JPS59224406A - Protective mechanism of nuclear turbine - Google Patents

Protective mechanism of nuclear turbine

Info

Publication number
JPS59224406A
JPS59224406A JP9785183A JP9785183A JPS59224406A JP S59224406 A JPS59224406 A JP S59224406A JP 9785183 A JP9785183 A JP 9785183A JP 9785183 A JP9785183 A JP 9785183A JP S59224406 A JPS59224406 A JP S59224406A
Authority
JP
Japan
Prior art keywords
steam
stress
rotor
temperature
pressure turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9785183A
Other languages
Japanese (ja)
Inventor
Akira Arikawa
有川 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9785183A priority Critical patent/JPS59224406A/en
Publication of JPS59224406A publication Critical patent/JPS59224406A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To control the thermal stress of a low pressure turbine rotor accurately by introducing the main steam or high pressure gas bled out of turbine to the moisture separating, reheater output system of a nuclear steam turbine, and by controlling the amount of this introduced steam. CONSTITUTION:In a nuclear turbine plant, the steam discharged by a high pressure turbine H.P. is reheated by a moisture separating, reheater 29 to be then fed to a low pressure turbine L.P. As the source of reheating steam, the main steam or gas bled out of the high pressure turbine is supplied to this reheater 29. The low pressure turbine is, on the other hand, supplied with the main steam or the steam from said gas bled out of high pressure turbine, through regulator valves 26, 25. Stress in the rotor is determined from signals given by a revolving speed sensor 11 and a centrifugal stress sensor 12 as well as signals given by an input pressure sensor 8, input steam temp. sensor 27 and rotor thermal stress calculator 10, to be compared with the allowable value at a stress judgement device 16 so as to serve control of the degree of opening of valves 26, 25 through a valve adjuster 18. Thus control of the thermal stress in low pressure rotor is accomplished.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は湿り蒸気及び過熱蒸気中で運転されるタービン
の応力制御装置に係り、特に、湿分々離再熱器をもつ原
子力用蒸気タービンのロータに発生する応力を制御する
に好適な応力制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a stress control device for a turbine operated in wet steam and superheated steam, and particularly for a nuclear steam turbine having a moisture separator reheater. The present invention relates to a stress control device suitable for controlling stress generated in a rotor.

〔発明の背景〕[Background of the invention]

従来、原子力タービンはベースロード用としての運用か
ら負荷変化に伴うロータの応力管理は、応力を直接計測
せずに予測曲線による起動法や。
Conventionally, nuclear power turbines have been used for base load operations to manage rotor stress due to load changes by starting using a prediction curve without directly measuring stress.

直接計測した場合も蒸気タービンへの流入蒸気温度は一
方的なものとして制御していなかった。
Even when directly measured, the temperature of the steam flowing into the steam turbine was not controlled as a one-sided system.

近年、原子力タービンプラントに゛も、外線系統事故時
に事故復旧まで一時的にプラントの出力をプラント所内
必要出力まで降下させて運転する。
In recent years, nuclear power turbine plants have also been operated by temporarily lowering the plant's output to the required internal output until the accident is restored in the event of an accident in the external line system.

いわゆる、所内単独運転が要求されている。So-called independent operation within the plant is required.

この所内単独運転時の急激な負荷変化、並びに所内単独
運転後の出力増加の過程でタービンロータに過大な応力
がかかり、ロータ寿命を消費していることから、或いは
通常の、起動停止及び計画外停止起動回数が増加する傾
向にあることから、将来・原子力タービンにも中間負荷
運転の要求がありうることから、原子力タービンロータ
の応力管理が必要となってきた。
Due to the rapid load changes during isolated station operation and the process of increasing output after isolated operation at the station, excessive stress is applied to the turbine rotor, which consumes the rotor life. Since the number of stops and starts is increasing, nuclear power turbines may be required to operate under intermediate loads in the future, and stress management of nuclear turbine rotors has become necessary.

蒸気タービンの負荷変化に伴い・蒸気タービンの車室或
いはロータの温度は変化するが、この代表例を第2図に
示す。今、冷機起動の場合、すなわちロータ温度はほぼ
室温に等しく、高温の蒸気が流入する場合について説明
する。まず、蒸気流入に伴い、ロータ表面温度2は上昇
し、ロータ表面応力5は圧縮応力となる。ここで、最も
熱応力が高くなるのは、ディスクつけ根など応力集中の
ある部分で、その応力はマイナス降伏点7を越え・定常
状態では引張りの残留応力6を生ずる。一方、この過程
でロータ中心孔温度3の変化によって、ロータ表面と逆
向きのロータ中心孔応力4を生ずる。タービン停止時は
ロータ温度は高いままで蒸気温度1の方が近くなり、こ
のときはロータ表面応力5は引張応力となり、逆に、ロ
ータ中心孔応力4は圧縮圧力となる。
As the load on the steam turbine changes, the temperature of the casing or rotor of the steam turbine changes, and a typical example of this is shown in FIG. Now, we will explain the case of cold start, that is, the case where the rotor temperature is approximately equal to room temperature and high temperature steam flows in. First, with the inflow of steam, the rotor surface temperature 2 increases, and the rotor surface stress 5 becomes compressive stress. Here, the thermal stress is highest at a portion where stress is concentrated, such as the root of the disk, and the stress exceeds the minus yield point 7 and generates a tensile residual stress 6 in a steady state. On the other hand, during this process, a change in the rotor center hole temperature 3 causes a rotor center hole stress 4 in the opposite direction to the rotor surface. When the turbine is stopped, the rotor temperature remains high and approaches the steam temperature 1, and at this time the rotor surface stress 5 becomes tensile stress, and conversely, the rotor center hole stress 4 becomes compressive pressure.

このような熱応力の発生に対して、従来の原子力タービ
ンでは、第1図の予測曲線により負荷変化の許容変化中
及び時間を確保することでロータ応力を覧視する方法を
とっていた。
In order to deal with the occurrence of such thermal stress, in conventional nuclear power turbines, a method has been adopted in which the rotor stress is visually observed by ensuring the allowable load change period and time using the prediction curve shown in FIG.

従来の火力タービンでは、第3図に示すように・タービ
ン第1段後等の蒸気圧力検出器8、蒸気温度検出器26
からロータ表面の熱伝達率Kを計算し、ロータ表面及び
中心孔の熱応力演算器10と。
In a conventional thermal power turbine, as shown in FIG.
The heat transfer coefficient K of the rotor surface is calculated from the thermal stress calculator 10 of the rotor surface and the center hole.

ロータ回転数測定器11で計測された回転数から遠心応
力演算器1゛2に入り・熱応力との合成応力を演算器1
3で演算1〜、さらに、ロータのクリープ寿命等を演算
して応力覧視するシステムになっている。
The rotational speed measured by the rotor rotational speed measuring device 11 is input to the centrifugal stress calculator 1-2, and the combined stress with the thermal stress is calculated by the calculator 1.
In step 3, the system calculates calculations 1 through 1 and further calculates the creep life of the rotor and checks the stress.

従来の原子力タービンではンこれらシステムを第4図に
示すように・湿り蒸気圧力と飽和温度に蒸気量により一
義的な関係があることから、蒸気圧力を温度の代わりに
計測し、ロータの応力覧視するシステムがある。また湿
分々離再熱器の加熱蒸気制御による再熱器及び低圧ター
ビンの熱応力管理システムがある。
In conventional nuclear power turbines, these systems are as shown in Figure 4. Since there is a unique relationship between wet steam pressure and saturation temperature due to the amount of steam, steam pressure is measured instead of temperature, and the stress list of the rotor is measured. There is a system to monitor There is also a thermal stress management system for reheaters and low-pressure turbines based on heating steam control of moisture-separated reheaters.

湿分々離再熱器をもつ原子力タービンロータの応力覧理
法として、従来技術の欠点を以下に記載する。
The shortcomings of the prior art as a stress theory for nuclear turbine rotors with moisture separator reheaters are described below.

第1に・第1図のような予測曲線による負荷変化中及び
負荷変動中では、実運転の多岐にわたる運転変化モード
、特に、事故時の負荷遮断、または、所内単独運転など
の急激な負荷変化及び回転数変化に対する応力管理が出
来なかった。また、このような事故後の再起動及び負荷
上昇に対して・並びに、所内単独運転後の負荷上昇に対
して、ロータの温度管理の精度が良くないため、必要以
上の時間を要したり、または1通常の負荷変化曲線によ
り応力過大となる危険性があった。
Firstly, during the load change according to the predicted curve shown in Figure 1, and during the load fluctuation, there are various operational change modes in actual operation, especially sudden load changes such as load shedding in the event of an accident or isolated operation within the station. Also, it was not possible to manage stress due to changes in rotational speed. In addition, due to the poor accuracy of rotor temperature control, it may take longer than necessary to restart and increase the load after such an accident, or to respond to an increase in load after isolated operation within the plant. Or 1. There was a risk of excessive stress due to the normal load change curve.

第2に湿分々離再熱器をもつ原子力タービンでは従来の
原子力タービンに比べ、通常蓮転では低圧タービンの入
口蒸気が乾き域の高温になり、起動時には湿分々離動率
も低く再熱蒸気温度も低いことから低圧タービン入口蒸
気は湿り蒸気になることもあり、湿分々離再熱器の熱応
力管理と低圧タービン熱応力管理のだめの機器要求温度
が異なることから、従来の火力タービン、または、原子
力タービンの応力管理システムを全く同一には適用出来
ない欠点があった。
Second, compared to conventional nuclear power turbines, in nuclear power turbines with a moisture separation reheater, the inlet steam of the low-pressure turbine is at a high temperature in the dry region in normal lotus rotation, and the moisture separation rate is low at startup. Because the thermal steam temperature is also low, the low-pressure turbine inlet steam may become wet steam, and the required equipment temperatures for the thermal stress management of the moisture separation reheater and the low-pressure turbine thermal stress management are different. There is a drawback that stress management systems for turbines or nuclear power turbines cannot be applied in exactly the same way.

第3に極低負荷・あるいは、所内単独運転時に・タービ
ン段落流量が低流量となることにより、低圧タービンの
温度が上昇し、低圧タービン最終段では低圧排気室スプ
レーが作動し1本スプレー水が低圧タービン最終段動翼
に巻込まれることにより・低圧タービン最終段動翼近傍
にエロージョンが発生する不具合があった・ 〔発明の目的〕 本発明の目的は、湿分々離再熱器を設けた原子力タービ
ンロータの熱応力を精度よく求め、遠心応力及びクリー
プ寿命を共に管理する新たなロータ応力管理機構を提供
するにある。
Thirdly, at extremely low loads or during isolated operation within the plant, the turbine stage flow rate becomes low, which causes the temperature of the low pressure turbine to rise, and in the final stage of the low pressure turbine, the low pressure exhaust chamber spray is activated and one spray of water is generated. There was a problem in which erosion occurred near the final stage rotor blade of the low-pressure turbine due to being caught in the final stage rotor blade of the low-pressure turbine. The present invention provides a new rotor stress management mechanism that accurately determines the thermal stress of a nuclear turbine rotor and manages both centrifugal stress and creep life.

〔発明の概要〕[Summary of the invention]

本発明の要点は原子力タービンの湿分々離再熱器出力の
系統に主蒸気、または、高圧タービンからの蒸気を導入
し、この蒸気量を制御することによシ・低圧タービンに
入る蒸気温度をコントロールし、蒸気タービンロータの
熱応力を算出し、ロータの応力管理を行なうにある。
The key points of the present invention are to introduce main steam or steam from a high-pressure turbine into the output system of the moisture separator reheater of a nuclear power turbine, and to control the amount of this steam.・Steam temperature entering the low-pressure turbine The purpose is to control the thermal stress of the steam turbine rotor, calculate the thermal stress of the steam turbine rotor, and manage the stress of the rotor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に沿って説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第5図に湿分々離再熱器を設けた原子力タービンのi 
−s線図を示す。
Figure 5 shows a nuclear power turbine equipped with a moisture separator reheater.
-S diagram is shown.

原子炉発生蒸気は2八点に位置し、定格負荷では高圧タ
ービン入口はB点にあシ・高圧タービン出口は仕事をす
ることにより0点にある。湿分々離再熱器は高圧タービ
ンと低圧タービンとの間ニ位置し、湿分々離器と主蒸気
及び高圧タービンの抽気による再熱器よシ構成されてい
るので、高圧タービン出口蒸気の0点は、湿分々離再熱
器を通過することによりJ第5図の縦軸のエンタルピが
高くなり、低圧タービン入口ではD点となる。また。
The reactor generated steam is located at 28 points, and at rated load the high pressure turbine inlet is at point B, and the high pressure turbine outlet is at point 0 due to work being done. The moisture separator reheater is located between the high-pressure turbine and the low-pressure turbine, and is composed of a moisture separator and a reheater using main steam and high-pressure turbine bleed air, so that the high-pressure turbine outlet steam is At point 0, the enthalpy on the vertical axis in FIG. Also.

低圧タービンの出口では排気圧力線上のE点となる。At the outlet of the low-pressure turbine, the point is E on the exhaust pressure line.

部分負荷では蒸気タービン入口蒸気量の減少によシ・各
段の圧力が低下し・B、C,D、E点は各々Bl、CI
、DI、E1点に移行する。
At partial load, the pressure at each stage decreases due to the decrease in the amount of steam at the steam turbine inlet. Points B, C, D, and E are Bl and CI, respectively.
, DI, moves to E1 point.

通常・原子力タービンの最低負荷は定格の25チであυ
・また・蒸気タービンの各段落圧力が急激に低下する所
内単独運転時には所内負荷は3%程度と小さいが、原子
炉側で給水流量を40%程度要求するため高圧タービン
抽気量が多く、従って、所内単独運転時には高圧タービ
ン入口流量が所内負荷に比べて比較的多く、高圧タービ
ン第1段後は湿シ域の状態にある。
The minimum load for normal/nuclear turbines is rated at 25°.
・Furthermore, during in-station isolated operation where the steam turbine stage pressure drops rapidly, the in-station load is small at about 3%, but the reactor side requires about 40% of the feed water flow rate, so the high-pressure turbine extraction amount is large, and therefore, When the station is operating independently, the high-pressure turbine inlet flow rate is relatively large compared to the station load, and the area after the first stage of the high-pressure turbine is in a humid region.

他方、低圧タービンの入口蒸気は、湿分々離再熱器に主
蒸気、または、高圧タービン抽気を加熱源とする再熱蒸
気が作用している場合・湿分々離器出口、す々わち、低
圧タービン入口蒸気が乾き蒸気となるため、特有の応力
制御をする必要がある。つまり、従来の原子力タービン
では低圧タービン入口部は湿り域であったのに対し、湿
分々離再熱器をもつ原子力低圧タービン入口部蒸気は通
常運転では再熱蒸気を有効利用しており、乾き蒸気とな
るが、冷機起動時等の再熱蒸気を有効利用しない場合、
さらには、低流量による湿分々離器効率が低い場合には
、低圧タービン入口部蒸気は湿り蒸気となる。
On the other hand, when the inlet steam of the low-pressure turbine is acting on the moisture separator reheater as main steam or reheated steam using high-pressure turbine extraction air as the heating source, Since the low-pressure turbine inlet steam becomes dry steam, special stress control is required. In other words, in conventional nuclear power turbines, the low-pressure turbine inlet is a humid region, whereas the nuclear low-pressure turbine inlet steam with a moisture-separating reheater makes effective use of reheated steam during normal operation. It becomes dry steam, but if reheated steam is not used effectively such as when starting a cold machine,
Furthermore, if the moisture separator efficiency is low due to a low flow rate, the low pressure turbine inlet steam becomes humid steam.

このように、低圧タービン入口蒸気は温度変化中が大き
いので、冷間起動時等のロータ温度が低い時には、ロー
タ温度と蒸気温度差を規定値以内にするべく、湿分々離
再熱器出口への加熱蒸気量を少なくする制御をし、また
、定負荷からの所内単独運転移行時等のロータ温度が比
較的高い場合には、湿分々離再熱器出口への加熱蒸気量
を確保するべく制御することにより、ロータ温度と蒸気
温度差に起因する熱応力の発生を小さくすることができ
る。
In this way, the low-pressure turbine inlet steam has a large temperature change, so when the rotor temperature is low such as during cold startup, the moisture separator reheater outlet is In addition, when the rotor temperature is relatively high, such as when transitioning from constant load to in-house isolated operation, the amount of heating steam to the outlet of the moisture separator reheater is ensured. By controlling the temperature to a certain extent, it is possible to reduce the occurrence of thermal stress caused by the difference between the rotor temperature and the steam temperature.

そこで、ロータの熱応力管理を行なう場合のタービン蒸
気温度検出位置は、蒸気温度変化の大きい湿分々離再熱
器出ロ部、低圧タービン入口部・低圧タービン第1段前
、低圧タービン第1段後等が考えられる。
Therefore, the turbine steam temperature detection locations for rotor thermal stress management are: the moisture separator reheater outlet where steam temperature changes are large, the low pressure turbine inlet/before the first stage of the low pressure turbine, and the low pressure turbine first stage. Dango etc. can be considered.

この基本的考え方をもとに、本発明の一実施例を第6図
によシ説明する。
Based on this basic idea, one embodiment of the present invention will be explained with reference to FIG.

この応力管理システムの対象は、低圧タービン入口部を
対象とした湿分々離再熱器をもつ原子力タービンの例で
ある。
The target of this stress management system is the example of a nuclear power turbine with a moisture separator reheater targeted at the low pressure turbine inlet.

第6図で、回転数測定器11は各運転時でのロータ回転
数を測定する装置である。ロータ遠心応力演算器工2で
は、あらかじめその回転数と中心孔遠心応力σPについ
て・データがインフリトされており、回転数測定器11
で検出した回転数に対しそれぞれのロータ遠心応力σP
を演算する。
In FIG. 6, a rotation speed measuring device 11 is a device that measures the rotor rotation speed during each operation. In the rotor centrifugal stress calculation device 2, data regarding the rotation speed and center hole centrifugal stress σP are inflicted in advance, and the rotation speed measurement device 11
Each rotor centrifugal stress σP for the rotation speed detected by
Calculate.

低圧タービン入口部の圧力を検出する圧力検出器8から
圧力を飽和温度に換算する温度変換器20及び低圧ター
ビン入口部の温度を検出する温度検出器26からの信号
は蒸気温度選定器22に入る構成となっている。蒸気温
度選定器22で選定された蒸気温度は、その温度変化Δ
Tを演算する演算器9及び圧力検出器8による低圧ター
ビン入口部圧力とからロータ表面の熱伝達率を求め、ロ
ータ熱応力が熱応力演算器1oで計算される。
Signals from a pressure detector 8 that detects the pressure at the inlet of the low-pressure turbine, a temperature converter 20 that converts the pressure to a saturation temperature, and a temperature detector 26 that detects the temperature at the inlet of the low-pressure turbine enter the steam temperature selector 22. The structure is as follows. The steam temperature selected by the steam temperature selector 22 is determined by the temperature change Δ
The heat transfer coefficient of the rotor surface is determined from the calculation unit 9 that calculates T and the low-pressure turbine inlet pressure measured by the pressure detector 8, and the rotor thermal stress is calculated by the thermal stress calculation unit 1o.

ロータ熱応力演算器1oはロータ表面と中心孔部の応力
を演算する。
The rotor thermal stress calculator 1o calculates stress on the rotor surface and center hole.

合成応力演算器13は遠心応力σFと遠心応力0丁とを
合成する演算器であり、さらには、運転時間計測器14
で記憶した運転時間により、クリープ損耗をクリープ損
耗演算器15で計算し・ロータの応力判定器16に接続
する。
The composite stress calculator 13 is a calculator that combines centrifugal stress σF and centrifugal stress 0, and furthermore, the operating time measuring device 14
Based on the operating time stored in , creep wear is calculated by a creep wear calculator 15 and connected to a rotor stress determiner 16.

もし、その応力許容値σT^を越えれば弁調節器18に
その弁調整を指示する。また、許容値内であれば継続運
転17が可能の信号を出す。
If the stress tolerance σT^ is exceeded, the valve controller 18 is instructed to adjust the valve. Further, if it is within the allowable value, a signal indicating that continued operation 17 is possible is issued.

弁開閉器19は弁調整器18からの信号で、湿分々離再
熱器出口の第1カ議気弁25及び第2加熱蒸気弁26を
開閉する装置である。
The valve opener 19 is a device that opens and closes the first steam valve 25 and the second heating steam valve 26 at the outlet of the moisture separation reheater in response to a signal from the valve regulator 18.

次に第6図に示したロータ応力管理システムの動作を説
明する。
Next, the operation of the rotor stress management system shown in FIG. 6 will be explained.

低圧タービン入口部に設置された圧力検出器8゜温度検
出器26で検出きれた低圧タービン入口部の圧力PI・
温度TIは蒸気温度選定器で判定され選定される。すな
わち、圧力Piに対し蒸気量で換算した飽和温度T8と
、検出温度T1がある誤差範囲内で等しいと判定される
ような場合には・湿り蒸気であるので換算飽和温度T8
を低圧タービン入口部の温度とし、TS<TIのときに
は乾き蒸気であるので、温度検出器で検出された温度T
Iを低圧タービン入口部の温度としで、温度選定器22
で選定する。
Pressure detector 8° installed at the low pressure turbine inlet The pressure at the low pressure turbine inlet that can be detected by the temperature sensor 26
The temperature TI is determined and selected by a steam temperature selector. In other words, if the saturation temperature T8 converted from the steam amount with respect to the pressure Pi is determined to be equal to the detected temperature T1 within a certain error range, the converted saturation temperature T8 will be the same as the detected temperature T1 because it is wet steam.
is the temperature at the inlet of the low-pressure turbine, and when TS<TI, it is dry steam, so the temperature T detected by the temperature detector is
Let I be the temperature at the inlet of the low pressure turbine, and the temperature selector 22
Select by.

なを、低圧タービン入口部蒸気が、湿り蒸気が乾き蒸気
かを判定するのに湿り変針(図示せず)を設置してもよ
い。
Moreover, a wet steering (not shown) may be installed to determine whether the low-pressure turbine inlet steam is wet steam or dry steam.

このようにして選定された低圧タービン入口部温度TS
、または、T1と、低圧タービン入口部圧力P1より・
ロータ表面の熱伝達率を計算し、演算器10で熱応力σ
Tを計算する・ また、回転数測定器11より求められた回転数からロー
タ遠心応力演算器12で遠心応力σrを計算し、先に計
算した熱応力0丁との合成応力σF+σ!を、運転時間
計測器14で記憶した運転時間よシフリープ損耗演算器
15で計算したクリープ損耗を考慮した一回あたりのあ
らかじめ予定される応力を許容値として、ロータ応力判
定器16で比較判定し、合成応力が許容値以下ならば、
継続運転指示17を行ない、また1合成応力が許容値以
上であれば弁調節器18を通じ、弁開閉器19で湿分々
離再熱器出口への加熱蒸気ラインの高圧タービン抽気か
らの第1再熱蒸気調整弁25及び主蒸気からの第2再熱
蒸気調整弁26を調節することによシ、遠心応力、及び
、熱応力を調節し・運転時間計測器14で計測された運
転時間により、ロータ寿命損耗量を積算して記憶する。
The low pressure turbine inlet temperature TS selected in this way
, or from T1 and low pressure turbine inlet pressure P1.
The heat transfer coefficient of the rotor surface is calculated, and the thermal stress σ is calculated using the calculator 10.
Calculate T. Also, the rotor centrifugal stress calculator 12 calculates the centrifugal stress σr from the rotational speed determined by the rotational speed measuring device 11, and calculates the composite stress σF+σ! with the thermal stress 0 previously calculated. The rotor stress determiner 16 compares and determines the operating time memorized by the operating time measuring device 14 and the pre-scheduled stress per cycle considering creep wear calculated by the slip-leap wear calculator 15 as an allowable value. If the combined stress is below the allowable value,
A continuation operation instruction 17 is issued, and if the 1 resultant stress is greater than the allowable value, the valve controller 18 causes the valve switch 19 to switch off the first stream of the heating steam line from the high-pressure turbine bleed air to the moisture separator reheater outlet. By adjusting the reheat steam regulating valve 25 and the second reheat steam regulating valve 26 from the main steam, the centrifugal stress and the thermal stress are adjusted.・The operating time measured by the operating time measuring device 14 , the amount of rotor life wear and tear is integrated and stored.

第1加熱及び第2加熱蒸気調整弁の制御は、第1加熱蒸
気が一定圧力の主蒸気を蒸気源にしているため、第1加
熱蒸気調整弁開度が一定時には、負荷変化によらず一定
量の高温蒸気が再熱器に流入するが・第2再熱蒸気は高
圧タービン抽気を蒸気源としているので、第2加熱蒸気
調整弁開度が一定時でも、負荷変化によシ再熱器出口へ
の蒸気流量が減少し・蒸気温度も低下する。
The control of the first heating and second heating steam regulating valves is constant regardless of load changes when the opening of the first heating steam regulating valve is constant, because the first heating steam uses the main steam at a constant pressure as the steam source. A large amount of high-temperature steam flows into the reheater, but since the second reheating steam uses high-pressure turbine extraction air as the steam source, even when the opening degree of the second heating steam regulating valve is constant, the reheater will change due to load changes. The steam flow rate to the outlet decreases and the steam temperature also decreases.

従って、第1加熱蒸気量変化の方が第2加熱蒸気温度の
変化より、低圧タービン入口部温度への影響度が大きい
ので、低圧タービン入口部温度変化中を大きくしたい場
合には、第1加熱蒸気調整弁25で制御し、温度変化巾
の小さい場合には、第2加熱蒸気調整弁26を判定器2
8により調整する。
Therefore, since a change in the amount of first heating steam has a greater influence on the low-pressure turbine inlet temperature than a change in the second heating steam temperature, if you want to increase the temperature change in the low-pressure turbine inlet, the first heating It is controlled by the steam regulating valve 25, and when the temperature change width is small, the second heating steam regulating valve 26 is controlled by the determining device 2.
Adjust by 8.

また・調整弁26の開閉は、冷機起動時等、ロータ温度
が低い時には、加熱蒸気調整弁を閉じて低圧ロータへの
蒸気温度を低くし、定負荷時からの所内単独運転等のロ
ータ温度が高い時には、加熱蒸気調整弁を開いて低圧ロ
ータへの蒸気温とすることによシ、低圧ロータの蒸気温
度を高くして、ロータの熱応力制御をする。
In addition, when the rotor temperature is low, such as when starting a cold machine, the regulating valve 26 is opened and closed to close the heated steam regulating valve to lower the steam temperature to the low-pressure rotor, and to lower the rotor temperature during isolated operation at a station from constant load. When the temperature is high, the steam temperature of the low pressure rotor is increased by opening the heating steam regulating valve to reach the steam temperature of the low pressure rotor, thereby controlling the thermal stress of the rotor.

他方、所内単独運転時には、低圧排気室スプレ動作検出
器30でスプレ水の動作を検出し、ロータ応力判定器1
6の許容範囲内で、再熱蒸気調整弁25.26を閉じて
いくことによシ、低圧排気段落蒸気を湿り蒸気にするこ
とができるのでスプレ水は作動せず低圧最終段近傍のエ
ロージョンが防げる。
On the other hand, during isolated operation within the station, the low-pressure exhaust chamber spray operation detector 30 detects the operation of the spray water, and the rotor stress determiner 1 detects the operation of the spray water.
By closing the reheat steam regulating valves 25 and 26 within the allowable range of 6, the low-pressure exhaust stage steam can be turned into wet steam, so the spray water does not operate and erosion near the low-pressure final stage is reduced. It can be prevented.

なお、図中23は警報器、24は記録器、27は温度検
出器、29は湿分々離再熱器、31は判定器、32は加
減弁である。
In the figure, 23 is an alarm, 24 is a recorder, 27 is a temperature detector, 29 is a moisture separation reheater, 31 is a judge, and 32 is a control valve.

第7図は第6図に対して判定器28からの信号を再熱器
29への抽気配管に設けた調整弁33゜34の弁開閉器
に送る他の実施例を示す。
FIG. 7 shows a different embodiment of FIG. 6 in which the signal from the determiner 28 is sent to the valve switches of regulating valves 33 and 34 provided in the bleed pipe to the reheater 29.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子力タービンのロータ応力管理が、
また、湿分々離再熱器をもつ原子力タービンの低圧ター
ビン入口部における温度変化巾の大きい原子力タービン
ロータ応力管理が、おのおの規定応力内で実施される。
According to the present invention, rotor stress management of a nuclear turbine is
Moreover, the stress management of the nuclear turbine rotor, which has a large temperature change range at the low-pressure turbine inlet of the nuclear turbine having a moisture separation reheater, is carried out within each specified stress.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の原子力タービンに対する応力管理のだめ
の運転曲線図、第2図は蒸気温度変動時のロー!応力発
生状況を示す図、第3図は従来の火力タービンに対する
応力管理システム図、第4図は湿り蒸気の圧力と飽和温
度を示す図、第5図は原子力タービンのi−s線図、第
6図は本発明の一実施例の制御システムのブロック図、
第7図は本発明の他の一実施例のブロック図である。 8・・・低圧タービン入口部圧力検出器、10・・・ロ
ータ熱応力演算器、11・・・回転数測定器、12・・
・ロータ遠心応力演算器、13・・・合成応力演算器、
第 l 図 〜荷tイと量 (ンる) 第2図 巧M 第3図 第4−図 兼九及力 し醸) 第5図 x−yトoピ s  <K′/K1.oK)第6図
Figure 1 is a stress management operating curve diagram for a conventional nuclear power turbine, and Figure 2 is a diagram of the operating curve for stress management during steam temperature fluctuations. Figure 3 is a stress management system diagram for a conventional thermal power turbine; Figure 4 is a diagram showing the pressure and saturation temperature of wet steam; Figure 5 is an I-S diagram of a nuclear turbine; 6 is a block diagram of a control system according to an embodiment of the present invention,
FIG. 7 is a block diagram of another embodiment of the present invention. 8... Low pressure turbine inlet pressure detector, 10... Rotor thermal stress calculator, 11... Rotation speed measuring device, 12...
・Rotor centrifugal stress calculator, 13... resultant stress calculator,
Figure 1 - load t and amount (ru) Figure 2 Takumi Figure 3 Figure 4-Figure 9 and quantity (Figure 4) Figure 5 OK) Figure 6

Claims (1)

【特許請求の範囲】 1、湿分々離再熱器を備えた原子力タービンにおいて・ 前記湿分々離再熱器の出口の系統に主蒸気または高圧タ
ービンからの蒸気を導入し、蒸気量を調整することで再
熱蒸気量を調整し、前記湿分々離再熱器出口の蒸気温度
を制御する手段と、前記高圧タービンのロータの温度ま
たはケーシングの温度変化から前記高圧タービンロータ
の応力管理を行なう手段とからなることを特徴とする原
子力タービンの保護機構。 2、前記高圧タービンロータの温度または前記ケーシン
グの温度変化を検出して、前記高圧タービンロータの熱
応力を演算して、ローターの応力管理を行なうことを特
徴とする特許請求の範囲第1項記載の原子力タービンの
保護機構。 3、前記高圧タービンロータの熱応力を演算すると共に
、前記高圧タービン回転数から前記高圧タービンロータ
の遠心応力を演算し、前記熱応力と前記遠心応力の合成
応力で前記高圧タービンロータの応力管理を行彦うこと
を特徴とする特許請求の範囲第1項または第2項記載の
原子力タービンの保護機構。 4、前記高圧タービンロータの熱応力を演算し、運転継
続時間からロータクリープ寿命を演算して前記高圧ター
ビンロータの応力管理を行なうことを特徴とする特許請
求の範囲第1項、第2項または第3項記載の原子力ター
ビンの保護機構。 5、前記高圧タービンロータの寿命管理より算出された
許容応力を越えないようにタービンの運転を制御し前記
高圧タービンロータの応力管理を行なうことを特徴とす
る特許請求の範囲第1項、第2項、第3項または第4項
記載の原子力タービン保護機構。 6、湿シ蒸気または乾き蒸気の判定に、圧力検出器で検
出された圧力を飽和温度に換算した温度と、温度検出器
で検出した温度との差が規定誤差内にある場合は、湿り
蒸気と判定して換算飽和温度を蒸気温度とし、規定誤差
外の場合には、乾き蒸気と判定して前記温度検出器で検
出した温度を蒸気温度として前記高圧タービンロータの
応力管理を行なうことを特徴とする特許請求の範囲第1
項。 第2項、第3項、第4項または第5項記載の原子力ター
ビンの保護機構。 7、前記湿り度検出器で蒸気が湿り域と表示し、かつ、
前記圧力検出器で検出された圧力を飽和温度に換算した
温度と、前記温度検出器で検出した温度とに、一定値以
上の偏差がある場合、及びロータ応力が管理値以上の場
合には警報を出し、又は記録することにより前記高圧タ
ービンロータの応力管理を行なうことを特徴とする特許
請求の範囲第1項、第2項、第3項、第4項、第5項ま
たは第6項記載の原子力タービンの保護機構。 8、蒸気湿り度検出の際に、あらかじめ設定されたター
ビン出力値より、運転出力が大きい場合は、蒸気が乾き
蒸気と判定し、前記あらかじめ設定されたタービン出力
値より前記運転出力が小さい場合には、蒸気が湿り蒸気
と判定してロータの応力管理を行なうことを特徴とする
特許請求の範囲第1項、第2項、第3項、第4項、第5
項、第6項または第7項記載の原子力タービンの保護機
構。 9、前記湿分々離再熱器の出口蒸気温度制御で・前記高
圧タービンからの第1加熱蒸気よりも主蒸気からの第2
加熱蒸気制御を優先させることを特徴とする特許請求の
範囲第1項、第2項、第3項。 第4項、第5項、第6項、第7項または第8項記載の原
子力タービンの保護機構。
[Claims] 1. In a nuclear turbine equipped with a moisture-separating reheater, main steam or steam from a high-pressure turbine is introduced into the outlet system of the moisture-separating reheater to increase the amount of steam. means for adjusting the amount of reheated steam by adjusting the steam temperature at the outlet of the moisture separator reheater, and stress management of the high pressure turbine rotor from changes in rotor temperature or casing temperature of the high pressure turbine. A protection mechanism for a nuclear turbine, characterized in that it comprises means for performing the following steps. 2. According to claim 1, wherein the temperature of the high-pressure turbine rotor or the temperature change of the casing is detected and the thermal stress of the high-pressure turbine rotor is calculated to manage the stress of the rotor. protection mechanism for nuclear power turbines. 3. Calculate the thermal stress of the high-pressure turbine rotor, and calculate the centrifugal stress of the high-pressure turbine rotor from the high-pressure turbine rotation speed, and manage the stress of the high-pressure turbine rotor with the combined stress of the thermal stress and the centrifugal stress. A protection mechanism for a nuclear power turbine according to claim 1 or 2, characterized in that: 4. Stress management of the high-pressure turbine rotor is performed by calculating the thermal stress of the high-pressure turbine rotor and calculating the rotor creep life based on the continuous operation time. A protection mechanism for a nuclear turbine according to paragraph 3. 5. Stress management of the high-pressure turbine rotor is performed by controlling the operation of the turbine so as not to exceed an allowable stress calculated from life management of the high-pressure turbine rotor. 4. Nuclear turbine protection mechanism according to paragraph 3, paragraph 4. 6. When determining wet steam or dry steam, if the difference between the temperature detected by the pressure detector converted to the saturated temperature and the temperature detected by the temperature detector is within the specified error, the steam is determined to be wet steam. It is determined that the converted saturation temperature is the steam temperature, and if it is outside the specified error, it is determined that it is dry steam and the temperature detected by the temperature detector is used as the steam temperature to manage the stress of the high pressure turbine rotor. Claim 1:
Section. The nuclear turbine protection mechanism according to item 2, 3, 4, or 5. 7. The humidity detector indicates that the steam is in a humid area, and
If there is a deviation of more than a certain value between the temperature detected by the pressure detector and the temperature detected by the temperature detector, and if the rotor stress is more than the control value, an alarm will be issued. According to claim 1, 2, 3, 4, 5, or 6, the stress of the high-pressure turbine rotor is managed by issuing or recording the protection mechanism for nuclear power turbines. 8. When detecting steam humidity, if the operating output is larger than the preset turbine output value, the steam is determined to be dry steam, and if the operating output is smaller than the preset turbine output value, the steam is determined to be dry steam. Claims 1, 2, 3, 4, and 5 are characterized in that the steam is determined to be wet steam and stress management of the rotor is performed.
A protection mechanism for a nuclear turbine according to item 6 or 7. 9. In the outlet steam temperature control of the moisture separation reheater, the second heated steam from the main steam is heated more than the first heated steam from the high pressure turbine.
Claims 1, 2, and 3 are characterized in that priority is given to heating steam control. The nuclear turbine protection mechanism according to item 4, 5, 6, 7, or 8.
JP9785183A 1983-06-03 1983-06-03 Protective mechanism of nuclear turbine Pending JPS59224406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9785183A JPS59224406A (en) 1983-06-03 1983-06-03 Protective mechanism of nuclear turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9785183A JPS59224406A (en) 1983-06-03 1983-06-03 Protective mechanism of nuclear turbine

Publications (1)

Publication Number Publication Date
JPS59224406A true JPS59224406A (en) 1984-12-17

Family

ID=14203237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9785183A Pending JPS59224406A (en) 1983-06-03 1983-06-03 Protective mechanism of nuclear turbine

Country Status (1)

Country Link
JP (1) JPS59224406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058489A (en) * 2009-09-08 2011-03-24 General Electric Co <Ge> Method and apparatus for controlling moisture separator reheater
CN103306751A (en) * 2013-07-04 2013-09-18 上海电气电站设备有限公司 Novel co-generation turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058489A (en) * 2009-09-08 2011-03-24 General Electric Co <Ge> Method and apparatus for controlling moisture separator reheater
US9719378B2 (en) 2009-09-08 2017-08-01 General Electric Company Method and apparatus for controlling moisture separator reheater
CN103306751A (en) * 2013-07-04 2013-09-18 上海电气电站设备有限公司 Novel co-generation turbine

Similar Documents

Publication Publication Date Title
JP5916043B2 (en) Method and apparatus for controlling a moisture separator reheater
KR910003260B1 (en) Control system and method for a steam turbine having a steam bypass arrangement
EP0908603B1 (en) Single shaft combined cycle plant
CA2168422A1 (en) Method and apparatus for predicting and using the exhaust gas temperatures for control of two and three shaft gas turbines
US4303369A (en) Method of and system for controlling stress produced in steam turbine rotor
JP4528693B2 (en) Steam turbine power plant and control method thereof
JPS59224406A (en) Protective mechanism of nuclear turbine
JP3615077B2 (en) Operation method of steam turbine plant
JPS585412A (en) Controller for steam turbine plant with reheater
JPS61197703A (en) Mixed pressure turbine
JPH0429921B2 (en)
JP2509612B2 (en) Bypass controller
JPH1030408A (en) Pressure energy recovery equipment from high pressure gas
JPH0120283B2 (en)
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH0587642B2 (en)
JPH0759883B2 (en) Low pressure turbine bypass valve controller
JPH09287408A (en) Erosion monitor for stationary blade of steam turbine
JPH0814012A (en) Control device for composite plant
JPH10148304A (en) Turbine controlling method and turbine controlling device
JPS6158903A (en) Turbine controller for nuclear reactor
JPH081124B2 (en) Turbine advance emergency control method
JPS63162907A (en) Control for combined power generation plant
JPS62279204A (en) Temperature control method for mixed pressure turbine
JPH0121322B2 (en)