JPH0814012A - Control device for composite plant - Google Patents

Control device for composite plant

Info

Publication number
JPH0814012A
JPH0814012A JP14313994A JP14313994A JPH0814012A JP H0814012 A JPH0814012 A JP H0814012A JP 14313994 A JP14313994 A JP 14313994A JP 14313994 A JP14313994 A JP 14313994A JP H0814012 A JPH0814012 A JP H0814012A
Authority
JP
Japan
Prior art keywords
steam
turbine
bypass
flow rates
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14313994A
Other languages
Japanese (ja)
Other versions
JP2999122B2 (en
Inventor
Osamu Wakazono
修 若園
Yoshiyuki Kita
良之 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6143139A priority Critical patent/JP2999122B2/en
Publication of JPH0814012A publication Critical patent/JPH0814012A/en
Application granted granted Critical
Publication of JP2999122B2 publication Critical patent/JP2999122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Abstract

PURPOSE:To equalize steam flow rates flowing into a turbine by providing first and second steam bypassing means and a bypass quantity adjusting means for equalizing the bypass steam amounts of the first and second steam bypassing means to each other. CONSTITUTION:When exhaust heat recovery boilers (2A and 2B) are added or partially stopped, first and second steam bypassing means are linkagedly controlled so as not to cause a difference between steam flow rates of high and middle pressure turbines 3H and 31. That is, equalizing high and middle pressure turbine bypass flow rates can control a flow rate into a steam turbine. Also equalizing high and middle pressure turbine bypass flow rates can equalize high pressure steam flow rates from the exhaust heat recovery boilers (2A and 2B) and an exhaust heat steam flow rate. High and middle pressure turbine flow rates are the totals of the high pressure and reheat steam flow rates flowing into the steam turbine respectively, equalizing high and middle pressure turbine flow rates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数のガスタービン,
複数の排熱回収ボイラと再熱蒸気サイクルを構成する1
基の蒸気タービンが設置されたガスタービン・蒸気ター
ビン複合プラントにおいて、排熱回収ボイラを追加投入
または一部停止する際に排熱回収ボイラから蒸気タービ
ンへ流入する高圧蒸気と再熱蒸気の流量制御に関するも
のである。
This invention relates to a plurality of gas turbines,
Configure multiple heat recovery steam generators and reheat steam cycle 1
Flow control of high-pressure steam and reheated steam flowing from the exhaust heat recovery boiler to the steam turbine when the exhaust heat recovery boiler is additionally charged or partially stopped in the gas turbine / steam turbine combined plant in which the basic steam turbine is installed It is about.

【0002】[0002]

【従来の技術】図4は、一例として2系列のガスタービ
ンおよび再熱式排熱回収ボイラと1基の蒸気タービンを
備えた複合プラントを示す概略系統図である。
2. Description of the Related Art FIG. 4 is a schematic system diagram showing, as an example, a complex plant equipped with two series of gas turbines, a reheat type exhaust heat recovery boiler and one steam turbine.

【0003】2系列のうちの一方、例えばA系列のガス
タービン(1A)の排ガスがA系列の排熱回収ボイラ
(2A)に導入されることにより、蒸発器(6A)で蒸
気が発生し過熱器(4A)で過熱される。系列の起動時
および停止操作時は、高圧逆止弁(8A),高圧蒸気止
弁(9A)は閉じているので、発生蒸気は高圧タービン
バイパス弁(7A)を経由して低温再熱蒸気管に導か
れ、再熱器(5A)に入る。また中圧逆止弁(11A),
再熱蒸気止弁(12A)が閉じているので、再熱蒸気は中
圧タービンバイパス弁(10A)を経由して復水器にダン
ブされる。B系列についても同様である。
Exhaust gas from one of the two series, for example, the A series gas turbine (1A) is introduced into the A series exhaust heat recovery boiler (2A), whereby steam is generated in the evaporator (6A) and superheated. Overheated in vessel (4A). Since the high-pressure check valve (8A) and the high-pressure steam stop valve (9A) are closed at the time of starting and stopping the series, the generated steam passes through the high-pressure turbine bypass valve (7A) and the low-temperature reheat steam pipe. And enter the reheater (5A). In addition, the medium pressure check valve (11A),
Since the reheat steam stop valve (12A) is closed, the reheat steam is dumped to the condenser via the intermediate pressure turbine bypass valve (10A). The same applies to the B series.

【0004】一方通常運転時は、各逆止弁(8A),(8B),(1
1A),(11B),(13A),(13B) および蒸気止弁(9A),(9B),(12
A),(12B) 、排気止弁(14A),(14B) は全開し、各タービ
ンバイパス弁(7A),(7B),(10A),(10B) が全閉しているた
め、高圧蒸気は高圧蒸気止弁(9A),(9B)出口で
合流し高圧ガバナ弁(15)を通って高圧タービン(3
H)を駆動し、再熱蒸気は再熱蒸気止弁(12A),(12B) 出
口で合流し中圧ガバナ弁(16)を通って中圧タービン
(3I)を駆動する。
On the other hand, during normal operation, each check valve (8A), (8B), (1
1A), (11B), (13A), (13B) and steam stop valve (9A), (9B), (12
A), (12B), exhaust stop valves (14A), (14B) are fully open, and turbine bypass valves (7A), (7B), (10A), (10B) are fully closed, so high pressure steam Of the high pressure steam stop valves (9A) and (9B) merge at the outlets of the high pressure turbine (3) through the high pressure governor valve (15).
H) is driven, and the reheated steam joins at the reheated steam stop valves (12A), (12B) outlets and drives the intermediate pressure turbine (3I) through the intermediate pressure governor valve (16).

【0005】[0005]

【発明が解決しようとする課題】前記のような複合プラ
ントでは運転方式の切替が必要となる。すなわち、系列
起動時(たとえばA系列が 100%負荷運転中にB系列を
追加起動する場合)から通常運転へ移行する過渡状態に
おいては、各蒸気止弁を開き各タービンバイパス弁を徐
々に閉じる制御が必要であり、逆に通常運転から系列停
止する時(たとえばA,B系列 100%負荷運転中にB系
列のみ停止する場合)には、各蒸気止弁が全開のままで
各タービンバイパス弁を徐開する制御が必要である。
In the complex plant as described above, it is necessary to switch the operation system. In other words, in the transient state in which the system shifts from normal operation (for example, when the B series is additionally started during 100% load operation) to normal operation, each steam stop valve is opened and each turbine bypass valve is gradually closed. On the contrary, when the series stop from the normal operation (for example, when only the B series is stopped during A, B series 100% load operation), each steam stop valve remains fully open and each turbine bypass valve is opened. Control to gradually open is required.

【0006】これらの操作中に、高圧タービン(3H)
と中圧タービン(3I)を流れる蒸気流量の差が過大に
なると、蒸気タービン内の圧力分布が正常状態からずれ
るので、スラストが過大となったり、一部のタービンブ
レードの負荷が大きくなって蒸気タービンを損傷したり
する可能性がある。蒸気タービン自身に流量調整の機能
をもたせることは困難であるから、各タービンバイパス
弁によって蒸気タービンの蒸気流量を制御する必要があ
る。
During these operations, the high pressure turbine (3H)
If the difference in the flow rates of steam flowing between the steam turbine and the intermediate pressure turbine (3I) becomes too large, the pressure distribution inside the steam turbine will deviate from the normal state, so the thrust will become too large and the load on some turbine blades will become large It may damage the turbine. Since it is difficult for the steam turbine itself to have the function of adjusting the flow rate, it is necessary to control the steam flow rate of the steam turbine by each turbine bypass valve.

【0007】[0007]

【課題を解決するための手段】本発明者は、前記従来の
課題を解決するために、複数のガスタービンと、それら
複数のガスタービンの後流側にそれぞれ設けられ、過熱
器および再熱器を有する排熱回収ボイラと、それら複数
の排熱回収ボイラから高圧蒸気が供給される高圧タービ
ンおよび再熱蒸気が供給される中圧タービンを有する1
基の蒸気タービンとを備えた複合プラントにおいて、上
記過熱器の出口を上記再熱器の入口に連通する第1の蒸
気バイパス手段と、上記再熱器の出口を復水器の入口に
連通する第2の蒸気バイパス手段と、上記第1および第
2の蒸気バイパス手段のバイパス蒸気量を互いに等しく
するバイパス量調節手段とを備えたことを特徴とする複
合プラントの制御装置を提案するものである。
In order to solve the above-mentioned conventional problems, the present inventor has provided a plurality of gas turbines and a superheater and a reheater which are respectively provided on the downstream side of the gas turbines. 1 has a high-pressure turbine to which high-pressure steam is supplied and an intermediate-pressure turbine to which reheated steam is supplied from the plurality of exhaust-heat recovery boilers.
In a combined plant including a base steam turbine, first steam bypass means for communicating the outlet of the superheater with the inlet of the reheater, and communicating the outlet of the reheater with the inlet of the condenser The present invention proposes a control apparatus for a complex plant, comprising a second steam bypass means and a bypass amount adjusting means for making the bypass steam amounts of the first and second steam bypass means equal to each other. .

【0008】[0008]

【作用】本発明においては、排熱回収ボイラを追加投入
または一部停止する場合、高圧タービンと中圧タービン
の蒸気流量に大きな差が発生しないように、第1の蒸気
バイパス手段(高圧タービンバイパス)と第2の蒸気バ
イパス手段(中圧タービンバイパス)の連係をとった制
御を行なう。すなわち、蒸気タービンへの流量を直接制
御するのではなく、高圧タービンバイパス流量と中圧タ
ービンバイパス流量を基本的に等しく制御することによ
って、蒸気タービンへの流量を間接的に制御するのであ
る。
In the present invention, when the exhaust heat recovery boiler is additionally charged or partially stopped, the first steam bypass means (high pressure turbine bypass means) is provided so that a large difference does not occur in the steam flow rate between the high pressure turbine and the intermediate pressure turbine. ) And the second steam bypass means (intermediate pressure turbine bypass). That is, instead of directly controlling the flow rate to the steam turbine, the flow rate to the steam turbine is indirectly controlled by controlling the high pressure turbine bypass flow rate and the medium pressure turbine bypass flow rate to be basically equal.

【0009】高圧タービンバイパス流量と中圧タービン
バイパス流量が等しくなるように制御すれば、その系列
の排熱回収ボイラから蒸気タービン側に流れる高圧蒸気
流量と再熱蒸気流量が等しくなる。一方の通常運転継続
中の排熱回収ボイラの発生蒸気は、全量が蒸気タービン
に導かれているわけであるから、高圧タービン流量は双
方の排熱回収ボイラから蒸気タービンに流れる高圧蒸気
流量の合計であり、中圧タービン流量は双方の排熱回収
ボイラから蒸気タービンに流れる再熱蒸気流量の合計で
ある。したがって上記の制御を行なうことにより、高圧
タービン流量と中圧タービン流量は等しく保たれる。
If the high-pressure turbine bypass flow rate and the medium-pressure turbine bypass flow rate are controlled to be equal, the high-pressure steam flow rate and the reheat steam flow rate flowing from the exhaust heat recovery boiler of the series to the steam turbine side become equal. On the other hand, the entire amount of steam generated by the exhaust heat recovery boiler during normal operation is guided to the steam turbine, so the high pressure turbine flow rate is the sum of the high pressure steam flow rates from both exhaust heat recovery boilers to the steam turbine. The medium-pressure turbine flow rate is the sum of the reheat steam flow rates flowing from both exhaust heat recovery boilers to the steam turbine. Therefore, by performing the above control, the high-pressure turbine flow rate and the medium-pressure turbine flow rate are kept equal.

【0010】上記のように本発明では、高圧タービンバ
イパス流量と中圧タービンバイパス流量が等しくなるよ
うに制御することにより、常にその系統の排熱回収ボイ
ラを流れる高圧蒸気流量と中圧蒸気流量を同一とするこ
とができるので、高圧蒸気タービンと中圧蒸気タービン
に流入する蒸気流量を同一とすることができて、その系
列の排熱回収ボイラの追加投入や停止を安全に行なうこ
とが可能である。
As described above, in the present invention, by controlling the high-pressure turbine bypass flow rate and the medium-pressure turbine bypass flow rate to be equal, the high-pressure steam flow rate and the medium-pressure steam flow rate which always flow through the exhaust heat recovery boiler of the system are controlled. Since they can be the same, the flow rates of steam flowing into the high-pressure steam turbine and the medium-pressure steam turbine can be made the same, and it is possible to safely add or stop the exhaust heat recovery boiler of that series. is there.

【0011】[0011]

【実施例】本発明においては、第1および第2の蒸気バ
イパス手段の蒸気量、すなわち高圧タービンバイパス流
量と中圧タービンバイパス流量が等しくなるように制御
するものであるから、それらの流量を求める必要があ
る。その方法により次に示す実施例が考えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the amounts of steam of the first and second steam bypass means, that is, the high-pressure turbine bypass flow rate and the intermediate-pressure turbine bypass flow rate, are controlled to be equal, so that these flow rates are obtained. There is a need. Depending on the method, the following examples can be considered.

【0012】図1は第1の実施例をB系列のみ取出して
示す系統図である。この実施例は高圧タービンバイパス
流量、中圧タービンバイパス流量をそれぞれ流量計(2
1),(22)で計測する方法である。高圧タービンバ
イパス弁(7B)は、あらかじめ定められたスケジュー
ル(23)によって操作される。計測された各タービン
バイパス流量は比較器(24)で比較され、その差がゼ
ロになるようにコントローラ(25)により中圧タービ
ンバイパス弁(10B)を調節する。このようにして、B
系列の排熱回収ボイラを追加起動または停止する過程に
おいて、バイパスされる高圧蒸気流量と中圧蒸気流量を
常に同一に保持することにより、運転中の排熱回収ボイ
ラおよび蒸気タービンに大きな外乱を与えることなく、
安全に排熱回収ボイラを運転することが可能となる。
FIG. 1 is a system diagram showing the first embodiment by extracting only the B series. In this embodiment, the high-pressure turbine bypass flow rate and the medium-pressure turbine bypass flow rate are respectively measured by a flow meter (2
This is the method of measurement in 1) and (22). The high pressure turbine bypass valve (7B) is operated according to a predetermined schedule (23). The measured turbine bypass flow rates are compared by the comparator (24), and the controller (25) adjusts the intermediate pressure turbine bypass valve (10B) so that the difference becomes zero. In this way, B
In the process of additionally starting or stopping the exhaust heat recovery boiler of the series, by keeping the bypass high-pressure steam flow rate and the intermediate-pressure steam flow rate always the same, a large disturbance is given to the operating exhaust heat recovery boiler and steam turbine. Without
It is possible to safely operate the exhaust heat recovery boiler.

【0013】図2は第2の実施例を前記同様B系列のみ
取出して示す系統図である。この実施例は、高圧タービ
ンバイパス流量と中圧タービンバイパス流量を直接計測
するのではなく、それぞれの蒸気圧力と弁開度から流量
を演算する方式である。すなわち、あらかじめスケジュ
ールされた高圧タービンバイパス弁開度(23)から弁
特性を補正する関数(28)の出力と、計測された高圧
蒸気圧力(26)との積により、高圧タービンバイパス
流量を求める。求められた高圧タービンバイパス流量と
同量の流量を中圧タービンバイパス弁からバイパスする
ためには、乗算器(29)の出力を計測された再熱蒸気
圧力(27)で除し、中圧タービンバイパス弁の弁特性
を関数発生器(31)で補正した信号を、中圧タービン
バイパス弁開度とする制御方式である。
FIG. 2 is a system diagram showing the second embodiment by extracting only the B series as in the above. In this embodiment, the flow rate is calculated from the steam pressure and the valve opening degree of each, instead of directly measuring the high pressure turbine bypass flow rate and the intermediate pressure turbine bypass flow rate. That is, the high-pressure turbine bypass flow rate is obtained by the product of the output of the function (28) for correcting the valve characteristic from the pre-scheduled high-pressure turbine bypass valve opening (23) and the measured high-pressure steam pressure (26). In order to bypass the medium pressure turbine bypass valve at the same flow rate as the obtained high pressure turbine bypass flow rate, the output of the multiplier (29) is divided by the measured reheat steam pressure (27) to obtain the medium pressure turbine. This is a control method in which a signal obtained by correcting the valve characteristic of the bypass valve by the function generator (31) is used as the medium pressure turbine bypass valve opening.

【0014】図3は第3の実施例を前記同様に示す系統
図である。高圧タービンバイパス弁(7B)はあらかじ
め決められたスケジュール(23)によって操作され
る。中圧タービンバイパス弁(10B)は高圧タービンバ
イパス弁のスケジュールまたは実際の開度の関数として
開度を決定する。
FIG. 3 is a system diagram showing the third embodiment as described above. The high pressure turbine bypass valve (7B) is operated according to a predetermined schedule (23). The medium pressure turbine bypass valve (10B) determines the opening as a function of the schedule or actual opening of the high pressure turbine bypass valve.

【0015】なおこれらの実施例を適宜組合わせた方法
でもよい。
A method in which these embodiments are appropriately combined may be used.

【0016】[0016]

【発明の効果】本発明によれば、複数系統のガスタービ
ンおよび排熱回収ボイラと1基の蒸気タービンとが設置
されたガスタービン・蒸気タービン複合プラントにおい
て、高圧蒸気タービンに流入する蒸気流量と中圧蒸気タ
ービンに流入する蒸気流量を同一とすることができる。
したがって、複数系列の排熱回収ボイラの一部を追加起
動したり停止したりする際に、運転中の排熱回収ボイラ
および蒸気タービンに大きな外乱を与えることなく、蒸
気タービン内の圧力分布が正常状態からずれてスラスト
が過大になったり、一部のタービンブレードの負荷が大
きくなってタービンを損傷したりする恐れがない。
According to the present invention, in a gas turbine / steam turbine combined plant in which a plurality of systems of gas turbines and exhaust heat recovery boilers and one steam turbine are installed, the flow rate of steam flowing into the high pressure steam turbine and The steam flow rates into the medium-pressure steam turbine can be the same.
Therefore, when additionally starting or stopping a part of the multiple series of exhaust heat recovery boilers, the pressure distribution in the steam turbine is normally maintained without giving a large disturbance to the operating exhaust heat recovery boiler and the steam turbine. There is no danger that the thrust will become excessive due to deviation from the state, or that some turbine blades will be heavily loaded and will damage the turbine.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の第1実施例を示す系統図であ
る。
FIG. 1 is a system diagram showing a first embodiment of the present invention.

【図2】図2は本発明の第2実施例を示す系統図であ
る。
FIG. 2 is a system diagram showing a second embodiment of the present invention.

【図3】図3は本発明の第3実施例を示す系統図であ
る。
FIG. 3 is a system diagram showing a third embodiment of the present invention.

【図4】図4は2系統のガスタービンおよび再熱式排熱
回収ボイラと1基の蒸気タービンを備えた複合プラント
の一例を示す系統図である。
FIG. 4 is a system diagram showing an example of a combined plant including two gas turbines, a reheat type exhaust heat recovery boiler, and one steam turbine.

【符号の説明】[Explanation of symbols]

(1A),(1B) ガスタービン (2A),(2B) 排熱回収ボイラ (3H) 高圧蒸気タービン (3I) 中圧蒸気タービン (4A),(4B) 過熱器 (5A),(5B) 再熱器 (6A),(6B) 蒸発器 (7A),(7B) 高圧タービンバイパス弁 (8A),(8B) 高圧逆止弁 (9A),(9B) 高圧蒸気止弁 (10A),(10B) 中圧タービンバイパス弁 (11A),(11B) 中圧逆止弁 (12A),(12B) 再熱蒸気止弁 (13A),(13B) 高圧排気逆止弁 (14A),(14B) 高圧排気止弁 (15) 高圧ガバナ弁 (16) 再熱ガバナ弁 (21),(22) 流量計 (23) 高圧タービンバイパス弁開度ス
ケジュール (24) 減算器 (25) コントローラ (26),(27) 圧力計 (28) 関数発生器 (29) 乗算器 (30) 除算器 (31) 関数発生器
(1A), (1B) Gas turbine (2A), (2B) Exhaust heat recovery boiler (3H) High pressure steam turbine (3I) Medium pressure steam turbine (4A), (4B) Superheater (5A), (5B) Re Heater (6A), (6B) Evaporator (7A), (7B) High pressure turbine bypass valve (8A), (8B) High pressure check valve (9A), (9B) High pressure steam stop valve (10A), (10B) ) Medium pressure turbine bypass valve (11A), (11B) Medium pressure check valve (12A), (12B) Reheat steam check valve (13A), (13B) High pressure exhaust check valve (14A), (14B) High pressure Exhaust stop valve (15) High pressure governor valve (16) Reheat governor valve (21), (22) Flow meter (23) High pressure turbine bypass valve opening schedule (24) Subtractor (25) Controller (26), (27) ) Pressure gauge (28) Function generator (29) Multiplier 30) the divider (31) function generator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数のガスタービンと、それら複数のガ
スタービンの後流側にそれぞれ設けられ、過熱器および
再熱器を有する排熱回収ボイラと、それら複数の排熱回
収ボイラから高圧蒸気が供給される高圧タービンおよび
再熱蒸気が供給される中圧タービンを有する1基の蒸気
タービンとを備えた複合プラントにおいて、上記過熱器
の出口を上記再熱器の入口に連通する第1の蒸気バイパ
ス手段と、上記再熱器の出口を復水器の入口に連通する
第2の蒸気バイパス手段と、上記第1および第2の蒸気
バイパス手段のバイパス蒸気量を互いに等しくするバイ
パス量調節手段とを備えたことを特徴とする複合プラン
トの制御装置。
1. A plurality of gas turbines, an exhaust heat recovery boiler having a superheater and a reheater respectively provided on the downstream side of the plurality of gas turbines, and high pressure steam from the plurality of exhaust heat recovery boilers. In a combined plant comprising a supplied high-pressure turbine and a steam turbine having an intermediate-pressure turbine supplied with reheated steam, a first steam communicating an outlet of the superheater with an inlet of the reheater. Bypass means, second steam bypass means for communicating the outlet of the reheater with the inlet of the condenser, and bypass amount adjusting means for making the bypass steam amounts of the first and second steam bypass means equal to each other. A control device for a complex plant, comprising:
JP6143139A 1994-06-24 1994-06-24 Control equipment for complex plant Expired - Lifetime JP2999122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6143139A JP2999122B2 (en) 1994-06-24 1994-06-24 Control equipment for complex plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6143139A JP2999122B2 (en) 1994-06-24 1994-06-24 Control equipment for complex plant

Publications (2)

Publication Number Publication Date
JPH0814012A true JPH0814012A (en) 1996-01-16
JP2999122B2 JP2999122B2 (en) 2000-01-17

Family

ID=15331842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6143139A Expired - Lifetime JP2999122B2 (en) 1994-06-24 1994-06-24 Control equipment for complex plant

Country Status (1)

Country Link
JP (1) JP2999122B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046577A (en) * 2005-08-12 2007-02-22 Hitachi Ltd Reheat steam-turbine plant
JP2015187448A (en) * 2015-07-27 2015-10-29 三菱重工業株式会社 Ship main engine steam turbine installation and ship equipped with the same
CN114856726A (en) * 2022-05-20 2022-08-05 上海交通大学 Method for determining exhaust steam volume flow and humidity of saturated steam turbine in real time

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046577A (en) * 2005-08-12 2007-02-22 Hitachi Ltd Reheat steam-turbine plant
JP4657057B2 (en) * 2005-08-12 2011-03-23 株式会社日立製作所 Reheat steam turbine plant
JP2015187448A (en) * 2015-07-27 2015-10-29 三菱重工業株式会社 Ship main engine steam turbine installation and ship equipped with the same
CN114856726A (en) * 2022-05-20 2022-08-05 上海交通大学 Method for determining exhaust steam volume flow and humidity of saturated steam turbine in real time

Also Published As

Publication number Publication date
JP2999122B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
JPH04232311A (en) Method and device to predict and control excess speed of composite cycle turbine
JP2000161014A (en) Combined power generator facility
EP0908603B1 (en) Single shaft combined cycle plant
EP0900921A2 (en) Hydrogen burning turbine plant
JP2001349207A (en) Combined cycle power generation plant
US5018356A (en) Temperature control of a steam turbine steam to minimize thermal stresses
JPH0370804A (en) Starting of steam cycle in combined cycle plant
CN209978005U (en) Primary frequency modulation control system for secondary reheating unit
JP2999122B2 (en) Control equipment for complex plant
JPH09250306A (en) Cooling device of steam turbine
Peet et al. Development and application of a dynamic simulation model for a drum type boiler with turbine bypass system
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JPH0932512A (en) Steam supply device of steam turbine gland seal
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP3497553B2 (en) Multi-can thermal power plant and operating method thereof
JP2002115807A (en) Driving turbine operation method for boiler feedwater pump, and its operation apparatus
JP2863645B2 (en) Feedwater flow control system for an exhaust gas reburning combined cycle power plant
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JP4014948B2 (en) Multi-axis combined cycle plant and control method thereof
JPH10131721A (en) Gas turbine steam system
JPH0610619A (en) Supply water heating device
JP3056880B2 (en) Feedwater heater controller
JPH01285605A (en) Method and device of starting 2-stage reheat type steam turbine plant
JPH08178205A (en) Controller of boiler
JPS6056110A (en) Control method of ventilator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 14

EXPY Cancellation because of completion of term