JPS62279204A - Temperature control method for mixed pressure turbine - Google Patents

Temperature control method for mixed pressure turbine

Info

Publication number
JPS62279204A
JPS62279204A JP12125686A JP12125686A JPS62279204A JP S62279204 A JPS62279204 A JP S62279204A JP 12125686 A JP12125686 A JP 12125686A JP 12125686 A JP12125686 A JP 12125686A JP S62279204 A JPS62279204 A JP S62279204A
Authority
JP
Japan
Prior art keywords
pressure
steam
low
temperature
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12125686A
Other languages
Japanese (ja)
Inventor
Akira Arikawa
有川 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12125686A priority Critical patent/JPS62279204A/en
Publication of JPS62279204A publication Critical patent/JPS62279204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent overheating by controlling stage temperatures by using the detected values of the pressures, temperatures, flow rates of high-pressure steam and low-pressure steam, and the pressure in the stage being the control object so as to cool properly and effectively the vicinity of the final stage of a low-pressure turbine. CONSTITUTION:By detecting the pressure 17, temperature 18, and flow rate 22 at the inlet part of a high-pressure turbine 4, the enthalpy at the high-pressure inlet part is calculated by an arithmetic unit 20. By detecting the pressure 23, temperature 24, flow rate 26 at the inlet part of a low-pressure turbine 5, the enthalpy at the low-pressure inlet part is calculated by an arithmetic unit 25. An arithmetic unit 27 calculates the enthalpy at the mixing part of high-pressure steam and low-pressure steam. If the temperature in the relevant stage exceeds a permissible temperature, a temperature discriminator 29 commands the valve adjustment to a valve regulator 30. A valve closing gear 32 opens or closes an admission valve 34 to introduce admission steam into a low-pressure turbine 5. Thus, the vicinity of the final stage of the low-pressure turbine is properly and effectively cooled, enabling the prevention of overheating. A surplus steam.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は混圧式の蒸気タービンの管理方法に係り、特に
起動時の昇速及び無負荷運転に伴って発生する蒸気ター
ビンの最終段近傍の風損による過熱を防止し、安全な運
転を可能にした混圧タービンの温度管理方法に関するも
のである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for managing a mixed-pressure steam turbine, and in particular, the present invention relates to a method for managing a mixed pressure steam turbine. This invention relates to a temperature control method for a mixed pressure turbine that prevents overheating due to wind damage near the final stage of a steam turbine and enables safe operation.

〔従来の技術〕[Conventional technology]

近年の蒸気タービンプラントは負荷変動に短時間で追従
出来るものが要求されており、低負荷で運用する所内単
独運転が代表的な運転形態である。
Steam turbine plants in recent years are required to be able to follow load fluctuations in a short period of time, and a typical operation mode is in-plant isolated operation at low loads.

この種の運転においてはプラントを再度一定負荷まで上
昇するため蒸気タービンは低流量で待機する場合が有る
が、蒸気タービンの最終段近傍は動翼長が大きいので、
待機中における風損による温度上昇が問題となっていた
In this type of operation, the steam turbine may stand by at a low flow rate in order to raise the plant to a constant load again, but since the rotor blade length is large near the final stage of the steam turbine,
Temperature rise due to wind damage during standby was a problem.

また近年は、高効率プラントとしてコンバインドプラン
トの運用が多くなり、ガスタービンと蒸気タービンとが
一軸に結合された一軸コンバインドプラントにおいては
、ガスタービンの排ガスを熱源としたボイラより蒸気が
発生するため、蒸気タービンはガスタービンよりも負荷
上昇が遅れる。
In addition, in recent years, combined plants have been increasingly used as high-efficiency plants, and in single-shaft combined plants where a gas turbine and a steam turbine are combined into a single shaft, steam is generated from a boiler that uses the exhaust gas of the gas turbine as a heat source. Steam turbines increase load more slowly than gas turbines.

すなわち、蒸気タービンはガスタービンにより昇速及び
無負荷運転され、風損による温度上昇と共にシール蒸気
により特に低圧最終段近傍が著しく加熱されることが問
題であった。
That is, the steam turbine is operated at increased speed and under no load by the gas turbine, and there is a problem in that the temperature rises due to windage damage and the sealing steam causes significant heating, particularly in the vicinity of the low-pressure final stage.

従来、この欠点を除くため、補助蒸気源及び補助蒸気配
管を設置すると共に、低圧最終段近傍に温度計を設置す
ることにより、蒸気タービンの低流量域での温度上昇を
感知し、低圧タービンにクーリング蒸気を導く工夫がな
された(特願昭56−210662)。
Conventionally, in order to eliminate this drawback, an auxiliary steam source and auxiliary steam piping were installed, and a thermometer was installed near the low-pressure final stage to sense the temperature rise in the low-flow region of the steam turbine and A device was devised to guide the cooling steam (Japanese Patent Application No. 56-210662).

〔発明が解決しようとする問題点〕 上記従来技術は、補助ボイラ設置が多大なコスト増加を
招くという欠点の他に、低圧最終段近傍の温度計が、蒸
気停滞部に設置されたり、該温度計が低圧タービンケー
シングの温度等を指示したりして、正確な蒸気温度を表
示しないという欠点があった。
[Problems to be Solved by the Invention] In addition to the disadvantage that the installation of an auxiliary boiler incurs a large cost increase, the above-mentioned conventional technology has the disadvantage that the thermometer near the low-pressure final stage is installed in the steam stagnation area, or the temperature The disadvantage was that the gauge would indicate the temperature of the low-pressure turbine casing, etc., and would not accurately display the steam temperature.

本発明の目的は、蒸気タービンの所内単独運転時あるい
は昇速時、及び無負荷時の低蒸気流量での運転時に、蒸
気タービン過熱を防止するための新たな温度管理方法を
提供しようとするものである。
An object of the present invention is to provide a new temperature control method for preventing steam turbine overheating when the steam turbine is operating independently in a station or when speeding up, and when operating at a low steam flow rate under no load. It is.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、該当の低圧最終段近傍に温度計を廃止する
に代えて、高圧蒸気と低圧蒸気との圧力。
The above purpose is to eliminate the thermometer near the relevant low-pressure final stage, and to increase the pressure between high-pressure steam and low-pressure steam.

温度、蒸気流量及び該当段落圧力を検出し、これらのデ
ータに基づいて該当段落温度を算出することにより達成
される。
This is achieved by detecting the temperature, steam flow rate, and relevant stage pressure, and calculating the relevant stage temperature based on these data.

さらに上記目的は許容温度を越えないように運転される
ことでより確実な効果を奏する。
Furthermore, the above objective can be achieved more reliably by operating the device so that the temperature does not exceed the allowable temperature.

上記運転制御は低圧蒸気導入弁、アドミッション蒸気導
入弁、若しくは抽気弁を制御することで満足できる。
The above operation control can be satisfied by controlling the low pressure steam introduction valve, the admission steam introduction valve, or the bleed valve.

〔作用〕[Effect]

高圧蒸気の圧力と温度は高圧タービン入口のエンタルピ
を決定し、高圧蒸気流量と高圧タービン効率とは高圧タ
ービンの有効仕事量を決定するので、結果として高圧タ
ービン排気部のエンタルピーを演算する。低圧蒸気の圧
力と温度とは低圧タービン入口のエンタルピを決定し、
低圧蒸気量と高圧蒸気量との和からなる低圧タービン蒸
気量と低圧タービン効率は有効仕事量を決定するので結
果として低圧タービン排気部のエンタルピを演算する。
The pressure and temperature of high-pressure steam determine the enthalpy at the high-pressure turbine inlet, and the high-pressure steam flow rate and high-pressure turbine efficiency determine the effective work of the high-pressure turbine, so as a result, the enthalpy at the high-pressure turbine exhaust section is calculated. The pressure and temperature of low-pressure steam determine the enthalpy at the low-pressure turbine inlet,
Since the low-pressure turbine steam amount, which is the sum of the low-pressure steam amount and the high-pressure steam amount, and the low-pressure turbine efficiency determine the effective amount of work, the enthalpy of the low-pressure turbine exhaust portion is calculated as a result.

このようにして低圧タービン内での有効仕事状態を示す
i−s線図が求められ、はぼ該当段落圧力に比例する風
損の演算により該当段落の正確な温度が演算決定出来る
ので、従来技術の温度計による温度検出時におけるが如
く、排気室と該当段落との中間温度を誤検出したり、温
度計の設置場所または方法の如何によって該当段落温度
を誤検出することがない。
In this way, the i-s diagram showing the effective work state in the low-pressure turbine is obtained, and the accurate temperature of the relevant stage can be calculated by calculating the windage loss which is proportional to the pressure of the relevant stage. As in the case of temperature detection using a thermometer, there is no possibility of erroneously detecting the intermediate temperature between the exhaust chamber and the corresponding paragraph, or erroneously detecting the temperature of the corresponding paragraph depending on the installation location or method of the thermometer.

〔実施例〕〔Example〕

以下、本発明方法の実施例を図面に沿って説明する。第
1図は本発明を実施するために構成した混圧タービンを
示す系統図である。
Embodiments of the method of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram showing a mixed pressure turbine configured to carry out the present invention.

圧縮機1.ガスターピン21発電機3により構成される
ガスタービン装置が、高圧タービン4゜低圧タービン5
とからなる蒸気タービンとカップリング6により一軸に
結合されている。ガスタービンでは高温高圧ガスのエネ
ルギーを回転エネルギーに変換する。ガスタービン2で
仕事をした排ガスは蒸気発生器7に加熱流体として流入
する。
Compressor 1. A gas turbine device including a gas turbine pin 21 and a generator 3 includes a high pressure turbine 4 and a low pressure turbine 5.
The steam turbine is connected to a single shaft by a coupling 6. Gas turbines convert the energy of high-temperature, high-pressure gas into rotational energy. The exhaust gas that has done work in the gas turbine 2 flows into the steam generator 7 as a heating fluid.

蒸気発生器7は高圧蒸気発生器9と低圧蒸気発生器8と
から構成されており、高圧蒸気発生器8で発生した蒸気
は、高圧蒸気配管10を通り、高圧蒸気止め弁11.高
圧蒸気加減弁12を通って高圧タービン4に流入する。
The steam generator 7 is composed of a high-pressure steam generator 9 and a low-pressure steam generator 8, and the steam generated by the high-pressure steam generator 8 passes through a high-pressure steam pipe 10 to a high-pressure steam stop valve 11. The high-pressure steam flows into the high-pressure turbine 4 through the control valve 12 .

低圧蒸気発生器8で発生した蒸気は低圧蒸気配管工3を
通って低圧蒸気止め弁14.低圧蒸気加減弁15を通り
、低圧タービン5に流入し、高圧タービン4からの蒸気
と混合して低圧タービン排気から復水器16に流入して
復水となり、復水ポンプ(図示せず)を経由して低圧蒸
気発生器8に戻るようになっている。
The steam generated by the low pressure steam generator 8 passes through the low pressure steam plumber 3 to the low pressure steam stop valve 14. It passes through the low-pressure steam control valve 15, flows into the low-pressure turbine 5, mixes with steam from the high-pressure turbine 4, flows from the low-pressure turbine exhaust into the condenser 16, becomes condensate, and pumps the condensate pump (not shown). It returns to the low pressure steam generator 8 via the steam generator.

(イ)高圧タービン入口部の圧力を検出する圧力検出器
17からの信号、及び腋部の温度を検出する温度検出器
18からの信号に基づき、予め記憶させた蒸気表19を
用いて高圧入口部のエンタルピを算出する演算器2oと
、(ロ)負荷と効率との関係を予め記憶させて高圧部排
気蒸気のエンタルピを算出する演算器21、及び(ハ)
高圧蒸気量検出器22が、高圧蒸気用にN9Mされる。
(b) Based on the signal from the pressure detector 17 that detects the pressure at the high-pressure turbine inlet and the signal from the temperature detector 18 that detects the temperature of the armpit, the high-pressure inlet is (b) a calculator 21 that calculates the enthalpy of high-pressure exhaust steam by storing the relationship between load and efficiency in advance; and (c)
The high pressure steam amount detector 22 is N9M for high pressure steam.

低圧蒸気に対しても同様に、(ニ)低圧タービン入口部
の圧力を検出する圧力検出器23および(ホ)腋部の温
度を検出する温度検出器24及び(へ)上記双方の検出
器からの信号を予め記憶させた蒸気表19を用いて低圧
入口部のエンタルピを算出する演算器25、並びに、(
ト)低圧蒸気量検出器26が設置される。他方、(チ)
前記高圧蒸気と低圧蒸気との混合部のエンタルピを算出
する演算器27が、温度算出用に設置されている。
Similarly, for low-pressure steam, (d) a pressure detector 23 that detects the pressure at the inlet of the low-pressure turbine, (e) a temperature sensor 24 that detects the temperature of the armpit, and (v) both of the above detectors. an arithmetic unit 25 that calculates the enthalpy of the low-pressure inlet section using a steam table 19 in which the signals of (
g) A low pressure steam amount detector 26 is installed. On the other hand, (ch)
A calculator 27 for calculating the enthalpy of the mixing portion of the high-pressure steam and low-pressure steam is installed for temperature calculation.

もし、該当段落の温度Tが許容温度T^を越・えれば、
温度判定器29により弁調節器30に弁調節を指示する
。また許容温度T^以内であれば継続運転指令器31に
その信号を出す。
If the temperature T in the relevant paragraph exceeds the allowable temperature T^,
The temperature determiner 29 instructs the valve controller 30 to adjust the valve. If the temperature is within the allowable temperature T^, a signal is sent to the continuous operation command unit 31.

弁開閉器32は弁調節器3oからの信号で、低圧蒸気加
減弁15を開閉する装置である。
The valve opener 32 is a device that opens and closes the low pressure steam control valve 15 in response to a signal from the valve controller 3o.

第2図は本発明の他の一実施例を示すものである。プラ
ントの余剰蒸気をタービンの一部に回収して出力に変換
するため、アドミッション蒸気配管33及びアドミッシ
ョン弁34を通じて低圧タービン5にアドミッション蒸
気が流入している。
FIG. 2 shows another embodiment of the invention. Admission steam flows into the low-pressure turbine 5 through an admission steam pipe 33 and an admission valve 34 in order to recover surplus steam of the plant into a part of the turbine and convert it into output.

第1図の場合の低圧蒸気加減弁15に代わり、第2図で
はアドミッション弁34を調節して該当段落の温度管理
をするものである。
In place of the low-pressure steam control valve 15 in the case of FIG. 1, the admission valve 34 in FIG. 2 is adjusted to control the temperature of the corresponding paragraph.

第3図は本発明の他の一実施例を示すものである。高圧
タービン4と低圧タービン5との間から抽気配管35及
び抽気弁36を通じて油気蒸気がプラント用に排気され
ている。抽気圧を低圧加減弁で一定に制御するいわゆる
油気タービンの場合、第1図の低圧蒸気加減弁15に代
わり、第3図では抽気弁36を調節して該当段落の温度
管理をするものである。
FIG. 3 shows another embodiment of the present invention. Oil steam is exhausted from between the high-pressure turbine 4 and the low-pressure turbine 5 for use in the plant through a bleed pipe 35 and a bleed valve 36. In the case of a so-called oil-air turbine in which the bleed pressure is controlled to be constant by a low-pressure regulator valve, the temperature of the corresponding stage is controlled by adjusting the bleed valve 36 in Fig. 3 instead of the low-pressure steam regulator 15 in Fig. 1. be.

次に本発明の混圧タービン温度管理方法について、i−
s線図における作用を第4図及び第5図について説明す
る。
Next, regarding the mixed pressure turbine temperature control method of the present invention, i-
The effect on the s-diagram will be explained with reference to FIGS. 4 and 5.

第4図は第1図の実施例及び第2図の実施例の原理を示
すi−s線図である。排ガス回収ボイラの発生蒸気は定
格負荷ではA点に位置し、蒸気タービン混圧部前では高
圧タービンにて仕事をすることにより8点にある。他方
低圧蒸気入口部からの蒸気と、高圧蒸気との混合後は0
点にある。低圧タービンで仕事をすることにより、低圧
段排気蒸気はD点にあり、低圧タービンの該当段落は8
1点にある。
FIG. 4 is an i-s diagram showing the principle of the embodiment of FIG. 1 and the embodiment of FIG. 2. The steam generated by the exhaust gas recovery boiler is located at point A at the rated load, and is located at point 8 before the steam turbine mixed pressure section due to work performed by the high pressure turbine. On the other hand, after mixing the steam from the low-pressure steam inlet and the high-pressure steam, the temperature is 0.
At the point. By doing work in the low-pressure turbine, the low-pressure stage exhaust steam is at point D, and the corresponding stage of the low-pressure turbine is 8
It is at one point.

他方、起動時や低負荷時の蒸気流量の少ない点では各部
圧力が低下することから、高圧蒸気入口部はA1に位置
し、蒸気タービン混圧部前はB1に、高圧蒸気と低圧蒸
気の混合後はC1に、低圧段排気蒸気はDlに、そして
該当段落はElにある。上記81点は該当段落の圧力と
膨張線上の温度に相当しているが、この点の状態に、風
損による温度上昇ΔT1が付加されるとB1点となる。
On the other hand, since the pressure at each part decreases at points where the steam flow rate is low at startup or under low load, the high-pressure steam inlet is located at A1, and the area before the steam turbine mixed pressure section is located at B1, where high-pressure steam and low-pressure steam are mixed. The rest is in C1, the low pressure stage exhaust steam is in Dl, and the relevant paragraph is in El. The above 81 points correspond to the pressure in the corresponding paragraph and the temperature on the expansion line, but when the temperature increase ΔT1 due to windage damage is added to the state at this point, it becomes point B1.

第4図の2点鎖線は本発明の低圧蒸気弁15またはアド
ミッション弁34を介して低圧蒸気タービン5に低温蒸
気を混入させた場合のi−s線図である1本発明の作動
を表わす2点鎖線では、低温蒸気が流入することにさり
、混圧部入口あるいはアドミッション蒸気の低圧タービ
ン入口部の混合後温度が低下してC2となり、このため
低圧排気部はDlに、該当段落はB2となる。膨張線図
上の82点の温度も低下する他、低圧タービン5の蒸気
量が増加することにより低圧タービンの風損による温度
上昇ΔT2が段落流量にほぼ反比例するためΔT2がΔ
T1よりも小さくなり、B2にΔT2を付加した点のF
2の温度がFlよりも低下することにより温度上昇をお
さえることが出来る。
The two-dot chain line in FIG. 4 is an i-s diagram when low-temperature steam is mixed into the low-pressure steam turbine 5 via the low-pressure steam valve 15 or the admission valve 34 of the present invention.1 Represents the operation of the present invention. In the two-dot chain line, as low-temperature steam flows in, the temperature at the inlet of the mixed pressure section or admission steam after mixing at the inlet of the low-pressure turbine decreases to C2, and therefore the low-pressure exhaust section becomes Dl, and the corresponding paragraph becomes C2. It becomes B2. In addition to the temperature at 82 points on the expansion diagram decreasing, the amount of steam in the low-pressure turbine 5 increases, and the temperature rise ΔT2 due to wind damage in the low-pressure turbine is almost inversely proportional to the stage flow rate, so ΔT2 becomes Δ
F at the point where it becomes smaller than T1 and ΔT2 is added to B2
The temperature rise can be suppressed by lowering the temperature of 2 below that of Fl.

第5図は第3図の実施例の作用原理を示すi −3線図
である。第5図も第4図と同様、抽気流量が少ないと低
圧タービン蒸気量が増加し、81点は82点となり低圧
タービンの温度上昇を制御することができる。
FIG. 5 is an i-3 diagram showing the principle of operation of the embodiment shown in FIG. Similarly to FIG. 4, in FIG. 5, when the extracted air flow rate is small, the low pressure turbine steam amount increases, and the 81 points become 82 points, making it possible to control the temperature rise of the low pressure turbine.

第6図は本発明の一実施例を説明するコンバインドサイ
クルの起動曲線の一例を示したものである。
FIG. 6 shows an example of a starting curve of a combined cycle to explain an embodiment of the present invention.

第6図(a)の如く一軸のコンパインドプラントでは蒸
気タービンとガスタービンとの回転数37が上昇した後
、ガスタービン負荷38が上昇し、ついで蒸気タービン
負荷39が上昇する。
In a single-shaft compounding plant as shown in FIG. 6(a), after the rotational speed 37 of the steam turbine and the gas turbine increases, the gas turbine load 38 increases, and then the steam turbine load 39 increases.

第6図(b)に示すごとく、高圧蒸気弁12の開度カー
ブ40に対応して低圧蒸気加減弁15(第1図)若しく
はアドミッション弁34(第2図)がカーブ41の若く
開閉され、又は抽気弁36(第3図)がカーブ42の如
く(カーブ41と逆に)開閉される。
As shown in FIG. 6(b), the low-pressure steam control valve 15 (FIG. 1) or the admission valve 34 (FIG. 2) is opened or closed at a younger angle of the curve 41 in accordance with the opening degree curve 40 of the high-pressure steam valve 12. , or the bleed valve 36 (FIG. 3) is opened and closed as per curve 42 (opposite to curve 41).

第6図(c)は当該段落温度を示し、上記の弁開閉制御
を行わない場合を破線で描き、弁開閉制御を行った場合
を実線で描いである。
FIG. 6(c) shows the stage temperature, where the case where the valve opening/closing control is not performed is drawn with a broken line, and the case where the valve opening/closing control is performed is drawn with a solid line.

鎖線カーブは高圧蒸気発生器9(第1図)で発生した蒸
気の温度を表わしている。
The dashed line curve represents the temperature of the steam generated in the high pressure steam generator 9 (FIG. 1).

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、高圧蒸気系と低圧蒸気系とを備え
た混圧タービンに本発明の温度管理方法を適用すると、
起動、昇速時や、無負荷時に、低圧タービン最終段近傍
を適正かつ有効に冷却して過熱を防止することが出来、
過熱を未然に防止し得るという優れた実用的効果を奏す
る。
As detailed above, when the temperature control method of the present invention is applied to a mixed pressure turbine equipped with a high pressure steam system and a low pressure steam system,
It can properly and effectively cool the area near the final stage of the low-pressure turbine to prevent overheating during startup, speed increase, and no-load conditions.
This has an excellent practical effect of preventing overheating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示し、段落温度演算及び温
度制御システムを備えた高圧蒸気系と低圧蒸気系を有す
る混合タービンの系統図である。 第2図は本発明の他の実施例を示し、アドミッション蒸
気系を有する混圧タービンの系統図である。 第3図は本発明の他の実施例を示し、油気タービンの系
統図である。第4図は第1図の実施例及び第2図の実施
例の原理を示すi−s線図、第5図は第3図の実施例の
原理を示すi−s線図、第6図は本発明の混圧タービン
の1実施例を有するコンバインドプラント起動状況を示
す図表である。 1・・・圧縮機、2・・・ガスタービン、3・・・発電
機、4・・・高圧タービン、5・・・低圧タービン、8
・・・低圧蒸気発生器、9・・・高圧蒸気発生器、1o
・・・高圧蒸気配管、11・・・高圧蒸気止め弁、12
・・・高圧蒸気加減弁、13・・・低圧蒸気配管、14
・・・低圧蒸気止め弁、15・・・低圧蒸気加減弁、1
7・・・圧力検出器、18・・・温度検出器、19・・
・蒸気量、20.21・・・演算器、22・・・高圧蒸
気量検出器、23・・・圧力検出器、24・・・温度検
出器、25・・・演算器、26・・・低圧蒸気検出器、
27・・・演算器、28・・・該当設の圧力検出器、2
9・・・判定器、30・・・弁調節器。 31・・・指令器、32・・・弁開閉器、33・・・ア
ドミッション蒸気配管、34・・・アドミッション弁、
35・・・油気配管、36・・・抽気弁。
FIG. 1 shows one embodiment of the present invention and is a system diagram of a mixing turbine having a high pressure steam system and a low pressure steam system equipped with a stage temperature calculation and temperature control system. FIG. 2 shows another embodiment of the present invention, and is a system diagram of a mixed pressure turbine having an admission steam system. FIG. 3 shows another embodiment of the present invention and is a system diagram of an oil-air turbine. FIG. 4 is an is diagram showing the principle of the embodiment shown in FIG. 1 and FIG. 2, FIG. 5 is an is diagram showing the principle of the embodiment shown in FIG. 3, and FIG. 1 is a chart showing the startup status of a combined plant having one embodiment of the mixed pressure turbine of the present invention. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Gas turbine, 3... Generator, 4... High pressure turbine, 5... Low pressure turbine, 8
...Low pressure steam generator, 9...High pressure steam generator, 1o
... High pressure steam piping, 11 ... High pressure steam stop valve, 12
... High pressure steam control valve, 13 ... Low pressure steam piping, 14
...Low pressure steam stop valve, 15...Low pressure steam control valve, 1
7...Pressure detector, 18...Temperature detector, 19...
・Steam amount, 20.21... Arithmetic unit, 22... High pressure steam amount detector, 23... Pressure detector, 24... Temperature detector, 25... Arithmetic unit, 26... low pressure steam detector,
27...Arithmetic unit, 28...Pressure detector of the corresponding setting, 2
9... Judgment device, 30... Valve regulator. 31... Command device, 32... Valve switch, 33... Admission steam piping, 34... Admission valve,
35...Oil piping, 36...Bleed valve.

Claims (1)

【特許請求の範囲】 1、高圧蒸気系統と低圧蒸気系統とを備えた混圧タービ
ンにおいて、高圧蒸気の圧力、温度、流量を検出すると
共に、低圧蒸気の圧力、温度、流量を検出し、かつ、管
理対象とする段落の圧力を検出し、上記の各検出値を用
いて当該段落の蒸気温度を算出し、該算出温度に基づい
て当該段落の温度を制御することを特徴とする混圧ター
ビンの温度管理方法。 2、前記の算出温度について、予め許容最高温度を定め
ておき、該算出温度が許容最高温度を超えないように制
御することを特徴とする特許請求の範囲第1項に記載の
混圧タービンの温度管理方法。 3、前記の算出値に基づく当該段落の温度制御は、低圧
蒸気導入弁、アドミッション弁及び抽気弁の内の少なく
とも何れか一つを開閉して行うものであることを特徴と
する特許請求の範囲第2項に記載の混圧タービンの温度
管理方法。
[Claims] 1. In a mixed-pressure turbine equipped with a high-pressure steam system and a low-pressure steam system, the pressure, temperature, and flow rate of high-pressure steam are detected, and the pressure, temperature, and flow rate of low-pressure steam are detected, and , a mixed pressure turbine characterized in that the pressure of the paragraph to be managed is detected, the steam temperature of the paragraph is calculated using each of the detected values, and the temperature of the paragraph is controlled based on the calculated temperature. temperature control method. 2. Regarding the calculated temperature, a maximum permissible temperature is determined in advance, and the mixed pressure turbine according to claim 1 is controlled so that the calculated temperature does not exceed the maximum permissible temperature. Temperature control method. 3. The temperature control in the paragraph based on the calculated value is performed by opening or closing at least one of a low-pressure steam introduction valve, an admission valve, and a bleed valve. A temperature control method for a mixed pressure turbine according to scope 2.
JP12125686A 1986-05-28 1986-05-28 Temperature control method for mixed pressure turbine Pending JPS62279204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12125686A JPS62279204A (en) 1986-05-28 1986-05-28 Temperature control method for mixed pressure turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12125686A JPS62279204A (en) 1986-05-28 1986-05-28 Temperature control method for mixed pressure turbine

Publications (1)

Publication Number Publication Date
JPS62279204A true JPS62279204A (en) 1987-12-04

Family

ID=14806754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12125686A Pending JPS62279204A (en) 1986-05-28 1986-05-28 Temperature control method for mixed pressure turbine

Country Status (1)

Country Link
JP (1) JPS62279204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159404A (en) * 1987-12-16 1989-06-22 Hitachi Ltd Method for controlling mixed pressure turbine and controller therefor
JP2013238228A (en) * 2012-05-15 2013-11-28 General Electric Co <Ge> System and method for active temperature control in steam turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159404A (en) * 1987-12-16 1989-06-22 Hitachi Ltd Method for controlling mixed pressure turbine and controller therefor
JP2013238228A (en) * 2012-05-15 2013-11-28 General Electric Co <Ge> System and method for active temperature control in steam turbine

Similar Documents

Publication Publication Date Title
US10655543B2 (en) Gas turbine, combined cycle plant, and activation method of gas turbine
US4519207A (en) Combined plant having steam turbine and gas turbine connected by single shaft
JP3800384B2 (en) Combined power generation equipment
JP2000161014A5 (en)
JPH0678724B2 (en) Cooling method and cooling device for steam turbine in single-shaft combined plant
JPS60156910A (en) Steam turbine apparatus
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
JPH09112215A (en) Gas turbine power plant and method of operating thereof
JP4794254B2 (en) Steam turbine plant and operation method thereof
JPH0370804A (en) Starting of steam cycle in combined cycle plant
JP4373420B2 (en) Combined power plant and closed air cooled gas turbine system
JPS62279204A (en) Temperature control method for mixed pressure turbine
JPS61145305A (en) Control device for turbine plant using hot water
JPS5896102A (en) Method and device for warming up steam turbine rotor
JPH0336123B2 (en)
JPS63100203A (en) Steam flow control method for steam turbine
JPH0742843B2 (en) Start-up control device for mixed pressure turbine
JPH11210407A (en) Method and device for warming up bypass valve in steam plant
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH0475363B2 (en)
JPS6198908A (en) Steam turbine device
JPS6079107A (en) Turbine starting method
JPS63162907A (en) Control for combined power generation plant
JPH04113081A (en) Pump water sealing device
JPS6038510A (en) Controller for reheater