JPS585412A - Controller for steam turbine plant with reheater - Google Patents
Controller for steam turbine plant with reheaterInfo
- Publication number
- JPS585412A JPS585412A JP10259281A JP10259281A JPS585412A JP S585412 A JPS585412 A JP S585412A JP 10259281 A JP10259281 A JP 10259281A JP 10259281 A JP10259281 A JP 10259281A JP S585412 A JPS585412 A JP S585412A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- reheater
- turbine
- rotor
- control valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/22—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
- F01K7/24—Control or safety means specially adapted therefor
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、原子力発電所における再熱器を有する蒸気タ
ービンプラントの制御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a steam turbine plant having a reheater in a nuclear power plant.
発電用の原子炉プラントで発生する蒸気は、化石燃料源
による蒸気発生器で発生する蒸気より、一般に温度が低
く、飽和温度近傍にある。原子炉プラントで発生した蒸
気線、高圧力タービンに導かれてそのエネルギーを動力
に変換したのち、さらに、低圧力タービンにて動力を発
生するのに用いられる場合があるが、この場合、高圧力
タービンから排出された蒸気は、温度・圧力ともに低く
、かつ湿り度も高いので、湿分を分離するとともに、原
子炉発生蒸気を加熱源とする再熱器を用いることがある
。この再熱器において、高圧力タービンからの排出蒸気
を加熱し、低圧力タービンに導いて動力を得ることによ
シ、低圧力タービンの駆動動力を増加させ、原子炉プラ
ントと蒸気タービンプラントからなる原子力発電所の熱
効率を改善することができる。この再熱器の制御装置と
して従来技術の例では、空気作動の加熱蒸気の制御弁と
、空気信号を加熱蒸気の制御弁へ伝達するモーター動作
のカムから構成している。そしてこれらの装置を運転者
が操作し、加熱蒸気の制御弁を制御するようにしている
。The steam produced in nuclear power plants is generally lower in temperature than the steam produced in fossil fuel-based steam generators, near the saturation temperature. The steam lines generated in a nuclear reactor plant are led to a high-pressure turbine and the energy is converted into power, which is then used to generate power in a low-pressure turbine; in this case, the high-pressure The steam discharged from the turbine has low temperature and pressure, and high humidity, so in addition to separating the moisture, a reheater that uses reactor generated steam as a heating source is sometimes used. In this reheater, the exhaust steam from the high-pressure turbine is heated and guided to the low-pressure turbine to obtain power, thereby increasing the driving power of the low-pressure turbine. The thermal efficiency of nuclear power plants can be improved. A prior art example of a control system for this reheater consists of an air-operated heating steam control valve and a motor-operated cam that transmits an air signal to the heating steam control valve. The driver operates these devices to control the heating steam control valve.
また、特公昭53−47842、特公昭55−2124
3の例では、蒸気再熱作業を連続的・自動的に制御する
方式を示している。前記2つの例では、それぞれ、ター
ビン温度検出器、加熱蒸気の量を制御するための制御シ
ステムを備え、温度基準信号源、比較器、積分回路、関
係発生器を含み、2′4I数の制御モードのうちの1つ
によって、再熱システムを制御するものである。これら
の例の制御上の重要なパラメーターは、タービン入口部
温度であって、温度変化率の制御、低圧タービン部端部
及び入口部の最高温度制御、低圧タービンを過度に冷却
することを防ぐ制御を行なっている。しかしながら、従
来例では実際に監視が必要とされる再熱器内部と低圧タ
ービンのロータの熱応力監視が出来ないという欠点があ
る。即ち、最も熱応力監視が必要なのは、再熱器内部と
、低圧タービンのローターである。再熱器内部には一般
にチューブが配置され、チューブ内面を加熱蒸気が通シ
、チューブ外側を流れる高圧タービン排気から導かれる
蒸気を加熱する。チューブに急激な温度変化を与えると
、変形によシ、チューブの支持具との間に過大な熱応力
を発生したり、あるいは゛、チューブ自身に熱応力が発
生する。タービンの静止体側に比較すれば再熱器内部構
造であるチューブやチューブ支持具の方が、蒸気との熱
伝達がよいから、再熱器内部の方が、熱応力監視の必要
性が高くなるものでアル。また、同様にタービンロータ
ーの方が、タービン静止体側より熱伝達が高いので、タ
ービンローターの方が流入する蒸気により温度変化しや
すく、熱応力も高くなる。Also, Special Publication No. 53-47842, Special Publication No. 55-2124
Example 3 shows a method for continuously and automatically controlling steam reheating work. The two examples above each include a turbine temperature detector, a control system for controlling the amount of heating steam, a temperature reference signal source, a comparator, an integrator circuit, a relation generator, and a control system for 2'4I numbers. One of the modes controls the reheat system. The important control parameter in these examples is the turbine inlet temperature, which includes controlling the rate of temperature change, controlling the maximum temperature at the end and inlet of the low-pressure turbine, and preventing excessive cooling of the low-pressure turbine. is being carried out. However, the conventional method has a drawback in that it is not possible to monitor the thermal stress inside the reheater and the rotor of the low-pressure turbine, which actually requires monitoring. That is, the areas that require the most thermal stress monitoring are the inside of the reheater and the rotor of the low-pressure turbine. A tube is generally disposed inside the reheater, and heating steam passes through the inner surface of the tube to heat steam drawn from the high-pressure turbine exhaust flowing outside the tube. If a sudden temperature change is applied to the tube, it may deform and generate excessive thermal stress between the tube and the support, or thermal stress may be generated in the tube itself. Compared to the stationary side of the turbine, the tubes and tube supports that are the internal structure of the reheater have better heat transfer with the steam, so thermal stress monitoring is more necessary inside the reheater. It's a thing. Similarly, since the turbine rotor has higher heat transfer than the turbine stationary body side, the temperature of the turbine rotor changes more easily due to the inflowing steam, and the thermal stress becomes higher.
本発明の目的は、再熱器内部及び低圧タービンローター
の熱応力を許容範囲内に入るよう、再熱器へ供給される
加熱蒸気量を制御すると共に、低圧タービンローターと
再熱器内部の過冷却・過加温を避けて両者を保護するこ
とを可能にした再熱器を有する蒸気タービンプラントの
制御装置を提供するにある。The purpose of the present invention is to control the amount of heating steam supplied to the reheater so that the thermal stress inside the reheater and the low pressure turbine rotor is within an allowable range, and to An object of the present invention is to provide a control device for a steam turbine plant having a reheater that can protect both by avoiding cooling and overheating.
次に本発明の一実施例である再熱器を有する蒸気タービ
ンプラントの制御装置を説明する。Next, a control device for a steam turbine plant having a reheater, which is an embodiment of the present invention, will be described.
第1図は、本発明の対象となる原子力発電用の蒸気ター
ビンプラントを示すものである。図において、蒸気発生
器1で発生した≠気は、主蒸気止め弁2、蒸気加減弁3
を通って、高圧タービン6に導かれる。主蒸気止め弁2
と蒸気加減弁3は、蒸気タービンローターの速度検出器
4からの速度信号により、目標速度となるよう制御及び
駆動装置5によシ開閉する。高圧タービン6で仕事をし
、高圧タービンを駆動した蒸気は、圧力・温度ともに低
下して、蒸気中の湿シ分も増加しているので、湿分分離
器7で湿分を分離した後、再熱器8に導かれる。再熱器
8の加熱源は、蒸気発生器1で発生した蒸気を用い、主
蒸気止め弁の上流側から分岐する。再熱器8で加熱蒸気
と熱交換し、温度上昇した蒸気は、再熱蒸気と呼ばれ、
低圧タービン9に導かれる。高圧タービン6と低圧ター
ビン9は発電機10に結合され、発電機を駆動する。低
圧タービン内で仕事をし、駆動動力を発生した蒸気は、
復水器11へ導かれ、凝結して水となって給水加熱器1
2へ導かれる。この給水加熱器には、再熱器で熱交換し
た加熱蒸気も導かれ、復水器からの水を加熱する。加熱
された水は、蒸気発生器1へ供給される。FIG. 1 shows a steam turbine plant for nuclear power generation, which is the object of the present invention. In the figure, the ≠ air generated in the steam generator 1 is transferred to the main steam stop valve 2 and the steam control valve 3.
and is led to the high pressure turbine 6. Main steam stop valve 2
The steam control valve 3 is opened and closed by the control and drive device 5 so as to reach the target speed based on the speed signal from the speed detector 4 of the steam turbine rotor. The steam that does work in the high-pressure turbine 6 and drives the high-pressure turbine has a lower pressure and temperature, and an increased moisture content in the steam, so after the moisture is separated in the moisture separator 7, It is guided to a reheater 8. The heat source of the reheater 8 uses steam generated by the steam generator 1, and branches from the upstream side of the main steam stop valve. The steam whose temperature has increased by exchanging heat with the heated steam in the reheater 8 is called reheated steam.
It is guided to a low pressure turbine 9. The high pressure turbine 6 and the low pressure turbine 9 are coupled to a generator 10 to drive the generator. The steam that performs work in the low-pressure turbine and generates driving power is
The water is guided to the condenser 11, condenses and becomes water, and is sent to the feed water heater 1.
Leads to 2. The heated steam heat-exchanged in the reheater is also introduced to this feedwater heater, and the water from the condenser is heated. The heated water is supplied to the steam generator 1.
加熱蒸気の配管には、加熱蒸気止め弁13と加熱蒸気加
減弁14が設置され、制御及び、駆動装置15により開
開する。A heating steam stop valve 13 and a heating steam control valve 14 are installed in the heating steam piping, and are opened and opened by a control and driving device 15.
第2図は本発明の一実施例である蒸気タービンプラント
の制御装置を示す。加熱蒸気止め弁13は・、止め弁駆
動及び弁位置決定器16により開閉されイ開閉は全開又
は全閉のいずれかである。開閉は、止め弁制御装置17
によシ指示される。再熱蒸気制御弁14は、制御弁駆動
及び弁位置決定器18により開閉され、開閉は、全開・
全閉のみならず中間開度の場合もあシ、開度は、制御弁
制御装置19によシ指示される。制御弁制御装置19は
各種検出器からの検出値に基づき、低圧タービンロータ
ー及び再熱器内部の熱応力を演算し最適となるよう加熱
蒸気制御弁1一本の開度を設定し、開度を指示する。各
種検出器の検出値は、検出値中継器20を経由して制御
弁制御装#19へ送られる。FIG. 2 shows a control device for a steam turbine plant, which is an embodiment of the present invention. The heating steam stop valve 13 is opened and closed by the stop valve drive and valve position determiner 16, and is either fully open or fully closed. Opening/closing is done by the stop valve control device 17
Directed by. The reheat steam control valve 14 is opened and closed by the control valve drive and valve position determiner 18, and the reheat steam control valve 14 is opened and closed by the control valve drive and valve position determiner 18.
The opening degree is instructed by the control valve control device 19, not only in the case of fully closing but also in the case of intermediate opening degree. The control valve control device 19 calculates the thermal stress inside the low-pressure turbine rotor and reheater based on the detected values from various detectors, sets the opening degree of each heating steam control valve 1 to be optimal, and adjusts the opening degree. instruct. The detected values of the various detectors are sent to the control valve controller #19 via the detected value repeater 20.
検出器中継器20では、信号の伝達を行・なう。The detector repeater 20 performs signal transmission.
さらに同一検出点に複数の検出器をおいて、高値を選択
しあるいは低値を選択し、あるいは測定中に過度の検出
値の変化を示した検出値を除外することを検出器中継器
20で行ない、検出値の信頼性を高めている。Furthermore, when multiple detectors are placed at the same detection point, the detector repeater 20 can select a high value, select a low value, or exclude a detected value that shows an excessive change in detected value during measurement. This increases the reliability of detected values.
また、保護用検出器を設け、これらは保護用検出器中継
器37を経由して、止め弁制御器17に検出値を送る。Additionally, protection detectors are provided, which send detected values to the stop valve controller 17 via a protection detector repeater 37 .
保護用検出器中継器37は、信号の伝達を行なう。信号
は止め弁制御器17に送られ、機器保護のためにあらか
じめ定められた設定値を越え、あるいは下廻ったときに
、止め弁駆動及び弁位置決定器16に止め弁を全閉する
ための信号を送る。このとき、同一検出点に複数の検出
器を置き、複数の検出値に対し、過半数の検出値が設定
値を越えあるいは下廻ったときに止め弁全閉信号を出す
ようにしても良い。また、複数の検出値のうち、2ケの
検出値が設定値を越えあるいは下廻ったときに止め弁全
閉信号を出すようにしても良い。The protective detector repeater 37 performs signal transmission. The signal is sent to the stop valve controller 17, and when the value exceeds or falls below a predetermined value for equipment protection, a signal is sent to the stop valve drive and valve position determiner 16 to fully close the stop valve. send. At this time, a plurality of detectors may be placed at the same detection point, and a stop valve fully closed signal may be output when a majority of the plurality of detection values exceeds or falls below a set value. Furthermore, a stop valve fully closed signal may be output when two detected values among the plurality of detected values exceed or fall below a set value.
上記の如く、検出器から制御弁に至る制御系と、検出器
から止め弁に至る保護系とを相互に独立させることによ
り、制御系不調時でも、機器保護を安全に行なうことが
できる。As described above, by making the control system from the detector to the control valve and the protection system from the detector to the stop valve independent of each other, equipment can be safely protected even when the control system malfunctions.
また、検出器での検出値が、あらかじめ設定したリセッ
ト値をこえ、あるいは下まわったとき、全閉信号をとり
消し、中央制御装置38からリセット信号が、止め弁制
御器17に入れば、止め弁を全開して、起動に備えるよ
うになっている。In addition, when the detected value by the detector exceeds or falls below a preset reset value, the fully closed signal is canceled, and when a reset signal from the central controller 38 enters the stop valve controller 17, the stop valve is closed. The valve is fully opened to prepare for startup.
手動制御器34は運転者の判断で手動操作により止め弁
制御器17、制御弁制御器19に弁開閉信号を送る。こ
れにより、非常時、運転者の判断で弁開閉できるととも
に、止め弁・制御弁の開閉テストを行なうことができる
。The manual controller 34 sends valve opening/closing signals to the stop valve controller 17 and the control valve controller 19 by manual operation at the driver's discretion. As a result, in an emergency, the valve can be opened and closed at the driver's discretion, and the stop valve and control valve can be tested for opening and closing.
次に、再熱蒸気制御弁14による最適制御について述べ
る。低圧タービン熱応力と、再熱器内部熱応力を演算し
、それが許容値内に入るよう制御するものである。Next, optimal control by the reheat steam control valve 14 will be described. The low-pressure turbine thermal stress and the reheater internal thermal stress are calculated and controlled so that they fall within allowable values.
低圧タービン熱応力はロータ一応力をとればよく、それ
は次のように求められる。The low-pressure turbine thermal stress can be determined by the rotor stress, which can be calculated as follows.
Eα σs= (T−wg T11)1−ν ・・=J巴(T−g、 ’1’・) 1−ν 但し、σS:ローター表面応力 σB二コロ−ター中心孔応 力:ローター材弾性係数 α:ローター材線膨張係数 シ:ボアソン比 T1:ローター表面温度 TB:ローター中心孔温度 T、□二ローターの体積平均温度 但し、T:ローターの半径rでの温度 r1:ローター表面半径 r、:ローターポア半径 ローターの温度Tは下式で求められる。Eα σs= (T-wg T11)1-ν ・・・=J Tomoe (T-g, '1'・) 1-ν However, σS: rotor surface stress σB two rotor center hole response Force: Rotor material elastic modulus α: Rotor material linear expansion coefficient C: Boisson ratio T1: Rotor surface temperature TB: Rotor center hole temperature T, □Volume average temperature of two rotors However, T: temperature at rotor radius r r1: rotor surface radius r,: rotor pore radius The temperature T of the rotor is determined by the following formula.
t:時間
a:ローター材の温度伝導度
境界条件は
Ts:ローター表面の蒸気温度
λ:ローター材の熱伝導率
に:ローター表面と蒸気との間の熱伝達率
再熱器を出た蒸気が低圧タービンに導かれるので、再熱
器出口温度は、低圧タービン入口部ローター表面の蒸気
温度に等しい。そこで、低圧タービンに蒸気が流入する
前のタービンローターの初期温度を低圧タービン内部メ
タル温度検出器32で検知した温度として、その後は加
熱器から出る再熱器出口温度より、上記の演算式により
、刻々のローター表面応力・中心孔応力を演算する。ま
た同時に、演算された応力値と許容応力値とから今後の
適当な時間Δtvktでに許しうる再熱器出口蒸気温度
変化量ΔT’aoを求める。再熱器出口蒸気温度は、再
熱器に入る加熱蒸気温度と加熱蒸気量を調整することで
制御できる。また、再熱器入口蒸気温度や再熱器入口蒸
気量が変化しているときは、その変化率を考殖して、加
熱蒸気量を補正する。再熱器入口蒸気量は、高圧タービ
ン初段後圧力に比例するから、高圧タービン初段後圧力
の測定値から演算する。このようにして、Δtvkまで
の、加熱蒸気量の増減可能範囲を求める。t: Time a: The temperature conductivity of the rotor material The boundary condition is Ts: Steam temperature on the rotor surface λ: Thermal conductivity of the rotor material: Heat transfer coefficient between the rotor surface and the steam The steam leaving the reheater Since it is led to the low pressure turbine, the reheater outlet temperature is equal to the steam temperature at the low pressure turbine inlet rotor surface. Therefore, the initial temperature of the turbine rotor before steam flows into the low-pressure turbine is the temperature detected by the low-pressure turbine internal metal temperature detector 32, and then from the reheater exit temperature from the heater, the above calculation formula is calculated. Calculate the rotor surface stress and center hole stress moment by moment. At the same time, the amount of change ΔT'ao in the steam temperature at the outlet of the reheater that can be allowed at a future appropriate time Δtvkt is determined from the calculated stress value and the allowable stress value. The reheater outlet steam temperature can be controlled by adjusting the heated steam temperature and the amount of heated steam entering the reheater. Further, when the reheater inlet steam temperature or the reheater inlet steam amount is changing, the rate of change is considered and the heating steam amount is corrected. Since the reheater inlet steam amount is proportional to the pressure after the first stage of the high pressure turbine, it is calculated from the measured value of the pressure after the first stage of the high pressure turbine. In this way, the range in which the amount of heating steam can be increased or decreased up to Δtvk is determined.
同様に、再熱器内部の熱応力についても、刻々の熱応力
を演算して、それが許容値内に入るためのΔt、1まで
に許しうる加熱蒸気量の増減可能範囲を求める。Similarly, regarding the thermal stress inside the reheater, the momentary thermal stress is calculated, and the range in which the amount of heating steam can be increased or decreased is determined until Δt, 1, in order for the thermal stress to fall within the allowable value.
低圧タービンローター熱応力から求めた加熱蒸気量の増
減可能範囲と、再熱器内部熱応力から求めた加熱蒸気量
の増減可能範囲をつき合わせ、重り合う部分内で、加熱
蒸気増減量を決定する。Compare the range in which the amount of heating steam can be increased or decreased, determined from the thermal stress of the low-pressure turbine rotor, and the range in which the amount of heating steam can be increased or decreased, determined from the internal thermal stress of the reheater, and determine the amount to increase or decrease the amount of heating steam within the overlapping area. .
加熱蒸気増減量決定後、加熱蒸気条件から加熱蒸気制御
弁の開度増減を決定し、加熱蒸気制御弁を開閉する。After the heating steam increase/decrease is determined, the opening degree increase/decrease of the heating steam control valve is determined based on the heating steam conditions, and the heating steam control valve is opened/closed.
第3図に、前述の制御のための演算ブロックを示す。こ
の演算機能は、制御弁制御器が有しているものである。FIG. 3 shows arithmetic blocks for the above-mentioned control. This calculation function is possessed by the control valve controller.
再熱器入口蒸気圧力(検出器27)及び、再熱器入口蒸
気温度(検出器28)は主蒸気条件が一定である限りタ
ービン負荷に比例する。タービン負荷はタービン初段後
圧力(検出器33)に比例するから、タービン初段後圧
力から他の2つを演算するようにしても本発明の実施に
は十分である。The reheater inlet steam pressure (detector 27) and the reheater inlet steam temperature (detector 28) are proportional to the turbine load as long as the main steam condition is constant. Since the turbine load is proportional to the pressure after the first stage of the turbine (detector 33), it is sufficient to implement the present invention even if the other two are calculated from the pressure after the first stage of the turbine.
加熱蒸気は主蒸気ラインからとるので、その蒸気条件は
主蒸気条件と同一である。主蒸気条件が変化する場合も
、主蒸気温度はほぼ飽和温度であって主蒸気圧力がかわ
るために変化することが多い。即ち、主蒸気温度はほぼ
飽和条件であって主蒸気圧力を徐々に上昇させるよう原
子炉熱出力を上昇させていく場合である。このような場
合は、加熱蒸気の圧力(検出器21)を使用し、加熱蒸
気の温度(検出器22)は測定せず演算で求めた値を用
いて制御しても本発明の実施には十分である。Since the heating steam is taken from the main steam line, its steam conditions are the same as the main steam conditions. Even when the main steam conditions change, the main steam temperature is almost the saturation temperature and often changes because the main steam pressure changes. That is, this is a case where the main steam temperature is approximately saturated and the reactor thermal output is increased to gradually increase the main steam pressure. In such a case, even if the pressure of the heated steam (detector 21) is used and the temperature of the heated steam (detector 22) is controlled using a calculated value without measuring it, the present invention cannot be implemented. It is enough.
主蒸気条件とタービン負荷タービン回転速度に一定の関
係を持たせてタービンを制御する場合がある。即ち、主
蒸気圧力を上昇させながら、タービン回転速度を上昇さ
せ、定格圧力に達したのちタービン負荷をとり始める場
合である。この場合は、タービン回転速度(検出器4)
とタービン負荷から、主蒸気条件を逆に求めても同様の
効果をうる。しだがって、検出器21と22は省略して
も良い。There are cases where the turbine is controlled by making a certain relationship between the main steam condition and the turbine load turbine rotation speed. That is, this is a case where the turbine rotational speed is increased while increasing the main steam pressure, and after reaching the rated pressure, the turbine load is started. In this case, the turbine rotation speed (detector 4)
A similar effect can be obtained by determining the main steam conditions from the turbine load and the turbine load. Therefore, detectors 21 and 22 may be omitted.
前述の如く、タービン負荷は高圧タービン初段後圧力(
検出器33)に比例するから、タービン負荷は高圧ター
ビン初段後圧力より求めているが、これを発電機出力を
検出してタービン負荷を求めても、本発明の実施には十
分である。As mentioned above, the turbine load is determined by the pressure after the first stage of the high pressure turbine (
Although the turbine load is determined from the pressure after the first stage of the high-pressure turbine because it is proportional to the pressure of the detector 33), it is sufficient to implement the present invention even if the turbine load is determined by detecting the generator output.
加熱蒸気制御弁後の蒸気は、加熱蒸気が、制御弁で絞ら
れて、等エンタルピー膨張すると考えても、本発明の実
施には十分である。そこで、加熱蒸気条件と、加熱蒸気
制御弁後の圧力(検出器23)から加熱蒸気制御弁後の
温度を演算して求めても良い。It is sufficient to carry out the present invention even if it is considered that the steam after the heating steam control valve undergoes isenthalpic expansion after being throttled by the control valve. Therefore, the temperature after the heating steam control valve may be calculated and determined from the heating steam conditions and the pressure after the heating steam control valve (detector 23).
原子力発電所の蒸気タービンプラントでの蒸気には、湿
り分が含まれており、タービン内部の除湿装置あるいは
外部の除湿装置によって湿分をとり除くことによって、
蒸気条件を飽和状態近傍に保ち、タービン効率を高める
ようにしている。タービン内部に除湿装置を設けない場
合、あるいは設けても湿り度が高いと予想される場合、
または、主蒸気の湿り度が高い場合制御の精度を高める
ために、各々の蒸気温度測定点にて湿り度を測定するよ
うにしている。湿り度を測定してエンタルピーを求める
ことにより、前述の加熱蒸気制御弁後の温度を精度よく
演算出来、また、蒸気とタービンローターとの熱伝達率
を精度よく演算することが出来る。The steam in the steam turbine plant of a nuclear power plant contains moisture, and by removing the moisture with a dehumidifier inside the turbine or an external dehumidifier,
Steam conditions are maintained near saturation to increase turbine efficiency. If a dehumidifier is not installed inside the turbine, or if it is expected that the humidity will be high even if a dehumidifier is installed,
Alternatively, in order to improve the accuracy of control when the humidity of the main steam is high, the humidity is measured at each steam temperature measurement point. By measuring the humidity and determining the enthalpy, the temperature after the heating steam control valve described above can be calculated with high accuracy, and the heat transfer coefficient between the steam and the turbine rotor can be calculated with high accuracy.
制御用に用いた再熱器内部メタル温度検出器31と低圧
タービン内部メタル温度検出器32の両者もしくは片方
を除外し、それぞれの検出初期値を停止直前の蒸気流れ
のある状態で演算して求めたメタル温度からタービン停
止時間での冷却を考えて演算して求めても、本発明の実
施は可能である。Excluding both or one of the reheater internal metal temperature detector 31 and low-pressure turbine internal metal temperature detector 32 used for control, and calculate the initial detection value of each in a state where there is steam flow immediately before stopping. It is also possible to carry out the present invention by calculating and calculating from the metal temperature obtained by taking into consideration cooling during the turbine stop time.
本発明によれば再熱器内部及び低圧タービンローターの
熱応力が許容範囲内に入るよう再熱器に供給される加熱
蒸気量を制御出来るようにした再熱器を有する蒸気ター
ビンプラントの制御装置が実現出来るという効果を奏す
る。According to the present invention, a control device for a steam turbine plant having a reheater is capable of controlling the amount of heated steam supplied to the reheater so that the thermal stress inside the reheater and the low-pressure turbine rotor is within an allowable range. This has the effect that it can be realized.
第1図は本発明の対象となる原子力発電所の蒸気タービ
ンプラントを示す系統図、第2図は本発明の一実施例で
ある再熱器を有する蒸気タービンプラントの制御装置を
示す全体系統図、第3図は本発明の制御装置の詳細内容
を示す制御フロー図である。
l・・・蒸気発生器、2・・・主蒸気止め弁、3・・・
蒸気加減弁、4・・・速度検出器、5・・・制御及び駆
動装置、6・・・高圧タービン、7・・・湿分分離器、
8・・・再熱器、9・・・低圧タービン、10・・・発
電機、11・・・復水器、12・・・給水加熱器、13
・・・加熱蒸気止め弁、14・・・加熱蒸気制御弁、1
5・・・制御及び駆動装置、16・・・止め弁駆動及び
弁位置決定器、17・・・止め弁制御器、18・・・制
御弁駆動及び弁位置決定器、19・・・制御弁制御器、
20・・・検出器中継器、21・・・加熱蒸気圧力検出
器、22・・・加熱蒸気温度検出器、23・・・加熱蒸
気制御弁後圧力検出器、24・・・加熱蒸気制御弁径蒸
気温度検出器、25・・・加熱蒸気再熱器出口圧力検出
器、26・・・加熱蒸気再熱器出口温度検出器、27・
・・再熱器入口蒸気圧力検出器、28・・・再熱器入口
蒸気温度検出器、29・・・再熱器出口蒸気圧力検出器
、30・・・再熱器出口蒸気温度検出器、31・・・再
熱器内部メタル温度検出器、32・・・低圧タービン内
部メタル温度検出器、33・・・高圧タービン初段後圧
力検出器、34・・・手動制御器、35・・・再熱器内
部メタル温度検出器(保護用)、3G・・・低圧タービ
ン内部メタル温度検出器、(保護用)、37・・・保護
用検出器中継器、38・・・中央制御装置。Fig. 1 is a system diagram showing a steam turbine plant of a nuclear power plant, which is the subject of the present invention, and Fig. 2 is an overall system diagram showing a control device for a steam turbine plant having a reheater, which is an embodiment of the present invention. , FIG. 3 is a control flow diagram showing detailed contents of the control device of the present invention. l...Steam generator, 2...Main steam stop valve, 3...
Steam control valve, 4... Speed detector, 5... Control and drive device, 6... High pressure turbine, 7... Moisture separator,
8... Reheater, 9... Low pressure turbine, 10... Generator, 11... Condenser, 12... Feed water heater, 13
...Heating steam stop valve, 14...Heating steam control valve, 1
5... Control and drive device, 16... Stop valve drive and valve position determiner, 17... Stop valve controller, 18... Control valve drive and valve position determiner, 19... Control valve controller,
20...Detector repeater, 21...Heating steam pressure detector, 22...Heating steam temperature detector, 23...Heating steam control valve rear pressure detector, 24...Heating steam control valve Diameter steam temperature detector, 25...Heating steam reheater outlet pressure detector, 26...Heating steam reheater outlet temperature detector, 27.
... Reheater inlet steam pressure detector, 28... Reheater inlet steam temperature detector, 29... Reheater outlet steam pressure detector, 30... Reheater outlet steam temperature detector, 31...Reheater internal metal temperature detector, 32...Low pressure turbine internal metal temperature detector, 33...High pressure turbine first stage rear pressure detector, 34...Manual controller, 35...Return Heater internal metal temperature detector (for protection), 3G... Low pressure turbine internal metal temperature detector, (for protection), 37... Protective detector repeater, 38... Central control unit.
Claims (1)
ビンプラントにおいて、再熱器に加熱蒸気を供給する加
熱蒸気配管に制御弁を設置し、該蒸気タービンプラント
の低圧タービン部及び再熱器に温度検出器を設置し、こ
れら温度検出器から低圧タービンロータの熱応力及び再
熱器内部の応力を演算する演算装置を設置し、この演算
装置による熱応力値に基づき、該熱応力値が許容値内に
入るよう前記制御弁を操作する弁制御装置を設置したも
のから構成されることを特徴とする再熱器を有する蒸気
タービンプラントの制御装置。1. In a steam turbine plant with a reheater installed in a nuclear power plant, a control valve is installed in the heating steam piping that supplies heating steam to the reheater, and the low pressure turbine section and reheater of the steam turbine plant are installed with a control valve. A calculation device is installed to calculate the thermal stress of the low-pressure turbine rotor and the stress inside the reheater from these temperature detectors. 1. A control device for a steam turbine plant having a reheater, characterized in that the control device comprises a valve control device that operates the control valve so that the control valve is within a permissible value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10259281A JPS585412A (en) | 1981-06-30 | 1981-06-30 | Controller for steam turbine plant with reheater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10259281A JPS585412A (en) | 1981-06-30 | 1981-06-30 | Controller for steam turbine plant with reheater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS585412A true JPS585412A (en) | 1983-01-12 |
JPS622124B2 JPS622124B2 (en) | 1987-01-17 |
Family
ID=14331500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10259281A Granted JPS585412A (en) | 1981-06-30 | 1981-06-30 | Controller for steam turbine plant with reheater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS585412A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6022006A (en) * | 1983-07-18 | 1985-02-04 | Hitachi Ltd | Control device for reheater |
JPS6215508A (en) * | 1985-07-15 | 1987-01-23 | Fujitsu Ltd | Optical lens system |
JPS6419102A (en) * | 1987-06-16 | 1989-01-23 | Westinghouse Electric Corp | Steam temperature decision method and apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0322332U (en) * | 1989-03-20 | 1991-03-07 | ||
JPH0312325U (en) * | 1989-06-21 | 1991-02-07 |
-
1981
- 1981-06-30 JP JP10259281A patent/JPS585412A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6022006A (en) * | 1983-07-18 | 1985-02-04 | Hitachi Ltd | Control device for reheater |
JPS6215508A (en) * | 1985-07-15 | 1987-01-23 | Fujitsu Ltd | Optical lens system |
JPS6419102A (en) * | 1987-06-16 | 1989-01-23 | Westinghouse Electric Corp | Steam temperature decision method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS622124B2 (en) | 1987-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
MX2011005084A (en) | Method for operating a waste heat steam generator. | |
JPS60228858A (en) | Method of operating refrigerator and controller thereof | |
JPS6158644B2 (en) | ||
JPH01163408A (en) | Method for controlling operation of steam turbine | |
JPH0454802B2 (en) | ||
JPS585412A (en) | Controller for steam turbine plant with reheater | |
JP2651137B2 (en) | Water level control device | |
TWI564471B (en) | Equipment control devices and composite cycle power generation equipment | |
JP2504939Y2 (en) | Boiler level controller | |
JPS62324B2 (en) | ||
JPH11210407A (en) | Method and device for warming up bypass valve in steam plant | |
JPS59224406A (en) | Protective mechanism of nuclear turbine | |
JPS6235002B2 (en) | ||
JPS6017997B2 (en) | Heat exchanger protection device | |
JPS6198908A (en) | Steam turbine device | |
JPS5888505A (en) | Temperature dropping controller for turbine bypass system | |
JPH01127805A (en) | Controller for boiller and turbine plant | |
JPS5987206A (en) | Geothermal turbine control device | |
JPS61118508A (en) | Control device for recirculating flow of feed pump | |
JPS61213504A (en) | Boiler with parallel tube system, temperature thereof is controlled | |
JPS60207802A (en) | Controller for steam pressure | |
JPS60224905A (en) | Steam turbine device | |
JPS6138110A (en) | Method and device for humidity control of low pressure unit of mixed pressure turbine | |
JPH0742843B2 (en) | Start-up control device for mixed pressure turbine | |
JPS5822419A (en) | Controlling method for rotational frequency of feed water pump motor for water pipe boiler |