JP3794724B2 - Gasification combined power generation facility - Google Patents

Gasification combined power generation facility Download PDF

Info

Publication number
JP3794724B2
JP3794724B2 JP28039494A JP28039494A JP3794724B2 JP 3794724 B2 JP3794724 B2 JP 3794724B2 JP 28039494 A JP28039494 A JP 28039494A JP 28039494 A JP28039494 A JP 28039494A JP 3794724 B2 JP3794724 B2 JP 3794724B2
Authority
JP
Japan
Prior art keywords
pressure
facility
gas
gas cooling
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28039494A
Other languages
Japanese (ja)
Other versions
JPH08135901A (en
Inventor
浩道 戸田
和文 草壁
治 品田
斎臣 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28039494A priority Critical patent/JP3794724B2/en
Publication of JPH08135901A publication Critical patent/JPH08135901A/en
Application granted granted Critical
Publication of JP3794724B2 publication Critical patent/JP3794724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は固体および液体燃料からガス燃料を生成し、発電システムの燃料として利用するガス化複合発電設備に関する。
【0002】
【従来の技術】
従来の代表的なガス化複合発電設備の模式的系統図を図3に示す。図において固体及び液体をガス化するガス化炉1の後流にガスを所定温度まで冷却するガス冷却設備2を設け、このガス冷却設備2に排熱回収ボイラ6から給水管10aを経て給水を供給し、ガス冷却のための冷却媒体とすると共に蒸気化して蒸気管10bを経て再び排熱回収ボイラ6へ戻し、加熱した後、蒸気タービン8へ供給する。通常、給水供給元の排熱回収ボイラ6が、主として蒸気タービン8の部分負荷運転、即ち部分負荷時等に負荷に相応して圧力の変化する変圧運転を行う場合、ガス冷却設備2も従属的に変圧運転を行うこととなる。
【0003】
なお、図中、3はガス中の微粉炭質を回収するためのチャー回収設備、4はガス中のダストや硫黄分を除去するためのガス精製設備、5はガスタービン、7は最終的に排ガスを大気中へ放出するための煙突、8は蒸気タービン、9は蒸気タービン8で仕事を終えた蒸気を結露させ水に戻すための復水器、10は復水を改めて給水として排熱回収ボイラ6へ送るためのボイラ給水ポンプ、12はガスタービン5により駆動され、ガス化炉1への燃焼用空気を謂わば1次圧縮するためのコンプレッサ、13はコンプレッサ12により圧縮された空気を更に圧縮して昇圧させるための空気昇圧機、14はガス化炉1の燃料として用いる固体または液体の燃料、15はボイラ給水ポンプ10によって送られてきた給水をガス冷却設備2と蒸発器17へ適比で配分するための給水制御弁、17は排熱回収ボイラ6内で、ガスタービン5の排ガスの排熱により蒸気タービン8駆動用の主たる蒸気の謂わば1次蒸気を発生させるための蒸発器である。
【0004】
なお、ガスタービン5及び蒸気タービン8には図示のみで特に呼び出さない発電機が連結されていて発電する。
【0005】
また、以降、「変圧」、「定圧」等、圧力に係る対象は特に断わる場合を除き、たとえば給水管10a、蒸気管10bを含む管路系内の水・蒸気系の圧力を指す。従って「排熱回収ボイラ6」の圧力とは「排熱回収ボイラ6」内を通る管路内の圧力を云い、排ガスの圧力を云うのではない。
【0006】
因みに排熱回収ボイラ6は熱交換器であり、熱交換器は熱交換を行う2流体間の温度差がある一定以上に確保されていないと有効な熱交換を行うことができない。すなわち、非常に大きな温度差がある場合は、熱交換に必要な伝熱面積は少なくて足りるが、温度差がほとんどない場合は大きな伝熱面積を必要とし、設計上の困難や経済性の悪化、圧力損失増大による性能の劣化などを招来することとなる。
【0007】
排熱回収ボイラ6も定格負荷においては、高温流体であるガスタービン5の排ガスと低温流体である蒸気系の蒸気とが適正な温度差を保っているが、部分負荷になるとガスタービン5の排ガス温度が低下して両者の温度が接近してくる。
【0008】
一方、蒸気側の温度はドラムの器内圧力を飽和圧力とする飽和温度によって決まり、器内圧力を変えない限り原則として一定の温度となる。したがって両者の温度差がだんだん0に近づき、それに伴って交換熱量が減少し、蒸発量すなわち蒸気タービン8への蒸気流量も減少していく。
【0009】
そこで排熱回収ボイラ6を部分負荷時などに変圧運転し、ガスタービン5の排ガスの温度が下がった場合には蒸気系の圧力も下げ、常に適正な温度差を確保するような運転が行われる。これにより蒸気タービン8の入口の圧力が低下するため蒸気タービン8の出力も減少するが、この減少の割合は前述の蒸発量減少による出力低下の割合に比べて小さい。
【0010】
以上のような理由から、通常コンバインドサイクルでは部分負荷時に変圧運転を行い、部分負荷時のプラント効率の向上を図ることが一般に行なわれる。
【0011】
【発明が解決しようとする課題】
上記従来のガス化複合発電設備には解決すべき次の課題があった。
【0012】
即ち、従来の設備では通常のガスタービンコンバインドサイクルで、蒸気タービン入口で特に圧力制御を行わない変圧運転の場合、部分負荷時等にガスタービンの排気温度が低下すると、排熱回収ボイラの蒸気系圧力が自然に低下する。一方、上記従来のガス化複合発電設備においては、ガス冷却設備への給水を排熱回収ボイラ内の適当な位置から分岐して供給する場合、ガス冷却設備も必然的に変圧運転を行うこととなる。このような場合、次に示す(1),(2)の不具合が生じる。また、ある負圧以下では定圧運転を行なうことがあるがその場合、次に示す(3)の不具合がある。
【0013】
(1).いかなる運転状態においても、伝熱管保護の観点からガス冷却設備の伝熱管でスチーミングを起こさない配慮が必要とされるが、ガス冷却設備を変圧運転とした場合、部分負荷時等に系内圧力が下がった際にスチーミングを起こし、伝熱管に深刻な障害を与える恐れがある。そのため、定格点においてもガス冷却設備給水温度を高く設定する事ができない。しかし図4に示すように、一般的にはガス冷却設備給水温度が高いほどプラント効率が向上するため、給水温度を低く設定する事はプラント効率の低下を招くという問題が生じる。
【0014】
(2).ガス化炉設備、ガス冷却設備は蒸発器管で構成された水冷壁構造をとることが多い。この場合、水冷壁の温度は内部を流れる飽和水もしくは飽和蒸気の圧力によって定まる飽和温度に左右される。ガス冷却設備を変圧運転した場合、水冷壁温度が著しく上下して大きな熱延び差を発生するため、構造上特別な配慮が必要となる。特に、ガス化複合発電設備ではガス化後の生成ガスでガスタービンを駆動する都合上、ガス化炉設備およびガス冷却設備を加圧容器内に収納する場合が多く、その場合加圧容器の貫通部が水冷壁と加圧容器の熱延び差により深刻な影響を受けやすいという問題がある。
【0015】
(3).排熱回収ボイラを定圧運転する場合でも、ガスタービンの排気ガス温度が低下するなど、運転条件によっては排熱回収ボイラの蒸気圧力を下げた状態で一定制御することも考えられる。しかしこのような場合でも、ガス冷却設備内部の温度は十分高いため、蒸気圧力を排熱回収ボイラのそれに合わせて連動させて下げる必要がなく、むしろ高い圧力で一定制御することが望ましい。つまり、ガス冷却設備は給水の供給元である排熱回収ボイラの運転状態とは独立に蒸気系内の圧力を制御する手段が望まれるところ、それができないという問題がある。
【0016】
本発明は上記問題を解決したガス化複合発電設備を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明は上記課題の解決手段として、次の(1))に記載のガス化複合発電設備を提供しようとするものである。
【0018】
(1).固体および液体燃料をガス化し、ガスタービンの燃料として利用する発電設備で、ガス化後のガスを冷却するガス冷却設備と、ガスタービンの排気ガスを熱源として蒸気を発生するボイラーと、発生した蒸気で発電を行う蒸気タービンを備える設備において、前記ガス冷却設備への給水を前記ボイラーから分岐して同ガス冷却設備に供給する管路を具備するとともに、定常運転又は部分運転条件のもとで、変圧運転を行う前記ボイラーと定圧運転を行う前記ガス冷却設備とを具備し、前記ガス冷却設備を定常運転又は部分運転の何れかの運転条件のもとで定圧運転可能な圧力制御手段を備えてなることを特徴とするガス化複合発電設備。
【0021】
).上記(1)記載のガス化複合発電設備において、ガス冷却設備の発生蒸気の出口側に、圧力制御弁を備え、前圧制御にて設備の系内圧力を制御可能に構成されてなることを特徴とするガス化複合発電設備。
【0022】
なお、上記(1))中、「変圧運転」とは蒸気系の蒸気ドラム器内圧力を運転条件(部分負荷運転など)に応じて変化させるような(蒸気タービンへの蒸気供給によって系の圧力が下がる場合等)運転方法を、また、「定圧運転」とは蒸気系の蒸気ドラム器内圧力を運転条件に関わらず、一定に保つ運転方法を、また、「前圧制御」とは圧力制御手段(圧力制御弁等)の手前を目的の圧力となるように制御することをそれぞれ云う。
【0023】
【作用】
本発明は上記のように構成されるので次の作用を有する。
【0024】
(1).上記(1)の構成にあっては、前記ガス冷却設備への給水を前記ボイラーから分岐して同ガス冷却設備に供給する管路を具備するとともに、定常運転又は部分運転条件のもとで、変圧運転を行うボイラーと定圧運転を行うガス冷却設備を具備し、ガス冷却設備を定常運転又は部分運転の何れかの運転条件のもとで定圧運転可能な圧力制御手段を備えるため、たとえば発電設備が、蒸気タービン入口圧に依存する変圧運転時でもガス冷却設備のみは圧力制御手段によって比較的に高い定圧に保つことができ、スチーミングの誘発を抑止できる。
【0025】
従って、また、ガス冷却設備の給水温度を高く保てるのでプラント効率が向上する。
【0026】
また、ガス冷却設備を加圧容器内に収納した型式の発電設備にあっては圧力及び給水温度等を一定に保てるため、加圧容器を貫通する管路等と加圧容器との間に圧力変動や熱変動による歪や熱歪の差が生じず、亀裂、漏れ等の不具合を生じる懸念がない。
【0028】
特に、ガス冷却設備への給水をボイラーから分岐してガス冷却設備に供給する管路を備えるため、ボイラーで高温にした水をガス冷却設備に供給できると共に圧力制御手段によってガス冷却設備を定圧維持できるのでスチーミングその他の不具合を生じさせることなくガス冷却設備給水を高温にでき、プラント効率が向上する。
【0029】
).上記()の構成にあっては上記(1)の構成におけるガス冷却設備の発生蒸気の出口側に圧力制御弁を備え、前圧制御にて設備の系内圧力を制御可能に構成するため、ガス冷却設備を定圧に制御でき、上記(1)と同等の作用を奏する。
【0030】
【実施例】
本発明の一実施例に係る、ガス化複合発電設備について図1及び図2により説明する。なお、従来例と同様の構成部材には同符号を付し、必要ある場合を除き説明を省略する。
【0031】
図1は本実施例に係るガス化複合発電設備の模式的系統図、図2は本実施例の部分負荷時の運転におけるプラント負荷と諸温度との関係線図である。
【0032】
図1において11はガス冷却設備2から排熱回収ボイラ6に至る蒸気管10bの中途に介装された圧力制御弁である。その他の構成は従来例と同様である。
【0033】
次に上記構成の作用について説明する。
【0034】
先ず、運転の一般について説明すると、ガス化炉1に供給された固体または液体燃料14は、ガス冷却設備2により所定の温度まで冷却された後、チャー回収設備3で未燃炭素分を取り除かれ、ガス精製設備4でダスト分および有害な硫黄分を除去された後、ガスタービン5の燃焼器で燃焼し発電機を駆動する。ガスタービン5の高温排気ガスは排熱回収ボイラ6へ導かれ、ボイラ給水ポンプ10により送り込まれた給水と熱交換して冷却されて煙突7より大気に放出される。一方、ホイラ給水ポンプ10により送り込まれた給水の一部は、給水制御弁15の開度に応じ分岐してガス冷却設備2へ導かれ、ガス化後の生成ガスを冷却する。即ち、吸熱して高温となり蒸気を発生する。発生した蒸気は再び排熱回収ボイラ6へ戻され、排熱回収ボイラ6の主蒸気と合流した後に蒸気タービン8を駆動する。
【0035】
排熱回収ボイラ6は、蒸気タービン8の入口圧力から各部圧力損失を積み上げて定まる圧力にて運転される。即ち、変圧運転される。蒸気タービン8の入口圧力は蒸気流量によって一義的に定まり、蒸気流量は排熱回収ボイラ6での吸熱量に応じて変化するため、結果的に排熱回収ボイラ6は変圧運転を行うこととなる。一方ガス冷却設備2の主蒸気出口には圧力制御弁11が設置されており、これを用いた前圧制御によりガス冷却設備2の蒸気系内圧力を一定に制御する。即ち、ガス冷却設備2を定圧運転する。
【0036】
次に、変圧、定圧、前圧制御の各運転について説明する。
【0037】
ボイラ給水ポンプ10により、十分高い圧力で排熱回収ボイラ6に供給された給水は、排熱回収ボイラ6とガス冷却設備2に分岐する。変圧運転では、排熱回収ボイラ6の蒸気系は蒸気タービン8の入口圧力より積み上がった圧力にて運転される。定圧運転では、蒸気タービン8の入口の図示しない制御弁を調節することにより排熱回収ボイラ6の蒸気系圧力を前圧制御で一定に保った状態で運転される。またガス冷却設備2の出口に設けた圧力制御弁11の前圧制御により、上述の通り同設備内の蒸気系圧力が一定に制御される。
【0038】
変圧運転では、部分負荷運転時等にガスタービン5の排気温度が低下すると、排熱回収ボイラ6の系内圧力も自然に低下する。
【0039】
因みに定圧運転においても、運転条件によっては一時的に制御圧力を変更することで伝熱面の保護やプラント効率の低下を防ぐような運転を行う場合がある。
【0040】
ここで、ガス冷却設備2を一定圧力制御とすることで、排熱回収ボイラ6の運転条件が変化しても部分負荷時等においてガス冷却設備2各部の温度分布が一定に保たれ、ガス冷却設備2の圧力容器の貫通部に発生する熱伸び差に起因する応力を極力低減することができる。また、部分負荷時にもガス冷却設備2の系内圧力が下がらないため、たとえば図示しない節炭器内部でのスチーミング防止対策を考慮する必要がなく、定格点において十分に高いガス冷却設備2の給水温度を設定し、より高いプラント性能を図ることが可能となる。即ち、圧力制御弁11を制御し、ガス冷却設備2を定圧運転することにより、このような特段の作用効果が得られる。
【0041】
図2の本実施例における部分負荷時の運転状況を示す諸線図によれば、ガスタービン排ガス温度が部分負荷時に低下するのに連動して、排熱回収ボイラ6のドラム飽和温度が低下している。これは、ガスタービン5の排ガスの温度降下により排熱回収ボイラ6での発生蒸気量が減り、蒸気タービン8の入口圧力が低下した結果、排熱回収ボイラ6の蒸気系内圧力が連動して下がったことによる。ガス冷却設備2内のドラム飽和温度は、ある設定値を境にしてそれ以下にならないように圧力制御弁11によって前圧制御しているため、部分負荷時にもほぼ一定の飽和温度を維持している。なお部分負荷時にも、ガス冷却設備2で必要とする給水圧力を確保するために、ボイラ給水ポンプ10の出口圧力が制御されているか、あるいは一定の吐出圧力を保っているものとする。
【0042】
以上の通り、本実施例によればガス冷却設備2の発生蒸気の出口側となる蒸気管10bに圧力制御弁11を設けるので排熱回収ボイラ6等、蒸気タービン8の入口圧に依存する系が変圧運転中であっても、圧力制御弁11を前圧制御することにより、ガス冷却設備2を定圧運転できるため、スチーミングが防止されるという利点がある。
【0043】
また、ガス冷却設備2を定圧、かつ、高目の圧力に保つことができるのでプラント効率が向上するという利点がある。
【0044】
また、ガス冷却設備2の圧力を一定にできるため、飽和圧に依存する給水温度を一定に保つことができることと相俟って、加圧容器とそれを貫通する水・蒸気系管路との間に圧力変動に基く機械的歪差、熱変動に基く熱歪差が発生せず、従って上記管路が加圧容器を貫通する部位に亀裂等が生じる危険がないという利点がある。
【0045】
【発明の効果】
本発明は上記のように構成されるので次の効果を有する。
【0046】
即ち、本発明によれば圧力制御手段によってガス冷却設備を定圧運転できるため、ガス冷却設備給水温度を高く設定でき、定格点における高いプラント効率と、ガスタービン排気温度の変化に応じた排熱回収ボイラの変圧運転により定格点以外においても高いプラント効率を実現できる。さらに、ガス冷却設備を定圧運転とすることで様々な運転状況のもとで一定の温度分布を維持し、熱延び差等の影響が大きい圧力容器に対する水・蒸気系管路貫通部のズレ破壊等を招く危険が全くなくなる。
【0047】
また、ガス冷却設備を高目の一定圧に保てるのでスチーミングの生じる危険がない。
【図面の簡単な説明】
【図1】本発明の一実施例に係るガス化複合発電設備の模式的系統図、
【図2】上記実施例の部分負荷時の運転におけるプラント負荷と諸温度との関係線図、
【図3】従来のガス化複合発電設備の模式的系統図、
【図4】従来のガス冷却設備の給水温度とプラント効率の関係線図である。
【符号の説明】
1 ガス化炉
2 ガス冷却設備
5 ガスタービン
6 排熱回収ボイラ
8 蒸気タービン
10 ボイラ給水ポンプ
11 圧力制御弁
14 固体または液体燃料
15 給水制御弁
17 蒸発器
[0001]
[Industrial application fields]
The present invention relates to a gasification combined power generation facility that generates gas fuel from solid and liquid fuel and uses it as fuel for a power generation system.
[0002]
[Prior art]
FIG. 3 shows a schematic system diagram of a conventional typical combined gasification power generation facility. In the figure, a gas cooling facility 2 for cooling the gas to a predetermined temperature is provided downstream of the gasification furnace 1 for gasifying solids and liquids, and water is supplied to the gas cooling facility 2 from the exhaust heat recovery boiler 6 through the water supply pipe 10a. The gas is supplied and used as a cooling medium for gas cooling and is vaporized and returned to the exhaust heat recovery boiler 6 again through the steam pipe 10b, heated, and then supplied to the steam turbine 8. Usually, when the exhaust heat recovery boiler 6 of the water supply source mainly performs partial load operation of the steam turbine 8, that is, transformer operation in which the pressure changes according to the load at the time of partial load, the gas cooling facility 2 is also dependent. Transformer operation will be performed.
[0003]
In the figure, 3 is a char recovery facility for recovering pulverized coal in gas, 4 is a gas purification facility for removing dust and sulfur in the gas, 5 is a gas turbine, and 7 is finally exhaust gas. A chimney for discharging the air into the atmosphere, 8 is a steam turbine, 9 is a condenser for condensing the steam that has finished work in the steam turbine 8 and returning it to water, and 10 is an exhaust heat recovery boiler that supplies the condensate as feed water again. Boiler feed pump for sending to 6, 12 driven by gas turbine 5, a compressor for so-called primary compression of combustion air to gasification furnace 1, 13 further compresses the air compressed by compressor 12 An air pressure booster for boosting the pressure, 14 is a solid or liquid fuel used as fuel for the gasifier 1, and 15 is a feed water sent by the boiler feed pump 10 to the gas cooling facility 2 and the evaporator 17. A water supply control valve 17 for allocating by ratio is an evaporator for generating a so-called primary steam of the main steam for driving the steam turbine 8 by exhaust heat of the exhaust gas of the gas turbine 5 in the exhaust heat recovery boiler 6. It is.
[0004]
The gas turbine 5 and the steam turbine 8 are connected to a generator that is not shown in the figure and generates electricity.
[0005]
Further, hereinafter, pressure-related objects such as “transformation” and “constant pressure” refer to, for example, the pressure of the water / steam system in the pipeline system including the water supply pipe 10a and the steam pipe 10b, unless otherwise specified. Therefore, the pressure of the “exhaust heat recovery boiler 6” refers to the pressure in the pipe line passing through the “exhaust heat recovery boiler 6”, and does not refer to the pressure of the exhaust gas.
[0006]
Incidentally, the exhaust heat recovery boiler 6 is a heat exchanger, and the heat exchanger cannot perform effective heat exchange unless the temperature difference between the two fluids performing heat exchange is secured to a certain level or more. In other words, if there is a very large temperature difference, the heat transfer area required for heat exchange is small, but if there is almost no temperature difference, a large heat transfer area is required, which is difficult to design and deteriorates economic efficiency. As a result, the performance is deteriorated due to an increase in pressure loss.
[0007]
At the rated load, the exhaust heat recovery boiler 6 also maintains an appropriate temperature difference between the exhaust gas of the gas turbine 5 that is a high-temperature fluid and the steam of steam that is a low-temperature fluid. The temperature drops and the temperature of both approaches.
[0008]
On the other hand, the temperature on the steam side is determined by a saturation temperature in which the drum internal pressure is the saturation pressure, and is basically a constant temperature unless the internal pressure is changed. Therefore, the temperature difference between the two gradually approaches 0, and accordingly, the amount of exchange heat decreases, and the amount of evaporation, that is, the flow rate of steam to the steam turbine 8 also decreases.
[0009]
Therefore, the exhaust heat recovery boiler 6 is transformed at a partial load or the like, and when the temperature of the exhaust gas of the gas turbine 5 is lowered, the pressure of the steam system is lowered, and an operation is always performed to ensure an appropriate temperature difference. . As a result, the pressure at the inlet of the steam turbine 8 decreases, so the output of the steam turbine 8 also decreases. However, the rate of this decrease is smaller than the rate of output decrease due to the aforementioned decrease in the amount of evaporation.
[0010]
For the reasons as described above, it is generally performed in the normal combined cycle that the transformer operation is performed at the time of partial load to improve the plant efficiency at the time of partial load.
[0011]
[Problems to be solved by the invention]
The conventional gasification combined power generation facility has the following problems to be solved.
[0012]
In other words, in the conventional gas turbine combined cycle in the conventional equipment, when the gas turbine exhaust temperature decreases during partial load, etc., in the case of transformer operation without pressure control at the steam turbine inlet, the steam system of the exhaust heat recovery boiler The pressure drops naturally. On the other hand, in the conventional combined gasification power generation facility, when water supply to the gas cooling facility is branched and supplied from an appropriate position in the exhaust heat recovery boiler, the gas cooling facility inevitably performs a transformation operation. Become. In such a case, the following problems (1) and (2) occur. Further, constant pressure operation may be performed at a certain negative pressure or lower, but in this case, there is the following problem (3).
[0013]
(1). In any operating condition, consideration must be given to avoiding steaming in the heat transfer tubes of the gas cooling equipment from the viewpoint of protecting the heat transfer tubes. When it drops, it may cause steaming and serious damage to the heat transfer tubes. Therefore, the gas cooling equipment feed water temperature cannot be set high even at the rated point. However, as shown in FIG. 4, generally, the higher the gas cooling facility feed water temperature, the higher the plant efficiency. Therefore, setting the feed water temperature low causes a problem that the plant efficiency decreases.
[0014]
(2). Gasification furnace equipment and gas cooling equipment often have a water-cooled wall structure composed of evaporator tubes. In this case, the temperature of the water cooling wall depends on the saturation temperature determined by the pressure of saturated water or saturated steam flowing inside. When the gas cooling facility is transformed, the temperature of the water-cooled wall rises and falls greatly, resulting in a large difference in thermal elongation. Therefore, special consideration is required for the structure. In particular, in a combined gasification power generation facility, for the convenience of driving a gas turbine with the product gas after gasification, the gasification furnace facility and the gas cooling facility are often housed in a pressurized vessel. There is a problem that the section is easily affected by a difference in thermal elongation between the water-cooled wall and the pressurized container.
[0015]
(3). Even when the exhaust heat recovery boiler is operated at a constant pressure, depending on the operating conditions, it may be possible to perform constant control with the steam pressure of the exhaust heat recovery boiler lowered, such as a decrease in the exhaust gas temperature of the gas turbine. However, even in such a case, since the temperature inside the gas cooling facility is sufficiently high, it is not necessary to reduce the steam pressure in conjunction with that of the exhaust heat recovery boiler, and it is desirable to perform constant control at a rather high pressure. In other words, the gas cooling facility has a problem that it cannot be used when a means for controlling the pressure in the steam system is desired independently of the operating state of the exhaust heat recovery boiler that is the supply source of the feed water.
[0016]
An object of this invention is to provide the gasification combined cycle power generation facility which solved the said problem.
[0017]
[Means for Solving the Problems]
The present invention is intended to provide the combined gasification combined power generation facility described in the following (1) and ( 2 ) as means for solving the above-mentioned problems.
[0018]
(1). A power generation facility that gasifies solid and liquid fuels and uses them as fuel for gas turbines, a gas cooling facility that cools the gas after gasification, a boiler that generates steam using the exhaust gas of the gas turbine as a heat source, and the generated steam In a facility equipped with a steam turbine that generates electricity at a point , the water supply to the gas cooling facility is branched from the boiler and supplied to the gas cooling facility, and under normal operation or partial operation conditions, Including the boiler for performing transformer operation and the gas cooling facility for performing constant pressure operation, the gas cooling facility comprising pressure control means capable of performing constant pressure operation under operating conditions of either steady operation or partial operation. A combined gasification power generation facility characterized by
[0021]
( 2 ). In the above (1) Symbol placement gasification combined cycle plant, the outlet side of the steam generated in the gas cooling equipment comprises a pressure control valve, before pressure control Similar be is capable of controlling the system pressure of the equipment Gasification combined power generation facility characterized by
[0022]
In (1) and ( 2 ) above, “transforming operation” means changing the internal pressure of the steam drum in the steam system according to the operating conditions (partial load operation etc.) (by supplying steam to the steam turbine). The operation method, such as when the pressure in the system drops), and the "constant pressure operation" is an operation method that keeps the steam drum unit pressure of the steam system constant regardless of the operation conditions, and "pre-pressure control" Means to control the pressure control means (pressure control valve or the like) in front of the target pressure.
[0023]
[Action]
Since this invention is comprised as mentioned above, it has the following effect | action.
[0024]
(1). In the configuration of the above (1), it has a pipeline for supplying water to the gas cooling facility from the boiler and supplying the water to the gas cooling facility, and under normal operation or partial operation conditions, For example, a power generation facility includes a boiler that performs a transformer operation and a gas cooling facility that performs a constant pressure operation, and includes pressure control means that can operate the gas cooling facility under a constant pressure operation under either a steady operation or a partial operation condition. However, even during the transformation operation depending on the steam turbine inlet pressure, only the gas cooling facility can be maintained at a relatively high constant pressure by the pressure control means, and the induction of steaming can be suppressed.
[0025]
Therefore, since the feed water temperature of the gas cooling facility can be kept high, the plant efficiency is improved.
[0026]
In addition, in the type of power generation equipment in which the gas cooling equipment is housed in the pressurized container, the pressure and the feed water temperature are kept constant, so that the pressure between the pipe line penetrating the pressurized container and the pressurized container is maintained. There is no concern about the occurrence of defects such as cracks and leaks because there is no difference in strain or thermal strain due to fluctuations or thermal fluctuations.
[0028]
In particular, it is equipped with a pipeline that branches the water supply to the gas cooling facility from the boiler and supplies it to the gas cooling facility. As a result, it is possible to increase the temperature of the gas cooling facility water supply without causing steaming or other problems, thereby improving plant efficiency.
[0029]
( 2 ). In the configuration of ( 2 ), a pressure control valve is provided on the outlet side of the generated steam of the gas cooling facility in the configuration of (1 ) , and the system pressure of the facility can be controlled by pre-pressure control. The gas cooling facility can be controlled to a constant pressure, and the same effect as the above (1) can be obtained.
[0030]
【Example】
A gasification combined power generation facility according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. In addition, the same code | symbol is attached | subjected to the same structural member as a prior art example, and description is abbreviate | omitted unless it is required.
[0031]
FIG. 1 is a schematic system diagram of a combined gasification power generation facility according to the present embodiment, and FIG. 2 is a relationship diagram between plant loads and various temperatures in operation at a partial load according to the present embodiment.
[0032]
In FIG. 1, 11 is a pressure control valve interposed in the middle of the steam pipe 10b from the gas cooling facility 2 to the exhaust heat recovery boiler 6. Other configurations are the same as those of the conventional example.
[0033]
Next, the operation of the above configuration will be described.
[0034]
First, the general operation will be described. After the solid or liquid fuel 14 supplied to the gasification furnace 1 is cooled to a predetermined temperature by the gas cooling facility 2, unburned carbon content is removed by the char recovery facility 3. After the dust and harmful sulfur are removed by the gas refining equipment 4, the gas is burned by the combustor of the gas turbine 5 and the generator is driven. The high-temperature exhaust gas of the gas turbine 5 is guided to the exhaust heat recovery boiler 6, cooled by exchanging heat with the feed water fed by the boiler feed water pump 10, and discharged from the chimney 7 to the atmosphere. On the other hand, part of the water supplied by the boiler water pump 10 branches according to the opening of the water supply control valve 15 and is led to the gas cooling facility 2 to cool the product gas after gasification. That is, it absorbs heat and becomes high temperature to generate steam. The generated steam is returned to the exhaust heat recovery boiler 6 again, and after joining the main steam of the exhaust heat recovery boiler 6, the steam turbine 8 is driven.
[0035]
The exhaust heat recovery boiler 6 is operated at a pressure determined by accumulating the pressure loss of each part from the inlet pressure of the steam turbine 8. That is, the transformer is operated. The inlet pressure of the steam turbine 8 is uniquely determined by the steam flow rate, and the steam flow rate changes according to the amount of heat absorbed in the exhaust heat recovery boiler 6, so that the exhaust heat recovery boiler 6 performs a transformation operation. . On the other hand, a pressure control valve 11 is installed at the main steam outlet of the gas cooling facility 2, and the internal pressure of the steam system of the gas cooling facility 2 is controlled to be constant by pre-pressure control using this. That is, the gas cooling facility 2 is operated at a constant pressure.
[0036]
Next, each operation of voltage transformation, constant pressure, and pre-pressure control will be described.
[0037]
The feed water supplied to the exhaust heat recovery boiler 6 at a sufficiently high pressure by the boiler feed water pump 10 branches into the exhaust heat recovery boiler 6 and the gas cooling facility 2. In the transformer operation, the steam system of the exhaust heat recovery boiler 6 is operated at a pressure accumulated from the inlet pressure of the steam turbine 8. In the constant pressure operation, the operation is performed in a state where the steam system pressure of the exhaust heat recovery boiler 6 is kept constant by the pre-pressure control by adjusting a control valve (not shown) at the inlet of the steam turbine 8. Further, as described above, the steam system pressure in the facility is controlled to be constant by the pre-pressure control of the pressure control valve 11 provided at the outlet of the gas cooling facility 2.
[0038]
In the transformer operation, when the exhaust temperature of the gas turbine 5 decreases during a partial load operation or the like, the system pressure of the exhaust heat recovery boiler 6 naturally decreases.
[0039]
Incidentally, even in the constant pressure operation, depending on the operation conditions, there is a case where the operation is performed such that the control pressure is temporarily changed to protect the heat transfer surface and prevent the plant efficiency from being lowered.
[0040]
Here, by setting the gas cooling facility 2 to a constant pressure control, the temperature distribution of each part of the gas cooling facility 2 is kept constant even when the operating condition of the exhaust heat recovery boiler 6 changes, at the time of partial load, etc. The stress resulting from the difference in thermal elongation generated in the penetrating portion of the pressure vessel of the facility 2 can be reduced as much as possible. Further, since the internal pressure of the gas cooling facility 2 does not drop even during partial load, it is not necessary to consider measures for preventing steaming inside the economizer (not shown), for example. It is possible to set the feed water temperature and achieve higher plant performance. That is, by controlling the pressure control valve 11 and operating the gas cooling facility 2 at a constant pressure, such a special effect can be obtained.
[0041]
According to the diagrams showing the operating conditions at the partial load in the present embodiment in FIG. 2, the drum saturation temperature of the exhaust heat recovery boiler 6 decreases in conjunction with the gas turbine exhaust gas temperature decreasing at the partial load. ing. This is because the amount of steam generated in the exhaust heat recovery boiler 6 decreases due to the temperature drop of the exhaust gas from the gas turbine 5 and the inlet pressure of the steam turbine 8 decreases. It is because it went down. The drum saturation temperature in the gas cooling facility 2 is pre-pressure controlled by the pressure control valve 11 so that it does not become lower than a certain set value, so that a substantially constant saturation temperature is maintained even during partial load. Yes. It is assumed that the outlet pressure of the boiler feed water pump 10 is controlled or a constant discharge pressure is maintained in order to ensure the feed water pressure required by the gas cooling facility 2 even at the partial load.
[0042]
As described above, according to the present embodiment, since the pressure control valve 11 is provided in the steam pipe 10b on the outlet side of the generated steam of the gas cooling facility 2, a system that depends on the inlet pressure of the steam turbine 8 such as the exhaust heat recovery boiler 6 or the like. Even during the voltage transformation operation, by controlling the pressure control valve 11 to be pre-pressured, the gas cooling facility 2 can be operated at a constant pressure, so that there is an advantage that steaming is prevented.
[0043]
Moreover, since the gas cooling facility 2 can be maintained at a constant pressure and a higher pressure, there is an advantage that the plant efficiency is improved.
[0044]
In addition, since the pressure of the gas cooling facility 2 can be made constant, the supply water temperature depending on the saturation pressure can be kept constant, and in combination with the pressurized container and the water / steam system pipe passing through it. There is an advantage that no mechanical strain difference based on pressure fluctuation or thermal strain difference based on thermal fluctuation occurs between them, and therefore there is no risk of cracks or the like occurring at the site where the pipe passes through the pressurized container.
[0045]
【The invention's effect】
Since this invention is comprised as mentioned above, it has the following effect.
[0046]
That is, according to the present invention, since the gas cooling facility can be operated at a constant pressure by the pressure control means, the gas cooling facility feed water temperature can be set high, the high plant efficiency at the rated point, and the exhaust heat recovery according to the change in the gas turbine exhaust temperature High plant efficiency can be achieved even at points other than the rated point by boiler transformer operation. In addition, the constant temperature distribution of the gas cooling equipment maintains a constant temperature distribution under various operating conditions, and the water / steam system through-hole displacement breaks against a pressure vessel that is greatly affected by differences in thermal expansion. The risk of incurring etc. is completely eliminated.
[0047]
Further, since the gas cooling equipment can be kept at a high constant pressure, there is no danger of steaming.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram of a combined gasification power generation facility according to an embodiment of the present invention;
FIG. 2 is a diagram showing the relationship between plant load and various temperatures in the partial load operation of the above embodiment,
FIG. 3 is a schematic system diagram of a conventional gasification combined power generation facility;
FIG. 4 is a relationship diagram between the feed water temperature of a conventional gas cooling facility and plant efficiency.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gasification furnace 2 Gas cooling equipment 5 Gas turbine 6 Waste heat recovery boiler 8 Steam turbine 10 Boiler feed pump 11 Pressure control valve 14 Solid or liquid fuel 15 Feed water control valve 17 Evaporator

Claims (2)

固体および液体燃料をガス化し、ガスタービンの燃料として利用する発電設備で、ガス化後のガスを冷却するガス冷却設備と、ガスタービンの排気ガスを熱源として蒸気を発生するボイラーと、発生した蒸気で発電を行う蒸気タービンを備える設備において、前記ガス冷却設備への給水を前記ボイラーから分岐して同ガス冷却設備に供給する管路を具備するとともに、定常運転又は部分運転条件のもとで、変圧運転を行う前記ボイラーと定圧運転を行う前記ガス冷却設備とを具備し、前記ガス冷却設備を定常運転又は部分運転の何れかの運転条件のもとで定圧運転可能な圧力制御手段を備えてなることを特徴とするガス化複合発電設備。A power generation facility that gasifies solid and liquid fuels and uses them as fuel for gas turbines, a gas cooling facility that cools the gas after gasification, a boiler that generates steam using the exhaust gas of the gas turbine as a heat source, and the generated steam In a facility equipped with a steam turbine that generates electricity at a point , the water supply to the gas cooling facility is branched from the boiler and supplied to the gas cooling facility, and under normal operation or partial operation conditions, Including the boiler for performing transformer operation and the gas cooling facility for performing constant pressure operation, the gas cooling facility comprising pressure control means capable of performing constant pressure operation under operating conditions of either steady operation or partial operation. A combined gasification power generation facility characterized by 請求項1記載のガス化複合発電設備において、ガス冷却設備の発生蒸気の出口側に、圧力制御弁を備え、前圧制御にて設備の系内圧力を制御可能に構成されてなることを特徴とするガス化複合発電設備。 2. The combined gasification power generation facility according to claim 1 , wherein a pressure control valve is provided on the outlet side of the generated steam of the gas cooling facility , and the system pressure of the facility can be controlled by pre-pressure control. gasification combined power generation facilities to be.
JP28039494A 1994-11-15 1994-11-15 Gasification combined power generation facility Expired - Lifetime JP3794724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28039494A JP3794724B2 (en) 1994-11-15 1994-11-15 Gasification combined power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28039494A JP3794724B2 (en) 1994-11-15 1994-11-15 Gasification combined power generation facility

Publications (2)

Publication Number Publication Date
JPH08135901A JPH08135901A (en) 1996-05-31
JP3794724B2 true JP3794724B2 (en) 2006-07-12

Family

ID=17624423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28039494A Expired - Lifetime JP3794724B2 (en) 1994-11-15 1994-11-15 Gasification combined power generation facility

Country Status (1)

Country Link
JP (1) JP3794724B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052738A (en) * 2005-11-04 2006-02-23 Kawasaki Heavy Ind Ltd Gas turbine plant

Also Published As

Publication number Publication date
JPH08135901A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
KR100268611B1 (en) Combined cycle power plant and supplying method of coolant therof
US6178734B1 (en) Combined cycle power generation plant and operating method thereof
US4546603A (en) Coal gasification composite power generating plant
EP0615061A1 (en) Combined cycle power plant and method of operating it
GB2338991A (en) Compound power-generating plant with superheated high pressure steam
JP3431435B2 (en) Combined power plant and closed air-cooled gas turbine system
JP2007023976A (en) Gas turbine generator and gas turbine combined-cycle power generation system
JP2870232B2 (en) Coal gasification power plant
CN101305163A (en) Method for starting a steam turbine installation
US6851265B2 (en) Steam cooling control for a combined cycle power plant
JP4373420B2 (en) Combined power plant and closed air cooled gas turbine system
JP2000054855A (en) External heating type gas turbine
US5251434A (en) Pressurized fluidized-bed boiler power plant
JP2011149434A (en) Gas turbine combined power generation system
JP3794724B2 (en) Gasification combined power generation facility
CA2059894C (en) Gasification-type combined electric power generating plant
JP3697476B2 (en) Combined power generation system using gas pressure energy
JP2002256816A (en) Combined cycle generating plant
JP3872407B2 (en) Combined power plant and closed air cooled gas turbine system
CN219034829U (en) Combined operation system of gas boiler generator set and sintering waste heat generator set
Warren et al. Advanced Technology Combustion Turbines in Combined-Cycle Applications
JPH0874518A (en) Garbage power generating system using two operating fluid gas turbine
Radin et al. Aspects of the Capacity-Enhancing Modernization of F-Series Gas Turbine Plants and the Characteristics of Single-Shaft Combined-Cycle Gas Plant
JP3722928B2 (en) Waste heat recovery boiler unit
CN117803911A (en) Heating system for realizing deep decoupling of machine furnace and operation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

EXPY Cancellation because of completion of term