JP4373420B2 - Combined power plant and closed air cooled gas turbine system - Google Patents

Combined power plant and closed air cooled gas turbine system Download PDF

Info

Publication number
JP4373420B2
JP4373420B2 JP2006247833A JP2006247833A JP4373420B2 JP 4373420 B2 JP4373420 B2 JP 4373420B2 JP 2006247833 A JP2006247833 A JP 2006247833A JP 2006247833 A JP2006247833 A JP 2006247833A JP 4373420 B2 JP4373420 B2 JP 4373420B2
Authority
JP
Japan
Prior art keywords
air
gas turbine
temperature
cooling
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006247833A
Other languages
Japanese (ja)
Other versions
JP2007016791A (en
Inventor
信也 圓島
学 松本
和彦 川池
隆 池口
眞一 樋口
雅美 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006247833A priority Critical patent/JP4373420B2/en
Publication of JP2007016791A publication Critical patent/JP2007016791A/en
Application granted granted Critical
Publication of JP4373420B2 publication Critical patent/JP4373420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明はクローズド空気冷却ガスタービンシステムおよびそのリーク検出方法に関するものである。 The present invention relates to Closed air cooling the gas turbine system and a leak detection method.

圧縮機から吐出された空気をブースト圧縮機で昇圧し、この昇圧された空気でガスタービン高温部を冷却し、冷却後の空気をタービンガスパス中に放出することなく燃焼用空気として回収する空気冷却ガスタービンの構成については、例えば特開昭54−82518号公報に記載されている。   The air discharged from the compressor is pressurized by the boost compressor, the high-temperature portion of the gas turbine is cooled by the pressurized air, and the cooled air is recovered as combustion air without being released into the turbine gas path. The configuration of the cooling gas turbine is described in, for example, JP-A-54-82518.

また、圧縮機吐出空気をプリクーラで冷却し、冷却した空気をブースト圧縮機で昇圧し、昇圧した空気でガスタービン高温部を冷却し、冷却後の空気をタービンガスパス中に放出することなく燃焼用空気として回収するガスタービン構成については、例えば文献(the ASME Joint International Power Generation Conf
erence 94-JPGC-GT-8)に記載されている。
Also, the compressor discharge air is cooled by a precooler, the cooled air is boosted by a boost compressor, the gas turbine high temperature part is cooled by the boosted air, and the cooled air is burned without being released into the turbine gas path. For example, the ASME Joint International Power Generation Conf
erence 94-JPGC-GT-8).

特開昭54−82518号公報JP-A-54-82518 The ASME Joint International Power Generation Conference 94-JPGC-GT-8The ASME Joint International Power Generation Conference 94-JPGC-GT-8

このように形成されているクローズド空気冷却ガスタービンシステムであると、ガスタービン高温部を冷却した後の空気がタービンガスパス中に放出されないため、冷却空気のガスパス混合によるガス温度の低下およびその混合損失がなく、さらに遠心力によるポンピング動力を回収することができるのでプラント効率の大幅な向上が予想される。   In the closed-air cooled gas turbine system formed in this way, the air after cooling the high-temperature part of the gas turbine is not released into the turbine gas path. There is no loss, and pumping power due to centrifugal force can be recovered, so a significant improvement in plant efficiency is expected.

しかし、冷却後の空気を燃焼用空気として回収するクローズド空気冷却ガスタービンでは、高温部冷却による冷却空気の圧力損失分だけ予め冷却空気の圧力を昇圧するブースト圧縮機が必要である。よって、ブースト圧縮機動力分はプラント効率の低下要因になるきらいがある。   However, in a closed air cooling gas turbine that collects cooled air as combustion air, a boost compressor that increases the pressure of the cooling air in advance by an amount corresponding to the pressure loss of the cooling air due to high-temperature cooling is necessary. Therefore, the boost compressor power may cause a decrease in plant efficiency.

また、次期高温ガスタービンでは燃焼器出口温度1500℃、圧縮機圧力比25程度になるため、圧縮機吐出空気温度も500℃程度まで上昇する。500℃の圧縮機吐出空気をブースト圧縮機で昇圧するとさらに冷却空気温度が上昇するため高温部を冷却することは不可能となる恐れがある。ゆえに圧縮機吐出からの冷却空気をプリクーラで減温し、高温部の冷却を可能とすることが不可欠である。   In the next high-temperature gas turbine, the combustor outlet temperature is 1500 ° C. and the compressor pressure ratio is about 25, so the compressor discharge air temperature also rises to about 500 ° C. When the pressure of the compressor discharge air at 500 ° C. is increased by the boost compressor, the temperature of the cooling air further increases, so that it may be impossible to cool the high temperature portion. Therefore, it is essential to reduce the temperature of the cooling air from the compressor discharge by the precooler so that the high temperature portion can be cooled.

このようにクローズド空気冷却ガスタービンでは、補機としてプリクーラとブースト圧縮機が必要でプリクーラの排熱とブースト圧縮機の動力分はプラント効率の低下要因となる。   As described above, in the closed air cooling gas turbine, the precooler and the boost compressor are required as auxiliary machines, and the exhaust heat of the precooler and the power of the boost compressor cause the plant efficiency to decrease.

この効率低下を最小限にとどめるには、プラント効率向上の点で、前記プリクーラ排熱をコンバインドサイクルとしていかに有効利用するかが課題となる。プリクーラの排熱回収効果を大きくするには高温の冷媒をプリクーラに供給し、その排熱をできるだけ温度の高い箇所に回収することが望ましい。しかし、高温の冷媒では冷却空気温度を必要なだけ下げることができず高温部を十分に冷却できない可能性がある。前記従来の技術ではこれらの課題を解決するプリクーラの熱交換器の構成およびプリクーラ排熱の回収サイクルについては言及していない。   In order to minimize this reduction in efficiency, the issue is how to effectively use the precooler exhaust heat as a combined cycle in terms of improving plant efficiency. In order to increase the exhaust heat recovery effect of the precooler, it is desirable to supply a high-temperature refrigerant to the precooler and recover the exhaust heat at a location where the temperature is as high as possible. However, there is a possibility that the temperature of the cooling air cannot be lowered as much as necessary with a high-temperature refrigerant, and the high-temperature portion cannot be sufficiently cooled. The prior art does not mention the configuration of the precooler heat exchanger and the precooler exhaust heat recovery cycle that solve these problems.

また、クローズド空気冷却ガスタービンの起動から定格運転、停止と様々な運転状態で、ガスタービン高温部の冷却に必要な冷却空気量は変動するので、それに合わせて冷却空気流量を制御する必要がある。さらに、様々な運転状態でプリクーラ出口冷却空気温度を設定値に維持するために、プリクーラに供給される冷媒量を制御する必要がある。プリクーラで使用され温度上昇した冷媒を回収するとき、冷媒の温度と回収先の温度との差が大きいと熱応力の発生原因となるので温度差が許容値内におさまるように制御する必要もある。   In addition, the amount of cooling air required for cooling the high-temperature part of the gas turbine fluctuates in various operating conditions, from starting the closed air cooling gas turbine to rated operation and stopping, so it is necessary to control the cooling air flow rate accordingly. . Furthermore, in order to maintain the precooler outlet cooling air temperature at a set value in various operating states, it is necessary to control the amount of refrigerant supplied to the precooler. When recovering a refrigerant that has been used in a precooler and the temperature has risen, if the difference between the refrigerant temperature and the recovery destination temperature is large, it can cause thermal stress, so it is necessary to control the temperature difference to be within an allowable value. .

また、このクローズド冷却方式ではガスタービン高温部の寿命によりクラックが発生し、そこから冷却空気がリークする可能性がある。このリークが大量になるとリーク箇所以降の高温部を十分に冷却できなくなり回収空気の温度も高温になる。リークにより燃焼器への回収空気量が減少するとタービン第1段静翼を通過する作動ガス量が減少して第1段静翼入口圧力が低下する。第1段静翼入口圧力が低下するとガスタービン出力が低下する。このとき負荷一定制御状態で運転されていると出力低下を防ぐために燃料が増量されることになる。しかし、リークにより燃焼器流入空気量が減少しているので燃焼温度が上昇することになる。燃焼温度の上昇は従来排ガス温度の上昇で検知しているが、クローズド冷却方式でリークが生じた場合は排ガス温度が上昇せず、排ガス温度では検知できない可
能性がある。
Moreover, in this closed cooling system, cracks may occur due to the life of the gas turbine high temperature part, and cooling air may leak from there. When this leak becomes large, the high temperature part after the leak cannot be sufficiently cooled, and the temperature of the recovered air also becomes high. When the amount of air recovered into the combustor decreases due to leakage, the amount of working gas passing through the turbine first stage stationary blades decreases, and the first stage stationary blade inlet pressure decreases. When the first stage stationary blade inlet pressure decreases, the gas turbine output decreases. At this time, if the vehicle is operated in a constant load control state, the amount of fuel is increased to prevent a decrease in output. However, since the amount of air entering the combustor is reduced due to leakage, the combustion temperature rises. Conventionally, an increase in combustion temperature is detected by an increase in exhaust gas temperature. However, when a leak occurs in the closed cooling method, the exhaust gas temperature does not increase and may not be detected at the exhaust gas temperature.

本発明はこれに鑑みなされたもので、その目的とするところは、クローズド冷却空気がリークしたとしてもガスタービン高温部を損傷すること無く安全にガスタービンを停止することである。 The present invention has been made in view of this, and an object of the present invention is to stop the gas turbine safely without damaging the high temperature portion of the gas turbine even if the closed cooling air leaks.

すなわち本発明は、ガスタービンの高温部を冷却する冷却媒体として、圧縮機吐出空気をプリクーラーで冷却しブースト圧縮機にて昇圧した空気を用いるとともに、冷却後の空気を燃焼空気として燃焼器に回収するクローズド空気冷却ガスタービンシステムにおいて、前記冷却媒体の流通系に、冷却空気のリーク状態を検出する検出手段を設けるとともに、そのリーク状態の検出に燃料流量の変動量または回収空気圧力の変動量を用いるようにしている。冷却空気のリークを検知することについては、燃料流量の変動または回収空気圧力を監視することによって達成できる。 That is, the present invention uses air that has been cooled by a precooler and boosted by a boost compressor as a cooling medium that cools the high temperature portion of the gas turbine, and the cooled air is used as combustion air in the combustor. In the closed air cooling gas turbine system to be recovered, a detecting means for detecting a leakage state of the cooling air is provided in the cooling medium flow system, and a fluctuation amount of the fuel flow rate or a fluctuation amount of the recovered air pressure is detected for detecting the leakage state. Is used. Detection of cooling air leaks can be accomplished by monitoring fuel flow fluctuations or recovered air pressure.

以上説明してきたように本発明によれば、クローズド冷却空気がリークしたとしてもガスタービン高温部を損傷すること無く安全にガスタービンを停止することができる。 As described above, according to the present invention, even if the closed cooling air leaks, the gas turbine can be safely stopped without damaging the gas turbine high temperature portion.

以下図示した実施例に基づいて本発明を詳細に説明する。図1にはそのクローズド空気冷却ガスタービンシステムが系統図で示されている。ガスタービン装置は、主として圧縮機1、燃焼器2、タービン3から構成され、蒸気タービン装置は高圧蒸気タービン4、再熱蒸気タービン5、低圧蒸気タービン6で構成されている。この場合、ガスタービン装置と蒸気タービン装置および発電機7は同軸上に設置されている。   Hereinafter, the present invention will be described in detail based on the illustrated embodiments. FIG. 1 shows a system diagram of the closed air cooled gas turbine system. The gas turbine apparatus mainly includes a compressor 1, a combustor 2, and a turbine 3, and the steam turbine apparatus includes a high pressure steam turbine 4, a reheat steam turbine 5, and a low pressure steam turbine 6. In this case, the gas turbine device, the steam turbine device, and the generator 7 are installed on the same axis.

タービン3からの排出ガスは、経路8を介して排熱回収ボイラ9に供給される。排熱回収ボイラ9には、低圧節炭器10、低圧ドラム11、低圧蒸発器12、中圧節炭器13、中圧ドラム14、中圧蒸発器15、低圧過熱器16、高圧節炭器17、中圧過熱器18、高圧ドラム19、高圧蒸発器20、高圧1次過熱器21、1次再熱器22、2次再熱器23、高圧2次過熱器24、給水ポンプ25、中圧ポンプ26、高圧ポンプ27、再循環ポンプ28、プリクーラ給水ポンプ29が設置されている。   Exhaust gas from the turbine 3 is supplied to the exhaust heat recovery boiler 9 via the path 8. The exhaust heat recovery boiler 9 includes a low pressure economizer 10, a low pressure drum 11, a low pressure evaporator 12, an intermediate pressure economizer 13, an intermediate pressure drum 14, an intermediate pressure evaporator 15, a low pressure superheater 16, and a high pressure economizer. 17, medium pressure superheater 18, high pressure drum 19, high pressure evaporator 20, high pressure primary superheater 21, primary reheater 22, secondary reheater 23, high pressure secondary superheater 24, feed water pump 25, medium A pressure pump 26, a high-pressure pump 27, a recirculation pump 28, and a precooler water supply pump 29 are installed.

蒸気タービン系は、高圧蒸気タービン4、再熱蒸気タービン5、低圧タービン6、復水器30で構成され、クローズド空気冷却系統はプリクーラ31、ブースト圧縮機32、ガスタービン高温部33で構成されている。   The steam turbine system is composed of a high pressure steam turbine 4, a reheat steam turbine 5, a low pressure turbine 6, and a condenser 30, and the closed air cooling system is composed of a precooler 31, a boost compressor 32, and a gas turbine high temperature section 33. Yes.

圧縮機入口空気41は圧縮機1で昇圧され燃焼器2に供給される。また圧縮機吐出空気の一部はプリクーラ31で減温される。プリクーラ31で減温された空気はブースト圧縮機32で昇圧されガスタービン高温部33の冷却に用いられる。ガスタービン高温部33を冷却した空気はタービンガスパス中に放出されることなく燃焼器2に回収される。   The compressor inlet air 41 is pressurized by the compressor 1 and supplied to the combustor 2. A part of the compressor discharge air is reduced in temperature by the precooler 31. The air reduced in temperature by the precooler 31 is pressurized by the boost compressor 32 and used to cool the gas turbine high temperature section 33. The air that has cooled the gas turbine high-temperature portion 33 is recovered by the combustor 2 without being released into the turbine gas path.

燃焼器2では圧縮機吐出空気と回収した冷却空気で燃料42を燃焼し、高温高圧の燃焼ガスを生成する。燃焼ガスはタービン3で仕事をし、排気ガスが経路8を通って、排熱回収ボイラ9に供給される。排熱回収ボイラ9で熱回収された排気ガスは大気45に放出される。   In the combustor 2, the fuel 42 is combusted by the compressor discharge air and the recovered cooling air, and high-temperature and high-pressure combustion gas is generated. The combustion gas works in the turbine 3, and the exhaust gas passes through the path 8 and is supplied to the exhaust heat recovery boiler 9. The exhaust gas heat recovered by the exhaust heat recovery boiler 9 is released to the atmosphere 45.

復水器30からの給水は、給水ポンプ25を通り排熱回収ボイラ9内の低圧節炭器10に流入する。低圧節炭器10の出口給水は低圧ドラム11に供給されると同時に、中圧ポンプ26および再循環ポンプ28へ供給される。再循環ポンプ28出口の給水は低圧節炭器10入口に合流し、低圧節炭器入口給水温度を上げて露結による低圧節炭器10の低温腐食を防止している。   The feed water from the condenser 30 flows through the feed water pump 25 and flows into the low pressure economizer 10 in the exhaust heat recovery boiler 9. The outlet water supply of the low pressure economizer 10 is supplied to the low pressure drum 11 and simultaneously to the intermediate pressure pump 26 and the recirculation pump 28. The feed water at the outlet of the recirculation pump 28 merges with the low pressure economizer 10 inlet, and the low pressure economizer inlet feed water temperature is raised to prevent low temperature corrosion of the low pressure economizer 10 due to condensation.

中圧ポンプ26出口の給水は中圧節炭器13に導かれ中圧ドラム14と高圧ポンプ27に供給される。高圧ポンプ27出口の給水は、高圧節炭器17を通って高圧ドラム19へ供給される。高圧ドラム19の給水は高圧蒸発器20で飽和蒸気となり高圧1次過熱器21に供給される。   The feed water at the outlet of the intermediate pressure pump 26 is guided to the intermediate pressure economizer 13 and supplied to the intermediate pressure drum 14 and the high pressure pump 27. The feed water at the outlet of the high pressure pump 27 is supplied to the high pressure drum 19 through the high pressure economizer 17. The feed water of the high-pressure drum 19 becomes saturated steam in the high-pressure evaporator 20 and is supplied to the high-pressure primary superheater 21.

高圧1次過熱器21を出た蒸気は高圧ポンプ27出口給水の一部と温度調節器34で合流し高圧2次過熱器24に供給される。高圧2次過熱器24出口の温度が適正温度となるように温度調節器34への高圧ポンプ出口給水量を調節する。高圧2次過熱器24出口蒸気は主蒸気配管35と通って高圧蒸気タービン4に供給される。高圧蒸気タービン4で仕事をした蒸気は配管36を通って1次再熱器22に供給される。   The steam that has exited the high-pressure primary superheater 21 merges with a part of the feed water from the outlet of the high-pressure pump 27 by the temperature controller 34 and is supplied to the high-pressure secondary superheater 24. The high-pressure pump outlet water supply amount to the temperature controller 34 is adjusted so that the temperature of the outlet of the high-pressure secondary superheater 24 becomes an appropriate temperature. The high-pressure secondary superheater 24 outlet steam is supplied to the high-pressure steam turbine 4 through the main steam pipe 35. The steam that has worked in the high-pressure steam turbine 4 is supplied to the primary reheater 22 through the pipe 36.

1次再熱器22を出た蒸気は中圧ポンプ26出口給水の一部と温度調節器37で合流し2次再熱器23に供給される。2次再熱器23を出た蒸気は配管38を通って再熱蒸気タービン5に供給される。2次再熱器23出口の温度が適正温度となるように温度調節器37への中圧ポンプ出口給水量を調節する。再熱蒸気タービン5で仕事をした蒸気は配管39を通って低圧蒸気タービン6入口に供給される。   The steam that has exited the primary reheater 22 merges with a part of the feed water from the outlet of the intermediate pressure pump 26 by the temperature controller 37 and is supplied to the secondary reheater 23. The steam exiting the secondary reheater 23 is supplied to the reheat steam turbine 5 through the pipe 38. The amount of water supplied to the intermediate pressure pump outlet to the temperature controller 37 is adjusted so that the temperature at the outlet of the secondary reheater 23 becomes an appropriate temperature. The steam that has worked in the reheat steam turbine 5 is supplied to the inlet of the low-pressure steam turbine 6 through the pipe 39.

一方、低圧ドラム11に供給された給水は低圧蒸発器12で蒸発し低圧過熱器16に導かれる。低圧過熱器16を出た蒸気は配管40を通って低圧蒸気タービン6入口で再熱蒸気タービン出口からの蒸気と合流し低圧蒸気タービン6に供給される。低圧タービン6をでた蒸気は復水器30で水となり、給水ポンプ25により排熱回収ボイラ9へ供給される。   On the other hand, the feed water supplied to the low-pressure drum 11 is evaporated by the low-pressure evaporator 12 and led to the low-pressure superheater 16. The steam that has exited the low-pressure superheater 16 passes through the pipe 40 and joins the steam from the reheat steam turbine outlet at the inlet of the low-pressure steam turbine 6 and is supplied to the low-pressure steam turbine 6. Steam discharged from the low-pressure turbine 6 becomes water in the condenser 30 and is supplied to the exhaust heat recovery boiler 9 by the feed water pump 25.

プリクーラの熱回収系統について説明する。プリクーラ31は高温側熱交換器43と低温側熱交換器44の二つに分割されている。高温側熱交換器43には中圧蒸発器15、中圧過熱器を通過した蒸気と高圧蒸気タービン4出口蒸気を混合した蒸気が供給される。高温側熱交換器43で高温部33の冷却用空気と熱交換し温度上昇した蒸気は1次再熱器出口に合流する。低温側熱交換器44には中圧節炭器13出口から分岐し、供給ポンプ29で昇圧された給水が導かれる。低温側熱交換器44で温度上昇した給水は高圧節炭器17出口に合流する。   The heat recovery system of the precooler will be described. The precooler 31 is divided into a high temperature side heat exchanger 43 and a low temperature side heat exchanger 44. The high temperature side heat exchanger 43 is supplied with steam obtained by mixing the steam that has passed through the intermediate pressure evaporator 15 and the intermediate pressure superheater and the steam at the outlet of the high pressure steam turbine 4. The steam whose temperature has risen due to heat exchange with the cooling air in the high temperature section 33 in the high temperature side heat exchanger 43 joins the outlet of the primary reheater. The low temperature side heat exchanger 44 is branched from the outlet of the medium pressure economizer 13 and is fed with water that has been pressurized by the supply pump 29. The feed water whose temperature has been raised by the low temperature side heat exchanger 44 joins the outlet of the high pressure economizer 17.

本実施例では高圧蒸気タービン4出口蒸気は1次再熱器22と高温側熱交換器43に分配され温度調節器37手前で合流している。すなわち高温側熱交換器43に蒸気を分岐させた分だけ1次再熱器22に供給される蒸気流量が減少するため、1次再熱器22での熱回収量が減少する事により1次再熱器22を通過した排ガス温度が上昇し高圧蒸発器20での蒸発量が増加する。すなわち蒸気タービンの出力が増加してプラント効率が上昇する。   In this embodiment, the high-pressure steam turbine 4 outlet steam is distributed to the primary reheater 22 and the high temperature side heat exchanger 43 and merges before the temperature regulator 37. That is, since the flow rate of the steam supplied to the primary reheater 22 is reduced by the amount of branching of the steam to the high temperature side heat exchanger 43, the amount of heat recovered in the primary reheater 22 is reduced, thereby reducing the primary flow. The temperature of exhaust gas that has passed through the reheater 22 rises and the amount of evaporation in the high-pressure evaporator 20 increases. That is, the output of the steam turbine increases and the plant efficiency increases.

高温側熱交換器43を通過した冷却空気は高温側熱交換器43に供給された蒸気温度以下には下がらず、十分に冷却空気温度の低減がなされていないことが有り得る。本実施例では低温側熱交換器44を設けて温度の低い冷媒を供給しさらに冷却空気温度を下げている。これによりブースト圧縮機32の動力が低減され、ガスタービン高温部33冷却の面からも有利となる。   The cooling air that has passed through the high temperature side heat exchanger 43 does not drop below the steam temperature supplied to the high temperature side heat exchanger 43, and the cooling air temperature may not be sufficiently reduced. In this embodiment, a low-temperature side heat exchanger 44 is provided to supply a low-temperature refrigerant and further lower the cooling air temperature. As a result, the power of the boost compressor 32 is reduced, which is advantageous in terms of cooling the high-temperature portion 33 of the gas turbine.

本実施例では中圧節炭器13出口給水は高圧節炭器17と低温側熱交換器44に分配され高圧節炭器17出口で合流している。すなわち低温側熱交換器44に給水を分岐させた分だけ高圧節炭器17に供給される給水量が減少するため、高圧節炭器17を通過した排ガス温度が上昇し中圧蒸発器15での蒸発量が増加する。すなわち蒸気タービンの出力が増加してプラント効率が上昇する。   In this embodiment, the water supply at the outlet of the medium pressure economizer 13 is distributed to the high pressure economizer 17 and the low temperature side heat exchanger 44 and merges at the outlet of the high pressure economizer 17. That is, the amount of water supplied to the high-pressure economizer 17 is reduced by the amount of water supplied to the low-temperature side heat exchanger 44, so that the temperature of the exhaust gas that has passed through the high-pressure economizer 17 rises and the intermediate-pressure evaporator 15 The amount of evaporation increases. That is, the output of the steam turbine increases and the plant efficiency increases.

また、圧縮機吐出空気温度は圧力比25程度で500℃レベル、一方、2次再熱器出口蒸気温度は538℃から593℃レベル、1次再熱器出口蒸気温度レベルは400℃から500℃レベルなので、高温側熱交換器43出口蒸気は温度のマッチングのとれる1次再熱器出口に回収している。   The compressor discharge air temperature is about 500 ° C. at a pressure ratio of about 25, while the secondary reheater outlet steam temperature is 538 ° C. to 593 ° C., and the primary reheater outlet steam temperature level is 400 ° C. to 500 ° C. Therefore, the steam at the outlet of the high temperature side heat exchanger 43 is recovered at the outlet of the primary reheater where the temperature can be matched.

本発明のもう一つの例が図2に示されている。この実施例が図1の実施例と異なるのは高温側熱交換器43へ高圧蒸発器20からの蒸気を供給し、熱回収した蒸気を高圧1次過熱器21出口に回収している点である。本実施例においても図1の実施例と同様に高圧蒸気発生量が増加し、プラント効率が上昇する。本実施例においても、高温側熱交換器43出口蒸気を温度のマッチングのとれる高圧1次過熱器出口に回収している。   Another example of the present invention is shown in FIG. This embodiment is different from the embodiment of FIG. 1 in that the steam from the high pressure evaporator 20 is supplied to the high temperature side heat exchanger 43 and the recovered steam is recovered at the outlet of the high pressure primary superheater 21. is there. Also in the present embodiment, the amount of high-pressure steam generated increases as in the embodiment of FIG. 1, and the plant efficiency increases. Also in the present embodiment, the steam at the outlet of the high temperature side heat exchanger 43 is recovered at the outlet of the high pressure primary superheater that can match the temperature.

本発明の他の実施例を図3に示す。本実施例が図1の実施例と異なるのは低温側熱交換器44へ中圧ポンプ26出口の給水を供給し、熱回収した給水を中圧節炭器13出口に回収している点である。本実施例においてはプリクーラ31に供給される冷媒は排熱回収ボイラ9の中圧系統であり、プリクーラ31を通過する冷却空気の圧力よりも低く設定することができる。すなわち高温側熱交換器43若しくは低温側熱交換器44にクラックが生じた場合、冷却空気が蒸気若しくは給水にリークするので、後流に位置するブースト圧縮機32への水混入による損傷を防止でき、運転の信頼性が向上する。   Another embodiment of the present invention is shown in FIG. This embodiment is different from the embodiment of FIG. 1 in that the feed water at the outlet of the intermediate pressure pump 26 is supplied to the low temperature side heat exchanger 44 and the recovered heat feed water is recovered at the outlet of the intermediate pressure economizer 13. is there. In the present embodiment, the refrigerant supplied to the precooler 31 is an intermediate pressure system of the exhaust heat recovery boiler 9 and can be set lower than the pressure of the cooling air passing through the precooler 31. That is, when a crack occurs in the high temperature side heat exchanger 43 or the low temperature side heat exchanger 44, the cooling air leaks into the steam or the feed water, so that damage to the boost compressor 32 located downstream can be prevented from being mixed. , Driving reliability is improved.

本発明の他の実施例を図4に示す。本実施例が図1の実施例と異なるのは低温側熱交換器44で温度上昇した給水を燃料加熱器45に供給し、燃料42に熱回収している点である。本実施例によれば、燃料加熱による温度上昇分だけ燃焼器2に供給する燃料量を少なくする事ができるため、プラント効率は上昇する。燃料の温度は給水や蒸気の温度に比べても十分に温度が低いため、低温熱回収に効果的でかつ回収熱量が燃料量の低減に直接的に作用するので最もプラント効率向上効果が大きい。   Another embodiment of the present invention is shown in FIG. This embodiment differs from the embodiment of FIG. 1 in that the feed water whose temperature has been raised by the low temperature side heat exchanger 44 is supplied to the fuel heater 45 and heat is recovered in the fuel 42. According to the present embodiment, the amount of fuel supplied to the combustor 2 can be reduced by the amount of temperature rise due to fuel heating, so that the plant efficiency is increased. Since the temperature of the fuel is sufficiently lower than the temperature of the water supply or steam, it is effective for low-temperature heat recovery and the recovered heat amount directly acts on the reduction of the fuel amount, so that the plant efficiency is most greatly improved.

本発明の他の実施例を図5に示す。本実施例が図1の実施例と異なるのは高温側熱交換器43を蒸発器としている点である。低温側熱交換器44へは供給ポンプ29で昇圧された給水が導かれる。低温側熱交換器44で温度上昇した給水はドラム46に供給され高温側熱交換器43で蒸発して高圧1次過熱器21入口に供給される。本実施例においても図1の実施例と同様に高圧蒸気発生量が増加し、プラント効率が上昇する。   Another embodiment of the present invention is shown in FIG. This embodiment is different from the embodiment of FIG. 1 in that the high temperature side heat exchanger 43 is an evaporator. The low-temperature side heat exchanger 44 is fed with water supply whose pressure has been increased by the supply pump 29. The feed water whose temperature has risen in the low-temperature side heat exchanger 44 is supplied to the drum 46, evaporated in the high-temperature side heat exchanger 43, and supplied to the inlet of the high-pressure primary superheater 21. Also in the present embodiment, the amount of high-pressure steam generated increases as in the embodiment of FIG. 1, and the plant efficiency increases.

本発明の他の実施例を図6に示す。排熱回収ボイラ9から高温側熱交換器43への冷媒供給配管上に流量調節弁48を設置して、高温側熱交換器43から排熱回収ボイラ9へ回収される冷媒の温度T1と排熱回収ボイラ側の合流前温度T2を検出し、T1とT2の温度差が熱応力が問題とならない許容温度差以内に納まる様に流量調節弁48で高温側熱交換器43への冷媒流入量を調整する。 Another embodiment of the present invention is shown in FIG. A flow rate adjusting valve 48 is installed on the refrigerant supply pipe from the exhaust heat recovery boiler 9 to the high temperature side heat exchanger 43, and the refrigerant temperature T 1 recovered from the high temperature side heat exchanger 43 to the exhaust heat recovery boiler 9 The temperature T 2 before joining on the exhaust heat recovery boiler side is detected, and the temperature difference between T 1 and T 2 falls within an allowable temperature difference where thermal stress does not become a problem. Adjust the refrigerant inflow.

図7に起動から定格運転に至るまでの排熱回収ボイラ入口排ガスとプリクーラ入口空気の温度、およびGT回転数、プラント出力変化を示す。この図からA点からB点の間ではプリクーラ入口空気温度が排ガス温度よりも高く、定格運転時とは温度関係が逆転している。   FIG. 7 shows the exhaust heat recovery boiler inlet exhaust gas and precooler inlet air temperature, GT rotation speed, and plant output change from startup to rated operation. From this figure, between the points A and B, the precooler inlet air temperature is higher than the exhaust gas temperature, and the temperature relationship is reversed from that during rated operation.

もし仮に流量調節弁48により分岐点47での分配量を制御しなかったとすれば、定格運転時に合流点49の温度差が許容値以内であったとしても、A点からB点付近ではプリクーラの回収熱量が排ガスからの回収熱量よりも相対的に増加するため高温側熱交換器43出口温度T1が排熱回収ボイラの合流前温度T2よりも高温となりその温度差が許容値を超えてしまう可能性がある。ゆえに、このような場合は流量調節弁48の開度を大きくし高温側熱交換器43への分配割合を増加させることにより高温側熱交換器43出口温度の上昇を抑制しT1とT2の温度差を許容値内におさえることができる。 If the distribution amount at the branch point 47 is not controlled by the flow rate control valve 48, even if the temperature difference at the junction 49 is within an allowable value during rated operation, the precooler is near the point B from the point A. the temperature difference exceeds the allowable value quantity of heat recovered is heated to a high temperature side heat exchanger 43 outlet temperature T 1 is a temperature higher than the pre-merging the temperature T 2 of the exhaust heat recovery boiler for relatively increased than the recovery amount of heat from the exhaust gas There is a possibility. Therefore, in such a case, by increasing the opening degree of the flow control valve 48 and increasing the distribution ratio to the high temperature side heat exchanger 43, an increase in the outlet temperature of the high temperature side heat exchanger 43 is suppressed and the temperatures of T1 and T2 are suppressed. The difference can be kept within tolerance.

本発明の他の実施例を図8に示す。本実施例が図6の実施例と異なるのは合流点49の過大な温度差を抑制するために高温側熱交換器43から合流点49に向かう配管上に温度調節器51を設置した点である。高温側熱交換器43から排熱回収ボイラ9へ回収される冷媒の温度T1と排熱回収ボイラ側の合流前温度T2を検出し、T1とT2の温度差が熱応力が問題とならない許容温度差以内に納まる様に水若しくは蒸気を供給流量調整弁50を通して温度調節器51に供給する。 Another embodiment of the present invention is shown in FIG. This embodiment is different from the embodiment of FIG. 6 in that a temperature controller 51 is installed on the pipe from the high temperature side heat exchanger 43 to the junction 49 in order to suppress an excessive temperature difference at the junction 49. is there. The temperature T 1 of the refrigerant recovered from the high temperature side heat exchanger 43 to the exhaust heat recovery boiler 9 and the pre-merging temperature T 2 on the exhaust heat recovery boiler side are detected, and the temperature difference between T1 and T2 does not cause a problem of thermal stress. Water or steam is supplied to the temperature controller 51 through the supply flow rate adjustment valve 50 so as to be within an allowable temperature difference.

また、本実施例ではブースト圧縮機32の入口およびガスタービン高温部33に供給する冷却空気温度を設定温度に保つようにプリクーラ31の出口空気温度T3を検出し、流量調整弁52により低温側熱交換器44への冷媒供給量を調節する。 In this embodiment, the outlet air temperature T 3 of the precooler 31 is detected so as to keep the cooling air temperature supplied to the inlet of the boost compressor 32 and the gas turbine high temperature section 33 at the set temperature, and the low temperature side is detected by the flow rate adjustment valve 52. The amount of refrigerant supplied to the heat exchanger 44 is adjusted.

さらに、本実施例では低温側熱交換器44出口に再循環ポンプ53を設置している。低温側熱交換器44出口の温度上昇した冷媒を低温側熱交換器44入口に合流することにより低温側熱交換器44入口冷媒温度を上げてプリクーラ出口空気の露結を防止することができる。すなわち、ブースト圧縮機32への水滴の流入によるブースト圧縮機32の損傷を防止することができるので信頼性が向上する。   Furthermore, in this embodiment, a recirculation pump 53 is installed at the outlet of the low temperature side heat exchanger 44. By combining the refrigerant whose temperature at the outlet of the low-temperature side heat exchanger 44 has increased with the inlet of the low-temperature side heat exchanger 44, the refrigerant temperature at the inlet of the low-temperature side heat exchanger 44 can be raised and condensation of the precooler outlet air can be prevented. That is, damage to the boost compressor 32 due to inflow of water droplets into the boost compressor 32 can be prevented, so that reliability is improved.

本発明の他の実施例を図9に示す。本実施例ではガスタービン排ガス温度Tを検出し、排ガス温度Tに応じてブースト圧縮機32の駆動モータ54の回転数を制御している。正常な運転状態では排ガス温度Tはガスタービン高温部33の温度にリンクしているので、排ガス温度が上昇するとガスタービン高温部33も温度上昇するので駆動モータ54の回転数を上げて冷却空気量を増加して必要な流量を確保する。本運転法によりガスタービン高温部33に適正な冷却空気量を供給することができる。   Another embodiment of the present invention is shown in FIG. In this embodiment, the gas turbine exhaust gas temperature T is detected, and the rotational speed of the drive motor 54 of the boost compressor 32 is controlled according to the exhaust gas temperature T. Under normal operating conditions, the exhaust gas temperature T is linked to the temperature of the gas turbine high temperature section 33. Therefore, if the exhaust gas temperature rises, the gas turbine high temperature section 33 also rises in temperature. To ensure the required flow rate. By this operation method, an appropriate amount of cooling air can be supplied to the gas turbine high temperature section 33.

本発明の他の実施例を図10に示す。本実施例ではガスタービン回転数Nおよびプラント出力Wを検出し、スタービン回転数Nおよびプラント出力Wに応じてブースト圧縮機32の駆動モータ54の回転数を制御している。大気の状態によっては若干の変動はあるものの、正常な運転状態では図7に示しているように、ガスタービン回転数とプラント出力を知ることができれば排ガス温度を知ることができる。すなわち、ガスタービン回転数Nおよびプラント出力Wから排ガス温度を介してガスタービン高温部33の温度を予測し、駆動モータ54の回転数を制御する。本運転法により適正な冷却空気量を供給することができる。   Another embodiment of the present invention is shown in FIG. In this embodiment, the gas turbine rotational speed N and the plant output W are detected, and the rotational speed of the drive motor 54 of the boost compressor 32 is controlled according to the turbine speed N and the plant output W. Although there are some fluctuations depending on the atmospheric state, the exhaust gas temperature can be known if the gas turbine rotation speed and the plant output can be known as shown in FIG. 7 in a normal operation state. That is, the temperature of the gas turbine high-temperature part 33 is predicted from the gas turbine rotational speed N and the plant output W via the exhaust gas temperature, and the rotational speed of the drive motor 54 is controlled. An appropriate amount of cooling air can be supplied by this operation method.

本発明の他の実施例を図11に示す。本実施例ではガスタービン排ガス温度Tを検出し、排ガス温度Tに応じて冷却空気供給量調節弁55を制御している。正常な運転状態では、排ガス温度Tはガスタービン高温部33の温度にリンクしているので、排ガス温度が上昇するとガスタービン高温部33も温度上昇するので、冷却空気供給量調節弁55の弁開度を大きくして冷却空気量を増加する。本運転法によってもガスタービン高温部33に適正な冷却空気量を供給することができる。   Another embodiment of the present invention is shown in FIG. In this embodiment, the gas turbine exhaust gas temperature T is detected, and the cooling air supply amount adjusting valve 55 is controlled in accordance with the exhaust gas temperature T. Under normal operating conditions, the exhaust gas temperature T is linked to the temperature of the gas turbine high temperature section 33. Therefore, if the exhaust gas temperature increases, the gas turbine high temperature section 33 also increases in temperature. Increase the amount of cooling air. An appropriate amount of cooling air can be supplied to the gas turbine high temperature section 33 also by this operation method.

本発明の他の実施例を図12に示す。本実施例が図11の実施例と異なる点はブースト圧縮機32の駆動源をガスタービン回転軸56としている点である。ガスタービン軸駆動とすることによってガスタービンが回転している間は常にブースト圧縮機を稼働することができるので停電によるブースト圧縮機の停止の恐れも無く信頼性が向上する。   Another embodiment of the present invention is shown in FIG. This embodiment is different from the embodiment of FIG. 11 in that the drive source of the boost compressor 32 is a gas turbine rotating shaft 56. By using the gas turbine shaft drive, the boost compressor can always be operated while the gas turbine is rotating, so that the reliability of the boost compressor is improved without the risk of stopping the boost compressor due to a power failure.

本発明の他の実施例を図13に示す。ガスタービン高温部33から何らかの原因で許容値以上のリークが発生した場合、燃焼器2に回収される冷却空気量は減少する。回収される冷却空気量の減少によりタービン第1段静翼入口燃焼ガス量も減少し第1段静翼入口圧力が低下する。第1段静翼入口圧力の低下に応じて回
収冷却空気圧力Pも低下する。
Another embodiment of the present invention is shown in FIG. When a leak exceeding the allowable value occurs for some reason from the gas turbine high temperature portion 33, the amount of cooling air recovered in the combustor 2 decreases. Due to the decrease in the amount of recovered cooling air, the amount of combustion gas at the turbine first stage stationary blade inlet also decreases, and the first stage stationary blade inlet pressure decreases. As the first stage stationary blade inlet pressure decreases, the recovered cooling air pressure P also decreases.

第1段静翼入口圧力の低下によるプラント出力が低下を防止するために、燃料量が増加する。回収される冷却空気量が減少し供給空気量が少なくなったにもかかわらず燃料量が増加すると、燃焼温度が上昇しガスタービン高温部33を損傷することになる。クローズド空気冷却ガスタービンでは冷却空気のリークにより燃焼温度が上昇しても、リーク空気がガス温度を低下させるので排ガス温度T1の上昇により燃焼温度の上昇を検出できない可能性がある。   In order to prevent a decrease in the plant output due to a decrease in the first stage stationary blade inlet pressure, the amount of fuel increases. If the amount of cooling air recovered decreases and the amount of fuel supplied decreases, but the amount of fuel increases, the combustion temperature rises and the gas turbine high temperature section 33 is damaged. In a closed-air cooled gas turbine, even if the combustion temperature rises due to a leak of cooling air, the leak air lowers the gas temperature, so there is a possibility that an increase in the combustion temperature cannot be detected due to an increase in the exhaust gas temperature T1.

図14に示すようにクローズド冷却空気がリークすると前記の理由で燃料流量Gの増加、回収空気圧力すなわち燃焼器圧力Pの低下という状態になるので、燃料流量Gと燃焼器圧力Pを監視することによりクローズド冷却空気のリークを検出することができる。   As shown in FIG. 14, when the closed cooling air leaks, the fuel flow rate G increases and the recovered air pressure, that is, the combustor pressure P decreases for the above-described reason. Therefore, the fuel flow rate G and the combustor pressure P are monitored. Thus, leakage of closed cooling air can be detected.

すなわち、燃料流量G、燃焼器圧力P、排ガス温度T1、プラント出力Wを検出し、正常運転時には排ガス温度T1が制限値を超えない範囲でプラント出力Wが設定値となるよに燃料流量調節弁58により燃料供給量を調節する。ただし、燃料量Gが単位時間内に許容値以上供給された場合、もしくは燃焼器圧力Pが単位時間内に許容値以上温度低下が生じた場合は、クローズド冷却空気が許容値以上にリークしている可能性があるとして燃料流量調節弁制御装置57からの信号により燃料流量調節弁58を閉としてプラントを停止する。   That is, the fuel flow rate control valve detects the fuel flow rate G, the combustor pressure P, the exhaust gas temperature T1, and the plant output W so that the plant output W becomes a set value within a range where the exhaust gas temperature T1 does not exceed the limit value during normal operation. The fuel supply amount is adjusted by 58. However, when the fuel amount G is supplied more than the allowable value within the unit time, or when the temperature of the combustor pressure P falls within the allowable value within the unit time, the closed cooling air leaks beyond the allowable value. The fuel flow control valve 58 is closed by a signal from the fuel flow control valve control device 57 and the plant is stopped.

本運転方法により、クロース゛ド冷却空気がリークしたとしてもガスタービン高温部を損傷すること無く安全にプラントを停止することができる。   With this operation method, even if the closed cooling air leaks, the plant can be safely stopped without damaging the high temperature portion of the gas turbine.

以上説明してきたようにこのように形成されたクローズド空気冷却ガスタービンシステムであると、プリクーラの熱交換器を複数設け、プリクーラ上流側熱交換器には温度の高い冷媒を給し温度の高い箇所に回収することにより高効率化を図ると同時に、十分に冷却空気温度が下らない分は下流側の熱交換器に低温の冷媒を供給することによりガスタービン高温部の冷却効果を高めているので、コンハ゛インドサイクル高効率観点からのプリクーラ排熱回収系統の最適化と、ガスタービン高温部冷却上の観点からのプリクーラ出口空気温度低減化を満たすことができる。   As described above, in the closed air cooling gas turbine system formed in this way, a plurality of precooler heat exchangers are provided, and a high temperature refrigerant is supplied to the precooler upstream heat exchanger to supply a high temperature. Since the cooling air temperature is sufficiently reduced, the cooling effect of the gas turbine high-temperature part is enhanced by supplying a low-temperature refrigerant to the downstream heat exchanger as long as the cooling air temperature is not sufficiently lowered. It is possible to satisfy the optimization of the precooler exhaust heat recovery system from the viewpoint of high efficiency of the combined cycle and the reduction of the precooler outlet air temperature from the viewpoint of cooling the high temperature portion of the gas turbine.

本発明によれば、ブースト圧縮機の駆動装置を電気モータとし、前記ガスタービンの排気ガス温度またはガスタービン回転数に応じてブースト圧縮機の回転数を変化させているので、ガスタービン高温部の冷却に必要な冷却空気量を調節することができる。   According to the present invention, the boost compressor drive device is an electric motor, and the rotation speed of the boost compressor is changed in accordance with the exhaust gas temperature of the gas turbine or the rotation speed of the gas turbine. The amount of cooling air required for cooling can be adjusted.

本発明によれば、ガスタービンの排気ガス温度またはガスタービン回転数に応じて冷却空気供給配管上に設けた空気流量調節装置を設けているので、ガスタービン高温部の冷却に必要な冷却空気量を調節することができる。   According to the present invention, since the air flow rate adjusting device provided on the cooling air supply pipe according to the exhaust gas temperature of the gas turbine or the gas turbine rotation speed is provided, the amount of cooling air required for cooling the high temperature portion of the gas turbine Can be adjusted.

本発明によれば、排熱回収ボイラからプリクーラへの冷媒供給配管またはプリクーラから排熱回収ボイラへの冷媒回収配管上にプリクーラへの冷媒流量を調整する装置を設け、プリクーラ出口空気温度を計測しその温度が設定値となるようにプリクーラ冷媒流量調整装置によりプリクーラへの冷媒供給流量を調整しているので、様々な運転状態でプリクーラ出口冷却空気温度を設定値に維持することができる。   According to the present invention, the apparatus for adjusting the refrigerant flow rate to the precooler is provided on the refrigerant supply pipe from the exhaust heat recovery boiler to the precooler or the refrigerant recovery pipe from the precooler to the exhaust heat recovery boiler, and the precooler outlet air temperature is measured. Since the refrigerant supply flow rate to the precooler is adjusted by the precooler refrigerant flow rate adjusting device so that the temperature becomes the set value, the precooler outlet cooling air temperature can be maintained at the set value in various operating states.

本発明によれば、排熱回収ボイラからプリクーラへの供給配管またはプリクーラから排熱回収ボイラへの回収配管上にプリクーラへの供給冷媒流量を調整する装置を設け、回収配管と排熱回収ボイラ配管との合流点で温度差が許容値以下となるようにプリクーラ供給流量調整装置によりプリクーラへの冷媒流量を調整しているので、プリクーラで使用され温度上昇した冷媒を回収するとき、冷媒の温度と回収先の温度との差を許容値内におさえて熱応力を低減することができる。   According to the present invention, the apparatus for adjusting the flow rate of refrigerant supplied to the precooler is provided on the supply pipe from the exhaust heat recovery boiler to the precooler or the recovery pipe from the precooler to the exhaust heat recovery boiler, and the recovery pipe and the exhaust heat recovery boiler pipe The refrigerant flow rate to the precooler is adjusted by the precooler supply flow rate adjustment device so that the temperature difference at the junction with the precooler is less than the allowable value. The thermal stress can be reduced by keeping the difference from the temperature at the collection destination within an allowable value.

本発明によれば、プリクーラから排熱回収ボイラへの回収配管上に蒸気若しくは水を混入して排熱回収ボイラへの回収温度を調整する装置を設け、回収配管と排熱回収ボイラ配管との合流点で温度差が許容値以下となるように回収温度調整装置により蒸気若しくは水の混入量を変化させているので、プリクーラで使用され温度上昇した冷媒を回収するとき、冷媒の温度と回収先の温度との差を許容値内におさえて熱応力を低減することができる。   According to the present invention, a device for adjusting the recovery temperature to the exhaust heat recovery boiler by mixing steam or water on the recovery pipe from the precooler to the exhaust heat recovery boiler is provided. Since the amount of steam or water mixed is changed by the recovery temperature adjustment device so that the temperature difference is less than the allowable value at the junction, when recovering the refrigerant that has been used in the precooler and the temperature has risen, the temperature of the refrigerant and the recovery destination The thermal stress can be reduced by keeping the difference from the temperature within the allowable value.

本発明によれば、燃料流量の変動または回収空気圧力を監視しているので、冷却空気のリークを検知することができる。   According to the present invention, since the fluctuation of the fuel flow rate or the recovered air pressure is monitored, the leakage of the cooling air can be detected.

本発明のクローズド空気冷却ガスタービンシステムの一実施例を示す系統図である。1 is a system diagram showing an embodiment of a closed air cooled gas turbine system of the present invention. 本発明のクローズド空気冷却ガスタービンシステムの他の実施例を示す系統図である。It is a systematic diagram which shows the other Example of the closed air cooling gas turbine system of this invention. 本発明のクローズド空気冷却ガスタービンシステムの他の実施例を示す系統図である。It is a systematic diagram which shows the other Example of the closed air cooling gas turbine system of this invention. 本発明のクローズド空気冷却ガスタービンシステムの他の実施例を示す系統図である。It is a systematic diagram which shows the other Example of the closed air cooling gas turbine system of this invention. 本発明のクローズド空気冷却ガスタービンシステムの他の実施例を示す系統図である。It is a systematic diagram which shows the other Example of the closed air cooling gas turbine system of this invention. 本発明のクローズド空気冷却ガスタービンシステムの他の実施例を示す系統図である。It is a systematic diagram which shows the other Example of the closed air cooling gas turbine system of this invention. 起動から定格に至るガスタービン特性図である。It is a gas turbine characteristic figure from starting to a rating. 本発明のクローズド空気冷却ガスタービンシステムの他の実施例を示す系統図である。It is a systematic diagram which shows the other Example of the closed air cooling gas turbine system of this invention. 本発明のクローズド空気冷却ガスタービンシステムの他の実施例を示す系統図である。It is a systematic diagram which shows the other Example of the closed air cooling gas turbine system of this invention. 本発明のクローズド空気冷却ガスタービンシステムの他の実施例を示す系統図である。It is a systematic diagram which shows the other Example of the closed air cooling gas turbine system of this invention. 本発明のクローズド空気冷却ガスタービンシステムの他の実施例を示す系統図である。It is a systematic diagram which shows the other Example of the closed air cooling gas turbine system of this invention. 本発明のクローズド空気冷却ガスタービンシステムの他の実施例を示す系統図である。It is a systematic diagram which shows the other Example of the closed air cooling gas turbine system of this invention. 本発明のクローズド空気冷却ガスタービンシステムの他の実施例を示す系統図である。It is a systematic diagram which shows the other Example of the closed air cooling gas turbine system of this invention. クローズド冷却空気リーク時のガスタービン特性図である。It is a gas turbine characteristic view at the time of closed cooling air leak.

符号の説明Explanation of symbols

4…高圧蒸気タービン、13…中圧節炭器、15…中圧蒸発器、17…高圧節炭器、20…高圧蒸発器、22…1次再熱器、32…ブースト圧縮機、33…ガスタービン高温部、37…温度調節器、43…高温側熱交換器、44…低温側熱交換器、21…高圧1次過熱器、9…排熱回収ボイラ、26…中圧ポンプ、31…プリクーラ、2…燃焼器、42…燃料、45…燃料加熱器、29…供給ポンプ、46…ドラム、47…分岐点、48…流量調節弁、49…合流点、50…供給流量調節弁、51…温度調節器、52…流量調整弁、53…再循環ポンプ、54…駆動モータ、55…冷却空気供給流量調節弁、56…ガスタービン回転軸、57…燃料流量調整弁制御装置、58…燃料流量調節弁。   DESCRIPTION OF SYMBOLS 4 ... High pressure steam turbine, 13 ... Medium pressure economizer, 15 ... Medium pressure evaporator, 17 ... High pressure economizer, 20 ... High pressure evaporator, 22 ... Primary reheater, 32 ... Boost compressor, 33 ... Gas turbine high temperature section, 37 ... temperature controller, 43 ... high temperature side heat exchanger, 44 ... low temperature side heat exchanger, 21 ... high pressure primary superheater, 9 ... exhaust heat recovery boiler, 26 ... medium pressure pump, 31 ... Precooler, 2 ... Combustor, 42 ... Fuel, 45 ... Fuel heater, 29 ... Supply pump, 46 ... Drum, 47 ... Branch point, 48 ... Flow control valve, 49 ... Confluence, 50 ... Supply flow control valve, 51 DESCRIPTION OF SYMBOLS ... Temperature controller, 52 ... Flow control valve, 53 ... Recirculation pump, 54 ... Drive motor, 55 ... Cooling air supply flow control valve, 56 ... Gas turbine rotating shaft, 57 ... Fuel flow control valve controller, 58 ... Fuel Flow control valve.

Claims (3)

ガスタービンの高温部を冷却する冷却媒体として、圧縮機吐出空気をプリクーラーで冷却しブースト圧縮機にて昇圧した空気を用いるとともに、ガスタービンの高温部を冷却した後の空気を燃焼空気として燃焼器に回収するクローズド空気冷却ガスタービンシステムにおいて、
前記冷却媒体の流通系に、冷却空気のリーク状態を検出する検出手段を設けるとともに、そのリーク状態の検出に燃料流量の変動量または回収空気圧力の変動量を用いるようにしたことを特徴とするクローズド空気冷却ガスタービンシステム。
As a cooling medium for cooling the high temperature section of the gas turbine, the combustion compressor discharge air along with used air that is pressurized by the cooling boost compressor pre cooler, the air after cooling the high temperature section of the gas turbine as combustion air In a closed air cooled gas turbine system that collects in a vessel,
The cooling medium flow system is provided with detection means for detecting a leakage state of the cooling air, and a fluctuation amount of the fuel flow rate or a fluctuation amount of the recovered air pressure is used for the detection of the leakage state. Closed air cooled gas turbine system.
請求項1に記載のクローズド空気冷却ガスタービンシステムにおいて、
前記検出手段が検出する燃料流量の変動量または回収空気圧力の変動量が許容量より大きい場合にガスタービンを停止させる制御装置を備えたことを特徴とするクローズド空気冷却ガスタービンシステム。
The closed air cooled gas turbine system of claim 1,
A closed air cooling gas turbine system, comprising: a control device that stops the gas turbine when the fluctuation amount of the fuel flow rate or the fluctuation amount of the recovered air pressure detected by the detection unit is larger than an allowable amount.
圧縮機で圧縮した空気の一部をプリクーラーで冷却し、プリクーラーで冷却された空気をブースト圧縮機で昇圧し、昇圧された空気でガスタービン高温部を冷却し、ガスタービン高温部を冷却した空気を燃焼空気として燃焼器に回収するクローズド空気冷却ガスタービンシステムのリーク検出方法において、
前記燃焼器に供給される燃料流量の変動量または前記燃焼器に回収される空気圧力の変動量を監視することを特徴とするクローズド空気冷却ガスタービンシステムのリーク検出方法。
A portion of the air compressed by the compressor is cooled by the precooler, the air cooled by the precooler is boosted by the boost compressor, the high temperature portion of the gas turbine is cooled by the boosted air, and the high temperature portion of the gas turbine is cooled In the leak detection method of the closed air cooling gas turbine system that collects the discharged air as combustion air in the combustor,
A leak detection method for a closed air cooling gas turbine system, wherein the fluctuation amount of the flow rate of fuel supplied to the combustor or the fluctuation amount of air pressure recovered in the combustor is monitored.
JP2006247833A 2006-09-13 2006-09-13 Combined power plant and closed air cooled gas turbine system Expired - Lifetime JP4373420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247833A JP4373420B2 (en) 2006-09-13 2006-09-13 Combined power plant and closed air cooled gas turbine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247833A JP4373420B2 (en) 2006-09-13 2006-09-13 Combined power plant and closed air cooled gas turbine system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002277403A Division JP3872407B2 (en) 2002-09-24 2002-09-24 Combined power plant and closed air cooled gas turbine system

Publications (2)

Publication Number Publication Date
JP2007016791A JP2007016791A (en) 2007-01-25
JP4373420B2 true JP4373420B2 (en) 2009-11-25

Family

ID=37754134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247833A Expired - Lifetime JP4373420B2 (en) 2006-09-13 2006-09-13 Combined power plant and closed air cooled gas turbine system

Country Status (1)

Country Link
JP (1) JP4373420B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042792A1 (en) * 2010-10-22 2012-04-26 Man Diesel & Turbo Se System for generating mechanical and / or electrical energy
JP5555276B2 (en) * 2012-04-05 2014-07-23 川崎重工業株式会社 Gas turbine engine device equipped with Rankine cycle engine
JP5787857B2 (en) * 2012-09-27 2015-09-30 三菱日立パワーシステムズ株式会社 Control method for gas turbine cooling system, control device for executing the method, and gas turbine equipment equipped with the control device
KR102434627B1 (en) * 2021-03-30 2022-08-19 두산에너빌리티 주식회사 Combined power plant and operating method of the same
US11719156B2 (en) 2021-03-30 2023-08-08 Doosan Enerbility Co., Ltd. Combined power generation system with feedwater fuel preheating arrangement

Also Published As

Publication number Publication date
JP2007016791A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
CN104204467B (en) Gas turbine with scalable cooling air system
JP4540472B2 (en) Waste heat steam generator
US20100281877A1 (en) Single shaft combined cycle power plant start-up method an single shaft combined cycle power plant
JPH1193694A (en) Gas turbine plant
US10900418B2 (en) Fuel preheating system for a combustion turbine engine
JP3431435B2 (en) Combined power plant and closed air-cooled gas turbine system
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
JP4373420B2 (en) Combined power plant and closed air cooled gas turbine system
JPH05163960A (en) Combined cycle power generation plant
JPH09112215A (en) Gas turbine power plant and method of operating thereof
US20040172947A1 (en) Turbine equipment and combined cycle power generation equipment and turbine operating method
JP5694112B2 (en) Uniaxial combined cycle power plant and operation method thereof
BRPI0613011A2 (en) Method for starting a steam turbine installation
US8327615B2 (en) Combined cycle powered generating plant having reduced start-up time
WO2018096757A1 (en) Heat exchange system and operating method therefor, cooling system and cooling method for gas turbine, and gas turbine system
US20030154721A1 (en) Steam cooling control for a combined cycle power plant
JP3872407B2 (en) Combined power plant and closed air cooled gas turbine system
JP4488631B2 (en) Combined cycle power generation facility and operation method thereof
KR101520238B1 (en) Gas turbine cooling system, and gas turbine cooling method
US20150121871A1 (en) Forced cooling in steam turbine plants
US20220235703A1 (en) Gas turbine and control method thereof, and combined cycle plant
JP3842653B2 (en) Gas turbine and operation method thereof
JP2001214758A (en) Gas turbine combined power generation plant facility
JP3794724B2 (en) Gasification combined power generation facility
JP5475315B2 (en) Combined cycle power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term