出器を設け、これらは保護用検
出器中継器37を経由して、止め弁制御器17に
検出値を送る。保護用検出器中継器37は、信号
の伝達を行なう。信号は止め弁制御器17に送ら
れ、機器保護のためにあらかじめ定められた設定
値を越え、あるいは下廻つたときに、止め弁駆動
及び弁位置決定器16に止め弁を全閉するための
信号を送る。このとき、同一検出点に複数の検出
器を置き、複数の検出値に対し、過半数の検出値
が設定値を越えあるいは下廻つたときに止め弁全
閉信号を出すようにしても良い。また、複数の検
出値のうち、2ケの検出値が設定値を越えあるい
は下廻つたときに止め弁全閉信号を出すようにし
ても良い。 Additionally, protection detectors are provided, which send detected values to the stop valve controller 17 via a protection detector repeater 37 . The protective detector repeater 37 performs signal transmission. The signal is sent to the stop valve controller 17, and when the value exceeds or falls below a predetermined set value for equipment protection, the signal is sent to the stop valve drive and valve position determiner 16 to fully close the stop valve. send a signal. At this time, a plurality of detectors may be placed at the same detection point, and a stop valve fully closed signal may be output when a majority of the plurality of detection values exceeds or falls below a set value. Alternatively, a stop valve fully closed signal may be output when two detected values among the plurality of detected values exceed or fall below a set value.
上記の如く、検出器から制御弁に至る制御系
と、検出器から止め弁に至る保護系とを相互に独
立させることにより、制御系不調時でも、機器保
護を安全に行なうことができる。 As described above, by making the control system from the detector to the control valve and the protection system from the detector to the stop valve independent of each other, equipment can be safely protected even when the control system malfunctions.
また、検出器での検出値が、あらかじめ設定し
たリセツト値をこえ、あるいは下まわつたとき、
全閉信号をとり消し、中央制御装置38からリセ
ツト信号が、止め弁制御器17に入れば、止め弁
を全開して、起動に備えるようになつている。 Also, when the detected value by the detector exceeds or falls below the preset reset value,
When the full close signal is canceled and a reset signal is sent from the central controller 38 to the stop valve controller 17, the stop valve is fully opened to prepare for startup.
手動制御器34は運転者の判断で手動操作によ
り止め弁制御器17、制御弁制御器19に弁開閉
信号を送る。これにより、非常時、運転者の判断
で弁開閉できるとともに、止め弁・制御弁の開閉
テストを行なうことができる。 The manual controller 34 sends valve opening/closing signals to the stop valve controller 17 and the control valve controller 19 by manual operation at the driver's discretion. As a result, in an emergency, the valve can be opened and closed at the driver's discretion, and the stop valve and control valve can be tested for opening and closing.
次に、再熱蒸気制御弁14による最適制御につ
いて述べる。低圧タービン熱応力と、再熱器内部
熱応力を演算し、それが許容値内に入るよう制御
するものである。 Next, optimal control by the reheat steam control valve 14 will be described. The low-pressure turbine thermal stress and the reheater internal thermal stress are calculated and controlled so that they fall within allowable values.
低圧タービン熱応力はローター応力をとればよ
く、それは次のように求められる。 The low-pressure turbine thermal stress can be calculated by taking the rotor stress, which can be obtained as follows.
σS=Eα/1−ν(Tavg−To) σB=Eα/1−ν(Tavg−TB) 但し、σS:ローター表面応力 σB:ローター中心孔応力 E:ローター材弾性係数 α:ローター材線膨張係数 ν:ポアソン比 To:ローター表面温度 TB:ローター中心孔温度 Tavg:ローターの体積平均温度 Tavg=1/γo 2−γp 2∫〓n〓pT・r・dr 但し、T:ローターの半径rでの温度 γo:ローター表面半径 γp:ローターボア半径 ローターの温度Tは下式で求められる。 σ S =Eα/1−ν(T avg −T o ) σ B =Eα/1−ν(T avg −T B ) However, σ S : Rotor surface stress σ B : Rotor center hole stress E : Rotor material elasticity Coefficient α: Rotor material linear expansion coefficient ν: Poisson's ratio T o : Rotor surface temperature T B : Rotor center hole temperature T avg : Rotor volume average temperature T avg = 1/γ o 2 - γ p 2 ∫〓 n 〓 p T・r・dr However, T: Temperature at rotor radius r γ o : Rotor surface radius γ p : Rotor bore radius The rotor temperature T is determined by the following formula.
∂T/∂t=a(∂2T/∂γ2+∂T/γ∂γ)
t:時間
a:ローター材の温度伝導度
境界条件は
K(TS−To)=λ∂T/∂r
TS:ローター表面の蒸気温度
λ:ローター材の熱伝導率
K:ローター表面と蒸気との間の熱伝達率
再熱器を出た蒸気が低圧タービンに導かれるの
で、再熱器出口温度は、低圧タービン入口部ロー
ター表面の蒸気温度に等しい。そこで、低圧ター
ビンに蒸気が流入する前のタービンローターの初
期温度を低圧タービン内部メタル温度検出器32
で検知した温度として、その後は加熱器から出る
再熱器出口温度より、上記の演算式により、刻々
のローター表面応力・中心孔応力を演算する。ま
た同時に、演算された応力値と許容応力値とから
今後の適当な時間Δt後までに許しうる再熱器出
口蒸気温度変化量ΔT30を求める。再熱器出口蒸
気温度は、再熱器に入る加熱蒸気温度と加熱蒸気
量を調整することで制御できる。また、再熱器入
口蒸気温度や再熱器入口蒸気量が変化していると
きは、その変化率を考慮して、加熱蒸気量を補正
する。再熱器入口蒸気量は、高圧タービン初段後
圧力に比例するから、高圧タービン初段後圧力の
測定値から演算する。このようにして、Δt後ま
での、加熱蒸気量の増減可能範囲を求める。 ∂T/∂t=a(∂ 2 T/∂γ 2 +∂T/γ∂γ) t: Time a: Temperature conductivity of rotor material The boundary condition is K(T S −T o )=λ∂T/ ∂r T S : Steam temperature on the rotor surface λ: Thermal conductivity of the rotor material K: Heat transfer coefficient between the rotor surface and the steam The steam leaving the reheater is led to the low pressure turbine, so the steam exits the reheater. The temperature is equal to the steam temperature at the low pressure turbine inlet rotor surface. Therefore, the initial temperature of the turbine rotor before steam flows into the low pressure turbine is detected by the low pressure turbine internal metal temperature detector 32.
As the temperature detected in , the rotor surface stress and center hole stress are calculated moment by moment using the above calculation formula from the reheater outlet temperature from the heater. At the same time, the amount of change ΔT 30 in steam temperature at the outlet of the reheater that can be allowed until after an appropriate time Δt in the future is determined from the calculated stress value and the allowable stress value. The reheater outlet steam temperature can be controlled by adjusting the heated steam temperature and the amount of heated steam entering the reheater. Furthermore, when the reheater inlet steam temperature or the reheater inlet steam amount is changing, the heating steam amount is corrected in consideration of the rate of change. Since the reheater inlet steam amount is proportional to the pressure after the first stage of the high pressure turbine, it is calculated from the measured value of the pressure after the first stage of the high pressure turbine. In this way, the range in which the amount of heating steam can be increased or decreased until after Δt is determined.
同様に、再熱器内部の熱応力についても、刻々
の熱応力を演算して、それが許容値内に入るため
のΔt後までに許しうる加熱蒸気量の増減可能範
囲を求める。 Similarly, with regard to the thermal stress inside the reheater, the momentary thermal stress is calculated to determine the range in which the amount of heating steam can be increased or decreased until after Δt so that the thermal stress falls within the allowable value.
低圧タービンローター熱応力から求めた加熱蒸
気量の増減可能範囲と、再熱器内部熱応力から求
めた加熱蒸気量の増減可能範囲をつき合わせ、重
り合う部分内で、加熱蒸気増減量を決定する。 Compare the range in which the amount of heating steam can be increased or decreased, determined from the thermal stress of the low-pressure turbine rotor, and the range in which the amount of heating steam can be increased or decreased, determined from the internal thermal stress of the reheater, and determine the amount to increase or decrease the amount of heating steam within the overlapping area. .
加熱蒸気増減量決定後、加熱蒸気条件から加熱
蒸気制御弁の開度増減を決定し、加熱蒸気制御弁
を開閉する。 After the heating steam increase/decrease is determined, the opening degree increase/decrease of the heating steam control valve is determined based on the heating steam conditions, and the heating steam control valve is opened/closed.
第3図に、前述の制御のための演算ブロツクを
示す。この演算機能は、制御弁制御器が有してい
るものである。 FIG. 3 shows arithmetic blocks for the above-mentioned control. This calculation function is possessed by the control valve controller.
再熱器入口蒸気圧力(検出器27)及び、再熱
器入口蒸気温度(検出器28)は主蒸気条件が一
定である限りタービン負荷に比例する。タービン
負荷はタービン初段後圧力(検出器33)に比例
するから、タービン初段後圧力から他の2つを演
算するようにしても本発明の実施には十分であ
る。 The reheater inlet steam pressure (detector 27) and the reheater inlet steam temperature (detector 28) are proportional to the turbine load as long as the main steam condition is constant. Since the turbine load is proportional to the pressure after the first stage of the turbine (detector 33), it is sufficient to implement the present invention even if the other two are calculated from the pressure after the first stage of the turbine.
加熱蒸気は主蒸気ラインからとるので、その蒸
気条件は主蒸気条件と同一である。主蒸気条件が
変化する場合も、主蒸気温度はほぼ飽和温度であ
つて主蒸気圧力がかわるために変化することが多
い。即ち、主蒸気温度はほぼ飽和条件であつて主
蒸気圧力を徐々に上昇させるよう原子炉熱出力を
上昇させていく場合である。このような場合は、
加熱蒸気の圧力(検出器21)を使用し、加熱蒸
気の温度(検出器22)は測定せず演算で求めた
値を用いて制御しても本発明の実施には十分であ
る。 Since the heating steam is taken from the main steam line, its steam conditions are the same as the main steam conditions. Even when the main steam conditions change, the main steam temperature often changes because it is approximately the saturation temperature and the main steam pressure changes. That is, this is a case where the main steam temperature is approximately saturated and the reactor thermal output is increased so as to gradually increase the main steam pressure. In such a case,
It is sufficient to carry out the present invention even if the pressure of the heated steam (detector 21) is used and the temperature of the heated steam (detector 22) is controlled using a calculated value without measuring it.
主蒸気条件とタービン負荷タービン回転速度に
一定の関係を持たせてタービンを制御する場合が
ある。即ち、主蒸気圧力を上昇させながら、ター
ビン回転速度を上昇させ、定格圧力に達したのち
タービン負荷をとり始める場合である。この場合
は、タービン回転速度(検出器4)とタービン負
荷から、主蒸気条件を逆に求めても同様の効果を
うる。したがつて、検出器21と22は省略して
も良い。 There are cases where the turbine is controlled by making a certain relationship between the main steam condition and the turbine load turbine rotation speed. That is, this is a case where the turbine rotational speed is increased while increasing the main steam pressure, and after reaching the rated pressure, the turbine load is started. In this case, the same effect can be obtained even if the main steam conditions are determined inversely from the turbine rotational speed (detector 4) and the turbine load. Therefore, detectors 21 and 22 may be omitted.
前述の如く、タービン負荷は高圧タービン初段
後圧力(検出器33)に比例するから、タービン
負荷は高圧タービン初段後圧力より求めている
が、これを発電機出力を検出してタービン負荷を
求めても、本発明の実施には十分である。 As mentioned above, the turbine load is proportional to the pressure after the first stage of the high pressure turbine (detector 33), so the turbine load is determined from the pressure after the first stage of the high pressure turbine, but this can be determined by detecting the generator output to determine the turbine load. are also sufficient for practicing the invention.
加熱蒸気制御弁後の蒸気は、加熱蒸気が、制御
弁で絞られて、等エンタルピー膨張すると考えて
も、本発明の実施には十分である。そこで、加熱
蒸気条件と、加熱蒸気制御弁後の圧力(検出器2
3)から加熱蒸気制御弁後の温度を演算して求め
ても良い。 It is sufficient to carry out the present invention even if it is considered that the steam after the heating steam control valve undergoes isenthalpic expansion after being throttled by the control valve. Therefore, the heating steam conditions and the pressure after the heating steam control valve (detector 2
The temperature after the heating steam control valve may be calculated and obtained from 3).
原子力発電所の蒸気タービンプラントでの蒸気
には、湿り分が含まれており、タービン内部の除
湿装置あるいは外部の除湿装置によつて湿分をと
り除くことによつて、蒸気条件を飽和状態近傍に
保ち、タービン効率を高めるようにしている。タ
ービン内部に除湿装置を設けない場合、あるいは
設けても湿り度が高いと予想される場合、また
は、主蒸気の湿り度が高い場合制御の精度を高め
るために、各々の蒸気温度測定点にて湿り度を測
定するようにしている。湿り度を測定してエンタ
ルピーを求めることにより、前述の加熱蒸気制御
弁後の温度を精度よく演算出来、また、蒸気とタ
ービンローターとの熱伝達率を精度よく演算する
ことが出来る。 The steam in the steam turbine plant of a nuclear power plant contains moisture, and by removing the moisture using a dehumidifier inside the turbine or an external dehumidifier, the steam conditions can be brought to near saturation. and to increase turbine efficiency. If a dehumidifier is not installed inside the turbine, or if the humidity is expected to be high even if a dehumidifier is installed, or if the humidity of the main steam is high, check the temperature at each steam temperature measurement point to improve control accuracy. I am trying to measure the humidity. By measuring the humidity and determining the enthalpy, the temperature after the heating steam control valve described above can be calculated with high accuracy, and the heat transfer coefficient between the steam and the turbine rotor can be calculated with high accuracy.
制御用に用いた再熱器内部メタル温度検出器3
1と低圧タービン内部メタル温度検出器32の両
者もしくは片方を除外し、それぞれの検出初期値
を停止直前の蒸気流れのある状態で演算して求め
たメタル温度からタービン停止時間での冷却を考
えて演算して求めても、本発明の実施は可能であ
る。 Reheater internal metal temperature detector 3 used for control
1 and the low-pressure turbine internal metal temperature detector 32, or both, and the respective initial detection values are calculated in a state where there is steam flow just before the stop. Based on the metal temperature, the cooling during the turbine stop time is considered. The present invention can also be implemented by calculating.
本発明によれば再熱器内部及び低圧タービンロ
ーターの熱応力が許容範囲内に入るよう再熱器に
供給される加熱蒸気量を制御出来るようにした再
熱器を有する蒸気タービンプラントの制御装置が
実現出来るという効果を奏する。 According to the present invention, a control device for a steam turbine plant having a reheater is capable of controlling the amount of heated steam supplied to the reheater so that the thermal stress inside the reheater and the low-pressure turbine rotor is within an allowable range. This has the effect that it can be realized.
第1図は本発明の対象となる原子力発電所の蒸
気タービンプラントを示す系統図、第2図は本発
明の一実施例である再熱器を有する蒸気タービン
プラントの制御装置を示す全体系統図、第3図は
本発明の制御装置の詳細内容を示す制御フロー図
である。
1……蒸気発生器、2……主蒸気止め弁、3…
…蒸気加減弁、4……速度検出器、5……制御及
び駆動装置、6……高圧タービン、7……湿分分
離器、8……再熱器、9……低圧タービン、10
……発電機、11……復水器、12……給水加熱
器、13……加熱蒸気止め弁、14……加熱蒸気
制御弁、15……制御及び駆動装置、16……止
め弁駆動及び弁位置決定器、17……止め弁制御
器、18……制御弁駆動及び弁位置決定器、19
……制御弁制御器、20……検出器中継器、21
……加熱蒸気圧力検出器、22……加熱蒸気温度
検出器、23……加熱蒸気制御弁後圧力検出器、
24……加熱蒸気制御弁後蒸気温度検出器、25
……加熱蒸気再熱器出口圧力検出器、26……加
熱蒸気再熱器出口温度検出器、27……再熱器入
口蒸気圧力検出器、28……再熱器入口蒸気温度
検出器、29……再熱器出口蒸気圧力検出器、3
0……再熱器出口蒸気温度検出器、31……再熱
器内部メタル温度検出器、32……低圧タービン
内部メタル温度検出器、33……高圧タービン初
段後圧力検出器、34……手動制御器、35……
再熱器内部メタル温度検出器(保護用)、36…
…低圧タービン内部メタル温度検出器(保護
用)、37……保護用検出器中継器、38……中
央制御装置。
Fig. 1 is a system diagram showing a steam turbine plant of a nuclear power plant, which is the subject of the present invention, and Fig. 2 is an overall system diagram showing a control device for a steam turbine plant having a reheater, which is an embodiment of the present invention. , FIG. 3 is a control flow diagram showing detailed contents of the control device of the present invention. 1...Steam generator, 2...Main steam stop valve, 3...
... Steam control valve, 4 ... Speed detector, 5 ... Control and drive device, 6 ... High pressure turbine, 7 ... Moisture separator, 8 ... Reheater, 9 ... Low pressure turbine, 10
... Generator, 11 ... Condenser, 12 ... Feed water heater, 13 ... Heating steam stop valve, 14 ... Heating steam control valve, 15 ... Control and drive device, 16 ... Stop valve drive and Valve position determiner, 17...Stop valve controller, 18...Control valve drive and valve position determiner, 19
... Control valve controller, 20 ... Detector repeater, 21
... Heating steam pressure detector, 22 ... Heating steam temperature detector, 23 ... Heating steam control valve rear pressure detector,
24...Steam temperature detector after heating steam control valve, 25
... Heating steam reheater outlet pressure detector, 26 ... Heating steam reheater outlet temperature detector, 27 ... Reheater inlet steam pressure detector, 28 ... Reheater inlet steam temperature detector, 29 ...Reheater outlet steam pressure detector, 3
0... Reheater outlet steam temperature detector, 31... Reheater internal metal temperature detector, 32... Low pressure turbine internal metal temperature detector, 33... High pressure turbine first stage rear pressure detector, 34... Manual Controller, 35...
Reheater internal metal temperature sensor (for protection), 36...
...Low pressure turbine internal metal temperature detector (for protection), 37...Protection detector repeater, 38...Central control unit.
Claims (1)
気タービンプラントにおいて、再熱器に加熱蒸気
を供給する加熱蒸気配管に制御弁を設置し、該蒸
気タービンプラントの低圧タービン部及び再熱器
に温度検出器を設置し、これら温度検出器から低
圧タービンロータの熱応力及び再熱器内部の応力
を演算する演算装置を設置し、この演算装置によ
る熱応力値に基づき、該熱応力値が許容値内に入
るよう前記制御弁を操作する弁制御装置を設置し
たものから構成されることを特徴とする再熱器を
有する蒸気タービンプラントの制御装置。1. In a steam turbine plant equipped with a reheater installed in a nuclear power plant, a control valve is installed in the heating steam piping that supplies heating steam to the reheater, and a control valve is installed in the heating steam piping that supplies heating steam to the reheater, and Temperature detectors are installed, and a calculation device is installed that calculates the thermal stress of the low-pressure turbine rotor and the stress inside the reheater from these temperature detectors. 1. A control device for a steam turbine plant having a reheater, characterized in that the control device comprises a valve control device that operates the control valve so that the control valve is within a certain value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10259281A JPS585412A (en) | 1981-06-30 | 1981-06-30 | Controller for steam turbine plant with reheater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10259281A JPS585412A (en) | 1981-06-30 | 1981-06-30 | Controller for steam turbine plant with reheater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS585412A JPS585412A (en) | 1983-01-12 |
JPS622124B2 true JPS622124B2 (en) | 1987-01-17 |
Family
ID=14331500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10259281A Granted JPS585412A (en) | 1981-06-30 | 1981-06-30 | Controller for steam turbine plant with reheater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS585412A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0312325U (en) * | 1989-06-21 | 1991-02-07 | ||
JPH0322332U (en) * | 1989-03-20 | 1991-03-07 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6022006A (en) * | 1983-07-18 | 1985-02-04 | Hitachi Ltd | Control device for reheater |
JPH07111489B2 (en) * | 1985-07-15 | 1995-11-29 | 富士通株式会社 | Optical demultiplexer |
US4827429A (en) * | 1987-06-16 | 1989-05-02 | Westinghouse Electric Corp. | Turbine impulse chamber temperature determination method and apparatus |
-
1981
- 1981-06-30 JP JP10259281A patent/JPS585412A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0322332U (en) * | 1989-03-20 | 1991-03-07 | ||
JPH0312325U (en) * | 1989-06-21 | 1991-02-07 |
Also Published As
Publication number | Publication date |
---|---|
JPS585412A (en) | 1983-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6939100B2 (en) | Method and apparatus for controlling steam turbine inlet flow to limit shell and rotor thermal stress | |
JPS622124B2 (en) | ||
JP3029440B2 (en) | Steam turbine for power generation | |
JP2651137B2 (en) | Water level control device | |
JP3780678B2 (en) | Method and apparatus for warming up a bypass valve in a steam plant | |
JPH05222904A (en) | Control device for turbine exhaust condensing system | |
JP2504939Y2 (en) | Boiler level controller | |
JPS5870007A (en) | Apparatus for controlling combined cycle power plant | |
JPS63295997A (en) | Warming control apparatus of plant | |
JPS62324B2 (en) | ||
JPS60224905A (en) | Steam turbine device | |
JPS6235002B2 (en) | ||
JPH0368278B2 (en) | ||
JPS59224406A (en) | Protective mechanism of nuclear turbine | |
JPS6198908A (en) | Steam turbine device | |
JPS6237285B2 (en) | ||
JPS60240806A (en) | Device for warming auxiliary steam communication pipe | |
JPH05125908A (en) | Water induction protector for steam turbine | |
JPS5987206A (en) | Geothermal turbine control device | |
JP2001355408A (en) | Method and device for controlling turbine steam flow | |
JPS5977012A (en) | Reheating type steam turbine plant | |
JP3613690B2 (en) | Turbine control method and control apparatus | |
JPS60207802A (en) | Controller for steam pressure | |
JPS5822419A (en) | Controlling method for rotational frequency of feed water pump motor for water pipe boiler | |
JPS582795A (en) | Reheater control device for atomic power turbine plant |