JPS6022006A - Control device for reheater - Google Patents

Control device for reheater

Info

Publication number
JPS6022006A
JPS6022006A JP12953283A JP12953283A JPS6022006A JP S6022006 A JPS6022006 A JP S6022006A JP 12953283 A JP12953283 A JP 12953283A JP 12953283 A JP12953283 A JP 12953283A JP S6022006 A JPS6022006 A JP S6022006A
Authority
JP
Japan
Prior art keywords
reheater
steam
heating steam
control device
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12953283A
Other languages
Japanese (ja)
Inventor
Kunio Tsuji
辻 邦雄
Kentaro Mizuno
水野 堅太郎
Hiroshi Ikeda
啓 池田
Katsuto Kashiwara
柏原 克人
Toyohiko Masuda
豊彦 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12953283A priority Critical patent/JPS6022006A/en
Publication of JPS6022006A publication Critical patent/JPS6022006A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/24Control or safety means specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To make the metal temperature variation rate of reheater, etc. constant, throughout all actuating modes, by controlling a heating steam adjusting valve in response to an intial metal temperature and the outlet side pressure of valve, etc., in a reheater having the heating steam adjusting valve provided in a heating steam conduit thereof. CONSTITUTION:To introduce a steam brached from a main steam heater tube 2 into a reheater 7 via a heating steam adjusting valve 13 and a heating steam bypass valve 14, respective valves 13, 14 are controlled by a heating steam control device 12. The control device 12 is adapted to take up a signal from the metal temperature sensor 19 of reheater into a predetermined target pressure generator 20 and compare the output with a signal from a pressure sensor 21 provided at the downstream of heating steam adjusting valve 13 whereby controlling the heating steam adjusting valve 13 according to a resultant difference. The signal from the pressure sensor 21 is compared with a signal indicative of predetermined value of pressure setting device 23 by means of a comparator 24. The heating steam bypass valve 14 is controlled to open upon the pressure being sensed to exceed a preset value.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は再熱器の蒸ヌ(タービン原動機プラントにおけ
る再熱器の制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a control device for a reheater in a turbine engine plant.

〔発明の背景〕[Background of the invention]

第1図は従来の再熱式蒸気タービン原動機プラントの一
例としての原子力発電プラントのタービン回シ系統図で
める。この場合、図示の高圧蒸気源1は原子炉であるが
、これ全蒸気発生器としてもその他の構成は同様である
FIG. 1 is a turbine system diagram of a nuclear power plant as an example of a conventional reheat steam turbine prime mover plant. In this case, although the illustrated high-pressure steam source 1 is a nuclear reactor, the other configurations are the same even if the entire steam generator is used.

高圧蒸気源lかも出た蒸気の大部分は主蒸気ヘッダ管2
を介して高圧タービン4に供給され、この供給蒸気量は
蒸気加減弁3によって調節される。
Most of the steam coming out from the high pressure steam source 1 comes from the main steam header pipe 2.
The amount of steam supplied is regulated by a steam control valve 3.

そして、この蒸気加減弁3は蒸気加減弁制御装置11に
よシ制御される。
This steam regulating valve 3 is controlled by a steam regulating valve control device 11.

高圧タービン4に流入した蒸気は熱膨張することにより
回転エネルギに変換された後の高圧タービン排気は、1
0%ないし12チの水分を蒸気中に含んでいるので、ク
ロスアラウンド管上流部5aを介して湿分々耐容6に導
かれる。ここで蒸気中の水分の殆んどでは分離され、ロ
ーないし2チの湿シ蒸気となって、前bピ主蒸気へラダ
ー管2よシ分岐された一部の蒸気を加熱源として再熱す
る再熱器7にて、およそ過熱度70Cの蒸気温度まで再
熱された後、クロスアラウンド管5を介して低圧タービ
ン8へ流入し熱膨張することによって回転エネルギーに
変換された後、復水器9.給水加熱器10=i介して再
び原子炉又は蒸気発生器1に供給される系統で構成して
いる。
The steam flowing into the high-pressure turbine 4 is thermally expanded and converted into rotational energy, and then the high-pressure turbine exhaust is 1
Since the steam contains 0% to 12% moisture, it is led to the moisture tolerance 6 via the upstream section 5a of the cross-around pipe. Here, most of the moisture in the steam is separated and becomes low to 2-inch wet steam, which is reheated using a part of the steam as a heating source, which is branched through the ladder pipe 2 to the main steam in the front b pi. After being reheated to a steam temperature of approximately 70C in the reheater 7, it flows into the low pressure turbine 8 via the cross-around pipe 5, where it is thermally expanded and converted into rotational energy. Vessel 9. It consists of a system in which the feed water is supplied to the reactor or steam generator 1 again via the feed water heater 10=i.

高圧タービン4と低圧タービン8にて構成される蒸気タ
ービンは、タービン回転数、タービン入口蒸気圧力を検
出し、袈求される出力制御信号に見合った蒸気量を高圧
タービン4に流入させるための蒸気加減弁制御装置11
よりの信号にて蒸気加減弁3は制御される。
The steam turbine, which is composed of a high-pressure turbine 4 and a low-pressure turbine 8, detects the turbine rotation speed and turbine inlet steam pressure, and generates steam to flow into the high-pressure turbine 4 in an amount commensurate with a required output control signal. Adjustment valve control device 11
The steam control valve 3 is controlled by the signal.

又、再熱器7への加熱蒸気量は加熱蒸気制御装置12か
らの信号によp再熱器7の入口側に設けられた加熱蒸気
制御弁13と加熱蒸気・(イ・ゝス弁14を開閉動作さ
せることによシ制御される。
In addition, the amount of heating steam supplied to the reheater 7 is controlled by a heating steam control valve 13 and a heating steam control valve 14 provided on the inlet side of the reheater 7 according to a signal from the heating steam control device 12. It is controlled by opening and closing.

第2図に従来の原子カプラントの一例における再熱器廻
りの系統図を示す。加熱蒸気制御装置12は、再熱器出
口蒸気比力検出器15’を備え、演算器16により加熱
蒸気圧力相当目標値に換算された信号と、加熱蒸気制御
弁13下流側に設けられた圧力検出器17信号とを比較
器18によシ比較し、その差分てもって加熱蒸気1If
flJ御弁13が動作する。一方、加熱蒸気バイパス弁
14は、前記制御弁13の前後差圧がある一定値以下と
なれば囲動作させる機能を備えている。前記制御方法に
もとづいて、再熱器7を運転した場合の緒特性を第3図
(a)、 (b)に示す。加熱蒸気は王蒸気ヘソグー雷
2よシ取出されていることから加熱蒸気圧力特性は第3
図(a)の”X 11に示す如く負荷に対してはソー足
であることから、通常の運用負荷帝(例:60係よ91
00%タービン負荷)で再熱効果を、偽めるために一定
としている。一方、再熱器側の被加熱蒸気温度は第3図
(b)に示す如く、前記加熱蒸気圧力をタービン負荷に
対して一定とすると、出口感度は一定となるが、入口温
度は低負荷になるに従い低下すること〃・ら、出入口温
度差(ΔTelが増大する。従って、通常、連用軸回か
ら僅かながら低負荷(50%)よシ、加熱蒸気圧力を第
3図(a)のΔPだけ減圧することによシ、被加熱蒸気
出口温度も6g3図(b)の如く低下し、前記温度差を
小さく(ΔT2<ΔT+ )することが可能とな)、熱
変形及び熱応力を感和し得る。このため、前記制御装置
12によシ、低負荷域では制御弁13、高負荷域ではバ
イパス弁14によシ加熱蒸気量を制御している。
FIG. 2 shows a system diagram around a reheater in an example of a conventional atomic coupler. The heating steam control device 12 includes a reheater outlet steam specific force detector 15', and receives a signal converted into a target value equivalent to the heating steam pressure by the calculator 16, and a pressure sensor provided downstream of the heating steam control valve 13. The detector 17 signal is compared with the comparator 18, and the difference is used to determine the heating steam 1If.
The flJ control valve 13 operates. On the other hand, the heating steam bypass valve 14 has a function of operating when the differential pressure across the control valve 13 falls below a certain value. Figures 3(a) and 3(b) show the initial characteristics when the reheater 7 is operated based on the control method described above. Since the heating steam is extracted from the King's Steam Hesogu Rai 2, the heating steam pressure characteristics are the third.
As shown in "
00% turbine load) and the reheat effect is kept constant to falsify it. On the other hand, as shown in Figure 3(b), the temperature of the heated steam on the reheater side is as follows: If the heating steam pressure is constant with respect to the turbine load, the outlet sensitivity will be constant, but the inlet temperature will change to a low load. As the temperature increases, the temperature difference between the inlet and outlet (ΔTel) increases. Therefore, when the load is slightly lower (50%) from the continuous shaft rotation, the heating steam pressure is reduced by ΔP in Figure 3 (a). By reducing the pressure, the heated steam outlet temperature also decreases as shown in Fig. 6g3 (b), making it possible to reduce the temperature difference (ΔT2<ΔT+), and reducing thermal deformation and thermal stress. obtain. For this reason, the amount of heated steam is controlled by the control device 12, by the control valve 13 in the low load range, and by the bypass valve 14 in the high load range.

本従来例による加熱蒸気制御方法ないしは!tilJ 
(tL’J装置に於いては起動時に発生する熱応力、熱
変形に対するプラント停止期の影響、即ち再熱器或いは
低圧タービンの初期メタル温度に関して別設の配慮が為
されていなかった。このため、熱応力或いは熱変形に係
わる再熱器メタル温度、低圧タービンメタル温度の各温
度変化率が、各起動モードに於いて一様でなくなるとい
う欠点ヲ剖していた。
Heating steam control method according to this conventional example! tilJ
(In the tL'J equipment, no separate consideration was given to the effects of the plant shutdown period on the thermal stress and thermal deformation that occur during startup, that is, the initial metal temperature of the reheater or low-pressure turbine. The disadvantage was that the rate of change in temperature of the reheater metal temperature and the low-pressure turbine metal temperature, which are related to thermal stress or thermal deformation, is not uniform in each startup mode.

その結果変形に伴なう再熱器への損傷を招き、或いは熱
応力による寿命消費が早期に進行して1百顆性、耐久性
を損じていた。
As a result, damage to the reheater occurs due to deformation, or the lifespan is prematurely consumed due to thermal stress, resulting in loss of strength and durability.

〔発明の目的〕[Purpose of the invention]

本発明は上述の4’I’t1に鑑みて為さlしたもので
、その目的とするところは、すべての起動モードに訃け
る再熱器や低圧タービンのメタル温度父化率を一定なら
しめて、縣就変化による過大な熱応力の発生を防止し得
る再熱器制御装置を提供し、これにより安全に再熱器出
口蒸気温度を高め得るようにし、特に部分負荷時の効率
向上に寄与せんとするものである。
The present invention has been made in view of the above-mentioned 4'I't1, and its purpose is to make the metal temperature heating rate of the reheater and low pressure turbine constant in all startup modes. The present invention provides a reheater control device that can prevent excessive thermal stress from occurring due to changes in quality, thereby safely increasing the reheater outlet steam temperature, and contributing to improved efficiency, especially at partial loads. That is.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本発明の再熱器制御装置′
は再熱式蒸気原動機プラントの再熱器加熱用蒸気管路に
加熱蒸気制御弁を設け、この加熱蒸気制御弁を開閉制御
する加熱蒸気量制御装置を設置した再熱器割鯛1装置に
おいて、上記の〃u熱蒸気量制何装置内に、(a)蒸気
加減弁制仰装置q出力信号と、初期メタル温度検出信号
とを入力信号とする圧力設定値演算器と、(b)上記圧
力設定値演算器の出力信号と、加熱蒸気制御弁出ロ側圧
力検出信号との比収器を設け、上記比収器の出力信号に
よって加熱蒸気制御弁を自動的に開閉+BIJ +Hせ
しめるように構成したことを待機とする。
In order to achieve the above object, the reheater control device of the present invention'
In a reheater split sea bream 1 equipment, a heating steam control valve is installed in the reheater heating steam line of a reheating steam power plant, and a heating steam amount control device is installed to control the opening and closing of this heating steam control valve. In the above heat steam amount control device, (a) a pressure set value calculator whose input signals are the steam control valve control device q output signal and the initial metal temperature detection signal, and (b) the above pressure A ratio collector is provided for the output signal of the set value calculator and the pressure detection signal on the outlet side of the heating steam control valve, and the heating steam control valve is configured to automatically open/close +BIJ +H based on the output signal of the ratio collector. Waiting is what you did.

〔発明の実施例〕[Embodiments of the invention]

第4図は本発明の一実施例における系統図である。この
実UI!1例は第2図に示した従来の再熱器1tilJ
f4装置に本発明を適用して改良した一例であシ、第2
図と同一の図面参照番号を刊したものは従来装置におけ
ると同様乃至は類似の構成部材である。
FIG. 4 is a system diagram in one embodiment of the present invention. This real UI! One example is the conventional reheater 1tilJ shown in Figure 2.
This is an example of improving the f4 device by applying the present invention.
Components labeled with the same drawing reference numbers as in the figures are the same or similar components as in the conventional device.

高圧タービン4へ流入する蒸気01を量は蒸気加減弁3
にて制御され、タービン回転数、タービン入口圧力、タ
ービン負荷要求信号をもとに蒸気加減弁制御装置11の
出力信号にもとづいて自動的に制御される。
The amount of steam 01 flowing into the high pressure turbine 4 is determined by the steam control valve 3.
It is automatically controlled based on the output signal of the steam control valve control device 11 based on the turbine rotational speed, turbine inlet pressure, and turbine load request signal.

主蒸気へラダー管2よ勺分岐された蒸気は再熱器7の加
熱蒸気源として供給され、再熱器7の入口側に設置され
た加熱蒸気バイパス13、加熱蒸気バイパス弁14にて
加熱蒸気量を制御することになる。その側渦信号は加熱
蒸気量制御装置12の出力信号を用いている。再熱器7
に供給された加熱蒸気は熱交換し、給水加熱器10に熱
回収される。
The steam branched into the main steam through the ladder pipe 2 is supplied as a heating steam source to the reheater 7, and heated steam is passed through the heating steam bypass 13 and heating steam bypass valve 14 installed on the inlet side of the reheater 7. The amount will be controlled. The output signal of the heating steam amount control device 12 is used as the side vortex signal. Reheater 7
The heated steam supplied to the feed water heater 10 undergoes heat exchange and is recovered by the feed water heater 10.

前記加熱蒸気制御装置12は、1ltlJ唾の遅れを使
方回避する丸めに次のごとく構成する。
The heating steam control device 12 is configured as follows to avoid a delay of 1ltlJ.

蒸気タービンの蒸気加減弁+tjil ml装置fll
の出力信号と、起動時に於ける再熱器7のメタル温度初
期値によシ起動モー7ドを判定することによシ、負荷上
昇過程でのメタル1M度変化率を全ゆる起動モードであ
る一定値以上とならぬようにする。即ち、再熱器7に装
着された再熱器メタル温度検出器19の信号を目標圧力
設定値発生器2oに取込み、その出力信号と、加熱蒸気
制御弁13の下流側に設けられた圧力検出器21の信号
を比較a22によシ比較し、その差分を出力信号としで
加熱蒸気制御弁を開閉動作させることによシ加熱蒸気址
を制御する。又、前記圧力検出器21の信号と圧力設定
器23とを比較器24にて比威し設定値より高くなった
場合には加熱蒸気バイパス9P14を開動作することに
よシ加熱蒸気系統内の圧力損失を極力小さくするように
制御して再熱効果を高めることが出来る。
Steam turbine steam control valve + tjil ml device full
By determining the starting mode 7 based on the output signal of Make sure that the value does not exceed a certain value. That is, the signal of the reheater metal temperature detector 19 attached to the reheater 7 is taken into the target pressure set value generator 2o, and the output signal and the pressure detection provided on the downstream side of the heating steam control valve 13 are input to the target pressure set value generator 2o. The signals from the device 21 are compared by the comparator a22, and the difference between them is used as an output signal to control the heating steam by opening and closing the heating steam control valve. A comparator 24 compares the signal from the pressure detector 21 and the pressure setting device 23, and if the signal becomes higher than the set value, the heating steam bypass 9P14 is opened to open the heating steam bypass 9P14. The reheating effect can be enhanced by controlling the pressure loss to be as small as possible.

又、目標圧力設定値発生器20の内部ロジックを第5図
に示す如く、関数演算器25と乗算器26で構成する、
再熱器メタル温度検出器19の信号と関数演算器25に
よシ蒸気加減弁制御信号に対する目標圧力設定値との比
率を出力信号とし、乗算器26にて上記の関数演n器2
5の出力信号と蒸気加減弁制御信号とを乗算することに
ょシ目標圧力設定値を出力信号とすることが可能となる
Further, the internal logic of the target pressure set value generator 20 is composed of a function calculator 25 and a multiplier 26, as shown in FIG.
The ratio of the signal from the reheater metal temperature detector 19 and the target pressure setting value to the steam control valve control signal is outputted to the function calculator 25 as an output signal, and the multiplier 26 outputs the ratio of the target pressure setting value to the steam control valve control signal.
By multiplying the output signal of No. 5 by the steam control valve control signal, it is possible to obtain the target pressure setting value as the output signal.

次に第6図(a)、 、(b)、 (C)、 (d)、
 (e)によって異なる起動モードに於ける、加熱蒸気
圧力Ifヶ注、再熱器出口蒸気温度特性、再熱器メタル
6度特性について前記実施例をもとに説明する。
Next, Fig. 6 (a), , (b), (C), (d),
(e) The heating steam pressure If, reheater outlet steam temperature characteristics, and reheater metal 6 degree characteristics in different startup modes will be explained based on the above embodiment.

通常、原子力発電プラントのタービン負荷上昇率は原子
炉特性が支配的であシ、停止期間等にょシ起動モード、
即ちタービン負荷上昇率を変えて運用する、いわゆる火
力発電フリンi・の連用形態は採られていないことから
タービン負荷上昇率はプラント停止後の全ゆる起動モー
ドに於いてはソ ・一定であると言える。
Normally, the rate of increase in turbine load in a nuclear power plant is dominated by reactor characteristics, such as shutdown periods, start-up modes, etc.
In other words, since the so-called continuous operation mode of thermal power generation is not adopted, in which the turbine load increase rate is varied and operated, the turbine load increase rate is assumed to be constant in all startup modes after the plant is shut down. I can say it.

従って、再熱器メタル温度が比較的高温に保持された状
態からの起動に於いては幌匿変化烏が小さいことから、
加熱蒸気圧力を相対的に低負荷時に於いて全圧力に設定
することによシ再熱による効率向上が期待出来る。
Therefore, when starting from a state where the reheater metal temperature is maintained at a relatively high temperature, the hood change is small.
By setting the heating steam pressure to full pressure at relatively low loads, it is expected that efficiency will be improved by reheating.

例えば、第6図(a)にタービン負荷と目標加熱蒸気圧
力特性に示すA II 、n B +″の如く初期メタ
ル温度から関数発生器により選択されたとすると、第6
図’(b)ツタ−ビン負荷上昇パターンにて蒸気り−ビ
ンが起動されるとすると、加熱蒸気圧力の起動時間特性
は第6図(C)の如くとなシ、再熱器出口蒸気温度は第
6図(d)の如E特性となるが、再熱器メタル温度はメ
タルの熱谷駄、及び初期メタル温度の差異によフ僅かな
がらの時間遅れを伴なうことから加熱蒸気圧力上昇過程
の温度変化率は起動モード″′A”、B”に於いて同程
度のメタル一度変化率とすることが達成出来る。以上の
ことから幅度変化率に伴う再熱器7の熱応力金全ゆる駆
動モードにて一定とすることができる。
For example, if A II , n B +'' is selected by the function generator from the initial metal temperature as shown in the turbine load and target heating steam pressure characteristics shown in FIG.
Assuming that the steam bin is started in the turbine bin load increase pattern shown in Figure 6(b), the startup time characteristics of the heating steam pressure will be as shown in Figure 6(C), and the steam temperature at the outlet of the reheater. is the E characteristic shown in Figure 6(d), but the reheater metal temperature is accompanied by a slight time delay due to the heat valley of the metal and the difference in the initial metal temperature, so the heating steam pressure The rate of temperature change during the rising process can be achieved to be the same rate of change once in the starting modes ``'A'' and ``B.'' It can be constant in all drive modes.

他の実施例として、構造強度面から再熱器よりも低圧タ
ービンが隘路となる場合には低圧タービンメタルに温度
検出器19′を後者することによシ本発明の目的が達成
される。又、初期メタル温度検出器19.19’に代る
ものとして高圧タービンメタル一度或いは停止時+lJ
j等の信号から設定することも可能であるが、前者の高
圧タービンのメタル温度信号を用いると、熱容量の差異
によって温度特性が異なるため適正な制御が困難である
As another embodiment, when the low-pressure turbine is more of a bottleneck than the reheater in terms of structural strength, the object of the present invention can be achieved by placing the temperature sensor 19' in the low-pressure turbine metal. In addition, as an alternative to the initial metal temperature detector 19.19', the high pressure turbine metal temperature sensor 19.
It is also possible to set from signals such as j, etc., but if the former metal temperature signal of the high pressure turbine is used, appropriate control is difficult because the temperature characteristics differ depending on the difference in heat capacity.

また後者の停止時間信号を用いると、停止モード、例え
ば停止後、真空破壊されたかどうか等の差異によち同一
イ菫止時間に対してメタル温度特性に差異を生ずること
から、適性な圧力設足1d号が侍難いという不具合があ
る。 ゛ 前iピの実施例では、刀口減弁伺」御装置11の出力信
号を圧力設定値演算器20に入力せしめゐように構成し
たが、タービン負荷出力信号を圧力設定値演算器20に
入力せしめるように構成することもできる。
In addition, if the latter stop time signal is used, the metal temperature characteristics will differ for the same stop time depending on the stop mode, for example, whether the vacuum is broken after stopping, etc., so it is difficult to set the appropriate pressure. There is a problem that leg number 1d is difficult to use. In the embodiment of the previous I-P, the output signal of the control device 11 was input to the pressure set value calculator 20, but the turbine load output signal was input to the pressure set value calculator 20. It can also be configured to force the user to do so.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明は再熱式蒸気原動機プラン
トの再熱器加熱用蒸気管路に加熱蒸気制御弁を設け、こ
の加熱蒸気制i卸弁を開閉制御卸する加熱蒸気量1lI
IJ御装置f:設置した再熱器制御装置において、上d
ピの加熱蒸気量制御装置内に、(a)蒸気加減弁制御装
置の出力信号と初ル」メタル感涙検出信号と倉入力信号
とする圧力設定値演算器と、(b)上記圧力設定値演算
器の出力信号と、加熱蒸気制御弁出口側圧力検出信号と
の比較器を設け、上記比較器の出力d号によって加熱蒸
気制御Jf’を自動的に開閉制御せしめるように構成す
ることにより、すべての起動モードにおける再熱S−?
低圧タービンのメタル温度変化率を一定ならしめて、温
度変化による過大な熱応力の発生を防止することができ
、この結呆安全に再熱器出口蒸気温度を高め得るため蒸
気原動機プラントの熱効率向上、耐久性向上および信頼
性向上に貢献するところ多大である。
As described in detail above, the present invention provides a heating steam control valve in the steam line for heating the reheater of a reheating type steam power plant, and controls the opening and closing of the heating steam control valve to control the amount of heating steam 1lI.
IJ control device f: In the installed reheater control device,
In the heating steam amount control device of the pipe, (a) a pressure set value calculator which uses the output signal of the steam control valve control device, the first metal tear detection signal and the warehouse input signal, and (b) the above pressure set value calculation By providing a comparator between the output signal of the steam generator and the pressure detection signal on the outlet side of the heating steam control valve, and configuring the heating steam control Jf' to be automatically opened and closed by the output d of the comparator, all Reheat S-? in startup mode?
By keeping the metal temperature change rate of the low-pressure turbine constant, it is possible to prevent the generation of excessive thermal stress due to temperature changes, and the steam temperature at the reheater outlet can be safely raised, improving the thermal efficiency of steam power plants. This greatly contributes to improved durability and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子カタービン回シの系統図、第2図は従来技
術における再熱器制御11]装置の系統図、第3図(a
)、 (b)はその性能特性を示す回器である。第4図
は本発明の再熱器制御装置を備えた蒸気原動機プラント
の一例ケ示す系統図、第5図は同じく圧力設定値演算器
の構成の一例を示す系統図である。第6図(a)、 (
b)、、 (c)’、 (d)、 (e)はそrしぞれ
前記実施例における負荷特性を説明するだめの図表であ
る。 1・・・原子炉、又は蒸気発生器、2・・・主蒸気へラ
ダー管、3・・・蒸気加減弁、4・・・高圧タービン、
5・・・クロスアラウンド管、6・・・湿分々配器、7
・・・、Fi+熱器、8・・・低圧タービン、9・・・
仮水容、10・・・給水加熱器、11・・・然気加妓弁
制御装置、12・・・加熱蒸気t tjlJ御装置、1
3・・・加熱蒸気制御弁、14・・・加熱蒸気バイパス
弁、15・・・圧力検出器、16・・・演算器、17・
・・圧力、演出器、18・・・比較器、20・・・圧力
設定値演算器、21・・・圧力、炭田器、22・・・比
較器、23・・・圧力設定器、24・・・比較器、25
・・・関数演算器、26・・・乗算器。 代理人 弁理士 秋本正実 弔2図 17
Figure 1 is a system diagram of an atomic turbine rotor, Figure 2 is a system diagram of a reheater control system in the prior art, and Figure 3 (a
), (b) are circuits showing its performance characteristics. FIG. 4 is a system diagram showing an example of a steam motor plant equipped with the reheater control device of the present invention, and FIG. 5 is a system diagram showing an example of the configuration of a pressure set value calculator. Figure 6(a), (
b), (c)', (d), and (e) are charts for explaining the load characteristics in the above embodiment, respectively. 1... Nuclear reactor or steam generator, 2... Ladder pipe to main steam, 3... Steam control valve, 4... High pressure turbine,
5...Cross-around pipe, 6...Moisture divider, 7
..., Fi+heater, 8...low pressure turbine, 9...
Temporary water container, 10... Feed water heater, 11... Natural air intake valve control device, 12... Heating steam ttjlJ control device, 1
3... Heating steam control valve, 14... Heating steam bypass valve, 15... Pressure detector, 16... Arithmetic unit, 17...
...Pressure, director, 18...Comparator, 20...Pressure setting value calculator, 21...Pressure, Sumida device, 22...Comparator, 23...Pressure setting device, 24. ... Comparator, 25
...Function operator, 26...Multiplier. Agent Patent Attorney Masami Akimoto 2 Figure 17

Claims (1)

【特許請求の範囲】 1、再熱式蒸気原動機プラントの再熱器加熱用蒸気管路
に加熱蒸気1fflJ#弁を設け、この加熱蒸気制御弁
を開閉制御する加熱蒸気量制御装置を設置した再熱器制
御装置において、上記の加熱蒸気量制御装置内に、(→
蒸気加減弁制御装置の出力信号と、初期メタル妃匿検出
信号とを入力1L号とする圧力設定値演算器、及び、(
b)上記圧力設定+に演算器の出力信号と、刀ロ熱蒸気
制御弁出ロ側圧力検出信号との比較器を設け、上記比較
器の出力18号によって加熱蒸気′1IiIIl卸弁全
自動的に開閉7ftlJ脚せしめるように構成したこと
を特徴とする再熱器制御装置。 2.4J記の加熱蒸気制御弁と並列にバイパス弁を接続
し、Ail記の加熱蒸気制岬弁出ロ側圧力検出信号と圧
力設足器信号との比較演算信号によって上記バイパス弁
を制御するようにイ1与成したことを特徴とする特許請
求の範囲第1項に記載の再熱器制御装置。 3、前d己の圧力設定値演算器は、(C) rJjJ記
の初期メタル温度検出信号−を入力信号とする関数演算
器と、(d)上at関数演算器の出力信号と、前記然気
力日減弁制御装置の出力信号とを乗算する乗算器とt備
菟たものであることを特徴とする特許請求の範囲第2項
に記載の再熱器制御装置。 4、前dピの初期メタルd度検出器は、再熱器に設置し
たものであることを特徴とする特許請求の範囲第3項に
記載の再熱器制御装置。 5、前aピのα期メタル温度検出器は、低圧タービンに
設置したものであることを特徴とする時計64求の範囲
第3項に記載の再熱器1h1」御装置。
[Claims] 1. A heating steam 1fflJ# valve is installed in the steam pipe for heating the reheater of a reheating steam power plant, and a heating steam amount control device is installed to control the opening and closing of this heating steam control valve. In the heater control device, in the heating steam amount control device, (→
a pressure set value calculator whose inputs are the output signal of the steam control valve control device and the initial metal concealment detection signal, and (
b) A comparator is installed between the output signal of the calculator and the pressure detection signal on the output side of the hot steam control valve at the pressure setting +, and the output No. 18 of the comparator sets the heating steam '1IiIIIl wholesale valve fully automatically. A reheater control device characterized in that the reheater control device is configured to have 7ftlJ legs that can be opened and closed. 2. Connect a bypass valve in parallel with the heating steam control valve described in 4J, and control the bypass valve by a comparison calculation signal between the heating steam control valve outlet side pressure detection signal and the pressure equipment signal described in Ail. 1. The reheater control device according to claim 1, wherein: 3. The pressure setting value calculator of the previous d is composed of (C) a function calculator which takes as an input signal the initial metal temperature detection signal described in rJjJ, (d) the output signal of the above at function calculator, and the above. 3. The reheater control device according to claim 2, further comprising a multiplier for multiplying the output signal of the energy reduction valve control device. 4. The reheater control device according to claim 3, wherein the initial metal d degree detector of the front dpi is installed in the reheater. 5. The reheater 1h1 control device according to item 3 of the clock 64 request, characterized in that the α-phase metal temperature detector in the previous step A is installed in a low-pressure turbine.
JP12953283A 1983-07-18 1983-07-18 Control device for reheater Pending JPS6022006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12953283A JPS6022006A (en) 1983-07-18 1983-07-18 Control device for reheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12953283A JPS6022006A (en) 1983-07-18 1983-07-18 Control device for reheater

Publications (1)

Publication Number Publication Date
JPS6022006A true JPS6022006A (en) 1985-02-04

Family

ID=15011840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12953283A Pending JPS6022006A (en) 1983-07-18 1983-07-18 Control device for reheater

Country Status (1)

Country Link
JP (1) JPS6022006A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585412A (en) * 1981-06-30 1983-01-12 Hitachi Ltd Controller for steam turbine plant with reheater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585412A (en) * 1981-06-30 1983-01-12 Hitachi Ltd Controller for steam turbine plant with reheater

Similar Documents

Publication Publication Date Title
CA1068492A (en) Combined gas turbine and steam turbine power plant
US5301499A (en) Overspeed anticipation and control system for single shaft combined cycle gas and steam turbine unit
US5042246A (en) Control system for single shaft combined cycle gas and steam turbine unit
JPS61107004A (en) Controller for temperature of outlet of heat recovery steam generator for complex cycle generation plant
EP0908603B1 (en) Single shaft combined cycle plant
US4402183A (en) Sliding pressure flash tank
US6405537B1 (en) Single shaft combined cycle plant and operating thereof
US6220014B1 (en) Single shaft combined cycle plant and operating method thereof
CA1138657A (en) Control system for steam turbine plants including turbine bypass systems
JPS6022006A (en) Control device for reheater
US4338789A (en) Method of varying turbine output of a supercritical-pressure steam generator-turbine installation
JPH03267509A (en) Control method of reheating steam turbine
JP3792387B2 (en) Steam turbine plant
JPS642762B2 (en)
JPH0814012A (en) Control device for composite plant
JPS60228711A (en) Turbine bypass control device for combined cycle electric power plant
CA1163814A (en) Method of varying turbine output of a supercritical- pressure steam generator-turbine installation
JP3056880B2 (en) Feedwater heater controller
JPH01285606A (en) Method and device of starting 2-stage reheat type steam turbine plant
JPS63194110A (en) Once-through boiler
EP1455056A1 (en) Single shaft combined cycle plant and operating method thereof
JPS61118508A (en) Control device for recirculating flow of feed pump
JPH0231765B2 (en) KONBAINDOSAIKURUPURANTONOSEIGYOSOCHI
JP2523493B2 (en) Turbin bypass system
JPS6093205A (en) Method and device for controlling dry heater system of generating plant