JP3613690B2 - Turbine control method and control apparatus - Google Patents

Turbine control method and control apparatus Download PDF

Info

Publication number
JP3613690B2
JP3613690B2 JP30608496A JP30608496A JP3613690B2 JP 3613690 B2 JP3613690 B2 JP 3613690B2 JP 30608496 A JP30608496 A JP 30608496A JP 30608496 A JP30608496 A JP 30608496A JP 3613690 B2 JP3613690 B2 JP 3613690B2
Authority
JP
Japan
Prior art keywords
steam
pressure
stage
turbine
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30608496A
Other languages
Japanese (ja)
Other versions
JPH10148304A (en
Inventor
憲久 和田
英明 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30608496A priority Critical patent/JP3613690B2/en
Publication of JPH10148304A publication Critical patent/JPH10148304A/en
Application granted granted Critical
Publication of JP3613690B2 publication Critical patent/JP3613690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高圧タービンの排気を再熱して低圧タービンの駆動用に供給する加熱器を備えるタービンの制御方法及び制御装置にかかり、特に日負荷変化幅が大きく急速起動の必要性の大きい蒸気タービンに好適なように、複数段再熱方式の加熱器を構成する前段加熱器と後段加熱器との熱交換のバランスを取り、かつ加熱器を熱変形等から保護できるように改良した制御方法及び制御装置に関する。
【0002】
【従来の技術】
蒸気タービン加熱器の加熱蒸気の制御方法として、例えば特開昭63−16409号公報に、第1、第2段加熱器を備えた湿分分離再熱器の出入口温度差及び低圧タービン入口蒸気温度の変化率を検出し、第2段加熱蒸気の制御を行うことが開示されている。この方法では、第1段及び第2段の加熱量を合計して得られた温度を用いて制御することになるため、各段加熱器個別の熱交換バランスは監視出来ない。
【0003】
また、特開平1−230908号公報には、第1段加熱器が故障した場合にこれを停止し、第2段加熱器の圧力設定関数を切り替え、第2段加熱器単独運転を行う方法が開示されている。しかしながら、この方法では第1段加熱器の故障検出による切替え点に至らない異常が生じた場合に第2段加熱器の出入口温度差が大きくなり、また切替え点以上では第1段加熱器を完全に停止させるため、湿分分離加熱器の熱交換量が急激に低下してしまう問題があると考えられる。
【0004】
【発明が解決しようとする課題】
加熱器を有する蒸気タービンにおいて主蒸気を加熱蒸気として用いる場合、高圧タービン出口蒸気が低温であると、加熱器を構成する各段加熱器では、そこに流入した高圧タービン出口蒸気と、主蒸気からなる高温の加熱蒸気との熱交換量が大きく、各段加熱器の出入口で急加熱による温度差が生じ、各段加熱器胴体の熱変形が発生する。これを防止するため、加熱蒸気系統に流量調節機構を設け、蒸気源である主蒸気を減温減圧して後段加熱器に供給し、高圧タービン出口蒸気と加熱蒸気の温度差が規定値内に小さくなるよう制御する必要がある。
【0005】
この制御方法としては、タービン出力により加熱蒸気圧力を設定し、各タービン出力に対する加熱蒸気流量を制御する方法や、この圧力制御設定に対し変化率の制限を設け、タービンの起動停止や負荷変化時の再熱蒸気温度の変化率を緩和する方法がある。
【0006】
この方法は、再熱方式が主蒸気を加熱源とする1段再熱方式であれば、有効であるが、大容量の蒸気タービンに設置した複数段の再熱方式の場合には、前段の加熱器による熱交換量が不明確の状態で加熱蒸気量が制御されるため、後段の加熱器で最適な再熱蒸気温度を得ることは困難である。
【0007】
また、一般的に、蒸気タービンが2段以上の加熱器を有する場合、各段加熱器はそれぞれ受け持つ加熱量を規定して計画されており、故障等により前段の加熱器の熱交換ができなくなった場合には、後段の加熱器では計画以上の被加熱蒸気と加熱蒸気との温度ミスマッチや加熱器出入口温度差が生じることとなる。
【0008】
例えば2段再熱方式において、定常時、温度が192℃の高圧タービン出口蒸気を、第1段加熱器で222℃に、第2段加熱器で264℃に加熱しているならば、この場合、第1加熱器の出入口温度差は222℃−192℃=30℃となり、第2段加熱器の出入口温度差は264℃−222℃=42℃となる。
【0009】
もし、第1段加熱器が動作不良で、第1段加熱器出口蒸気の温度が低下したとすると、その温度低下につれて第2段加熱器の熱バランスが悪化する方向に向かう。ここで第1段加熱器が故障で停止した場合を考えてみる。第2段加熱器では282℃の加熱蒸気により熱交換が行われるとすると、第2段加熱器で加熱に用いる加熱蒸気の温度と、第2段加熱器に流入する蒸気の温度(=第1段加熱器の出口温度)と差は、定常時の282℃−222℃=60℃から、故障停止時には282℃−192℃=90℃に増加することになり、第2段加熱器の熱変形を招くこととなる。
【0010】
本発明は、上記のような事情に鑑みてなされたもので、前段加熱器の出口蒸気の状態量を後段加熱器に導入する加熱蒸気の制御因子として取り入れることにより、最適な温度に再熱して後段加熱器出口から蒸気を供給でき、かつ前段の加熱器の不良動作時あるいは故障停止時には後段の加熱器を保護できるタービンの制御方法及び制御装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、2段以上の再熱方式の蒸気タービンにおいて、高圧タービンの抽気蒸気を第1段加熱器の加熱蒸気源とし、主蒸気の一部を第2段加熱器の加熱蒸気源とした再熱器を設置し高圧タービンの出口蒸気を再熱する場合、タービンの出力または高圧タービンの出口蒸気圧力から高圧タービン出口蒸気の状態量(流量、温度)を算出し、更に第1段加熱蒸気量との熱交換量を計算することにより第1段加熱器の出口温度を算出して、第2段加熱蒸気の必要流量を決定し、加熱蒸気調節弁を制御して、タービンの出力変化に伴う蒸気タービン再熱器出口蒸気の温度変化を緩和する方法である。
【0012】
すなわち、上記目的を達成するために、本発明の第1のタービン制御方法は、蒸気源から蒸気加減弁を通じて供給される主蒸気によって駆動される高圧タービンの出口蒸気(P)を再熱し、この再熱された蒸気(T’)を低圧タービンの駆動用に供給するために、流入した高圧タービン出口蒸気(P)を、高圧タービンから抽出した加熱蒸気としての高圧タービンの抽気蒸気(P)により熱交換して加熱する第1段加熱器と、第1段加熱器で加熱された蒸気(T’)を、蒸気源から加熱蒸気調節弁を介して導入した加熱蒸気としての主蒸気の一部(P)により熱交換して加熱(T’)し、低圧タービンに供給する第2段加熱器とから構成された再熱器を制御する方法であって、(1)高圧タービンの出口蒸気の圧力(P)から該蒸気の温度及び流量を算出し、(2)高圧タービンの抽気蒸気(P)から抽気蒸気(P)の温度及び流量を算出し、(3)高圧タービンの出口蒸気(P)の温度及び流量と高圧タービンの抽気蒸気(P)の温度及び流量とを基に、第1段加熱器に流入した高圧タービンの出口蒸気と第1段加熱器に導入した高圧タービンの抽気蒸気(P)との熱交換により再熱されて流出する第1段加熱器の出口蒸気の温度(T’)を計算し、(4)さらに第1段加熱器の出口蒸気の温度(T’)及び流量と、主蒸気の一部(P)の圧力から算出した温度とから第2段加熱器に導入する該主蒸気の一部(P)の流量を次のように計算する、すなわち(5)該主蒸気の一部(P)の流量は、第1段加熱器の出口蒸気と第2段加熱器に導入した主蒸気の一部(P)と熱交換して流出する第2段加熱器の出口蒸気の温度(T’)との第1段加熱器の出口蒸気との温度差が、第2段加熱器の変形許容量から規定される温度差以下となるような流量として計算し、この流量となるように加熱蒸気調節弁で制御することを特徴とする。
ここで括弧内に示すP、T’等は図面に記載する記号と同じである。
【0013】
ところで、蒸気タービンでは飽和蒸気を用いるので、蒸気温度は蒸気圧力により一義的に決まる。また蒸気流量は、流路断面積が一定ならば、蒸気圧力に比例するので、蒸気経路が固定されていると、蒸気流量は蒸気圧力に比例することになる。したがって蒸気圧力から蒸気温度、蒸気流量を算出することができる。
【0014】
上記のような加熱蒸気の制御方法を用いることにより、第1段加熱器の故障で熱交換量が低下したような場合でも、第2段加熱蒸気流量も絞り込むように制御が自動的に行われ、後段の加熱器の過剰な加熱が発生することを防止することができる。
【0015】
また、本発明の第2のタービン制御方法は、上記第1の蒸気タービン再熱器の制御方法と同様に、蒸気源と、蒸気加減弁と、高圧タービンと、第1段加熱器及び第2段加熱器からなる加熱器と、低圧タービンとから構成されたタービンの制御方法であって、各タービン出力に応じて規定される第2段加熱器に供給する第2段加熱蒸気量を供給するために、(1)高圧タービン出口蒸気圧力(P)に対して第2段加熱器での熱交換に最適な加熱蒸気量に対応する蒸気圧力を求める関数を用いて高圧タービン出口圧力(P)を基に第2段加熱蒸気圧力(P2a)設定値を設定し、(2)さらに高圧タービン抽気蒸気圧力(P)に対して第2段加熱器での熱交換に最適な加熱蒸気量に対応する蒸気圧力を求める関数を用いて第1段加熱蒸気流量(P)を基に第2段加熱蒸気圧力(P2b)設定値を設定し、(3)高圧タービン出口蒸気圧力(P)から設定した第2段加熱蒸気圧力(P2a)設定値と、第1段加熱蒸気圧力(P)から設定した第2段加熱蒸気圧力(P2b)設定値とを比較し、双方の設定値(P2a、P2b)のうち低い方の値を優先して第2段加熱蒸気圧力最終設定値(P2c)とし、(4)該最終設定値に第2加熱蒸気圧力がなるようフィードバック制御により加熱蒸気調節弁の開度を制御することを特徴とする。
ここで括弧内に示すP、T’等は図2に記載する記号と同じである。
【0016】
上記各タービンの制御方法によれば、2段以上の再熱方式を持つ蒸気タービンにおいて、タービンの各出力における加熱蒸気流量の制御を、前段の加熱蒸気の状態量も監視しながら行い、最適な再熱蒸気温度を提供すると共に、前段の加熱蒸気系統の故障等による、後段の加熱器単独による運転状態を防ぎ、高圧タービンの排気と加熱蒸気との温度差を過剰に大きい温度ミスマッチを防止し、また後段加熱器出入口温度差による該加熱器の熱変形による損傷を防止できる。
【0017】
上記目的を達成するために、本発明のタービン制御装置は、高圧タービンの抽気蒸気を用いて高圧タービンの出口蒸気を加熱する第1段加熱器と、高圧タービンに供給する主蒸気の一部を用いて第1段加熱器の出口蒸気を加熱する第2段加熱器とを有する加熱器の、主蒸気の一部の流量を調節する加熱蒸気調節弁の開度を制御する制御装置において、高圧タービンの抽気蒸気の状態量と、高圧タービンの出口蒸気の状態量とに基づいて、加熱蒸気調節弁の開度を制御するものである。
【0018】
すなわち、本発明のタービン制御装置は、高圧タービンの出口蒸気の状態量の信号に第1の関数を乗じて第1要求状態量設定値信号を出力する第1要求状態量設定器と、高圧タービンの抽気蒸気の状態量の信号に第2の関数を乗じて第2要求状態量設定値信号を出力する第2要求状態量設定器と、第1及び第2要求状態量設定器の各出力信号の何れか値が小さい信号を出力する低値優先選択器とを有し、低値優先選択器の出力信号に基づいて加熱蒸気調節弁の開度を制御することを特徴とする。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面により説明する。
図1は、本発明によるタービン制御方法を採用した蒸気タービンプラントの構成を示す図である。この蒸気タービンプラントは、蒸気発生器1と、蒸気発生器1からタービンに供給する主蒸気2流量を加減する蒸気加減弁3と、主蒸気2の熱エネルギーをタービンロータの回転エネルギーに変換する高圧タービン4と、高圧タービン4の排気である高圧タービン出口蒸気5を再熱する湿分分離加熱器6と、この湿分分離加熱器6の構成要素である湿分分離器7、第1段加熱器9及び第2段加熱器11と、湿分分離加熱器6で再熱された蒸気の熱エネルギーを回転エネルギーに変換する低圧タービン13と、高圧タービン4及び低圧タービン13により駆動される発電機14と、低圧タービン13の排気蒸気を復水する復水器15と、復水を昇温し蒸気発生器1へ給水する給水加熱器16とを備えている。
【0021】
ここで蒸気加減弁3により、蒸気発生器1からタービンへ供給する主蒸気2流量を加減することにより、タービンの速度、入口蒸気圧力、出力等が制御されることになる。
【0022】
さらに、この蒸気タービンプラントには、湿分分離加熱器6に関わる加熱蒸気系として、高圧タービン4の出口蒸気5の圧力(P)を検出する圧力検出器18と、高圧タービン4から第1段加熱器9に供給される高圧タービン4の抽気蒸気8の圧力(P)を検出する圧力検出器19と、蒸気発生器1から発生した主蒸気の一部であって第2段加熱器11に供給される蒸気20の流量を調節する加熱蒸気調節弁17及び蒸気20の圧力(P)を検出する圧力検出器21と、これら各圧力検出器21及び発電機14の出力信号値を基に加熱蒸気調節弁17を制御する制御装置22と、が設けられている。
【0023】
蒸気発生器1で発生した主蒸気2は、蒸気加減弁3で流量制御された後に、高圧タービン4に流入する。高圧タービン4で仕事をした高圧タービン出口蒸気5は湿分分離加熱器6の湿分分離器7で湿分を分離し、第1段加熱器9及び第2段加熱器11で再加熱され、低圧タービン13に導かれ、これらのタービンにより回転される発電機14により発電が行われる。低圧タービン13で仕事をした蒸気は復水器15へ導かれ復水となり、復水は給水加熱器16で加熱され蒸気発生器1へ戻される。
【0024】
一方、高圧タービン4の抽気蒸気8は加熱蒸気として第1段加熱器9に導かれ、ここで高圧タービン4出口から流入し湿分分離器7を通過した蒸気5を加熱し、また蒸気発生機1から送給される主蒸気2の一部は、加熱蒸気として蒸気調節弁1で流量制御されて第2段加熱器11に導かれ、ここで第1段加熱器9から流入する蒸気10を加熱する。なお、高圧タービン4の抽気蒸気取り出し点はプラント全体の熱バランスにより決定する。
【0025】
図2は、第2段加熱器11へ供給する加熱蒸気の流量を調節する蒸気調節弁17を制御する制御装置22の制御ブロック図である。制御装置22は、次にそれぞれ詳細を述べるが、第1要求圧力設定器31と、第2要求圧力設定器32と、低値優先選択器33と、演算器34と、比例積分演算器35と、から構成されている。
【0026】
第1要求圧力設定器31は、高圧タービン4の出口蒸気5の圧力を検出する圧力検出器18の信号Pを入力し、信号Pの値を基に第1要求圧力設定値信号P2aを算出する。第2要求圧力設定器32は、第1段加熱器9の加熱蒸気である高圧タービン4の抽気蒸気8の圧力検出器19の信号Pを入力し、信号Pの値を基に第2要求圧力設定値信号P2bを算出する。低値優先選択器33は、第1要求圧力設定値信号P2aと第2要求圧力設定値信号P2bとを比較し、低い方の値を設定値として出力する。演算器34は、低値優先選択器33から出力された加熱蒸気設定圧力P2cと、加熱蒸気調節弁17で調節された加熱蒸気20の圧力検出器21の信号Pとの偏差信号△Pを演算する。そして、比例積分演算器35は、偏差信号△Pに基づいて加熱蒸気調節弁17に弁開度指令信号SLを出力して該弁開度を調整して、圧力検出器21の検出圧力Pが低値優先選択器33により設定した設定圧力P2cとなるように制御する。
【0027】
タービンを起動し負荷上昇すると、蒸気加減弁3の開度が大きくなり、高圧タービン4に供給される蒸気量が増大する。これに伴い、高圧タービン4の出口蒸気5の圧力Pが上昇し、この圧力信号Pにより第1要求圧力設定器31から第1要求圧力設定値信号P2aが出力される。第1要求圧力設定器31では高圧タービン4の出口蒸気5の圧力Pに対して第2段加熱器11での熱交換量に最適な加熱蒸気流量が得られるよう、関数により第1要求圧力設定値信号P2aを規定している。一方、タービンの負荷上昇とともに高圧タービン4の抽気蒸気8の圧力Pも上昇し、この圧力信号Pにより第2要求圧力設定器32から第2要求圧力設定値信号P2bが出力される。第2要求圧力設定器32では高圧タービン4の抽気蒸気8の圧力Pに対して第2段加熱器11での熱交換量に最適な加熱蒸気流量が得られるよう、関数により第2要求圧力設定値信号P2bを規定している。第1要求圧力設定値信号P2a及び第2要求圧力設定値信号P2bは低値優先選択器33に入力され、圧力の低い方が選択されて加熱蒸気設定圧力P2cとして出力される。そしてこの加熱蒸気設定圧力P2cと加熱蒸気20の圧力検出器21で検出された圧力信号Pとの偏差信号△Pが演算34で演算され出力される。この偏差信号△Pに基づいて設定圧力に検出圧力が制御されるよう、比例積分演算器35から加熱蒸気調節弁17に弁開度指令信号SLが出力され、規定の加熱蒸気流量を得るものである。
【0028】
ここで最適な加熱蒸気量を提供する為の第1要求圧力設定器31及び第2要求圧力設定器32の関数の設定方法を説明する。
【0029】
図3(a)に第1段加熱器9及び第2段加熱器11を通過する際の蒸気温度特性を示す。第1段加熱器9において高圧タービン出口蒸気温度T(例えば192℃)と第1段加熱蒸気温度T(236℃)とが熱交換されて第1段加熱器出口温度T’(222℃)が得られる。第2段加熱器11において、第1段加熱器出口温度T’(222℃)と第2段加熱蒸気温度T(282℃)とが熱交換され第2段加熱器出口温度T’(264℃)が得られる。第1段加熱器9の出入口温度差△T(30℃)は、一般的に高圧タービン4出口蒸気流量と高圧タービン4抽気蒸気流量とが比例関係にあることから一義的に決まる。第2段加熱器11の出入口温度差△T(42℃)は加熱蒸気流量により決定するので、制御装置22で制御できる。これらから第1段加熱器9の出入口温度差△T及び第2段加熱器11の出入口温度差△Tを規定値以内に、例えばそれぞれ55℃以内となるように設定することができる。
【0030】
図4(a)に本発明の制御方法により加熱蒸気圧力を設定して、加熱蒸気圧力制御を行った際の温度特性の一例を示す。タービンの出力上昇に応じ、各蒸気温度は上昇するが、高圧タービン4出口蒸気温度Tと第1段加熱器9出口温度T’と第2段加熱器11出口温度T’との関係による第1段加熱器9の出入口温度差△T及び第2段加熱器11の出入口温度差△Tが全負荷帯を通して加熱器の熱変形に問題とならない規定値内になるような温度特性が得られる。
【0031】
図3(b)は、本発明の制御方法を用いない場合で、仮に運転員の誤操作や故障等により第1段加熱蒸気9の供給量が減少した場合の温度特性を示す。第1段加熱蒸気量の減少に伴い蒸気圧力P、温度Tが低下し、第1段加熱器9による加熱量が少なくなるため、例えば第1段加熱器9出口温度T’が200℃になると、第2段加熱蒸気温度T(282℃)との温度差が大きくなり、また第2段加熱器11の出入口温度差△Tも大きくなって、加熱器に過剰な熱応力が発生し、熱変形が生じる。図4(b)は上記図3(b)に示すような不良状態をタービン出力に対応して示した図である。
【0032】
図3(c)は本発明の制御方法を実施して、図3(b)と同様に第1段加熱蒸気の供給量が減少した場合の温度特性を示す。第1段加熱蒸気の供給量の減少に伴い、第1加熱蒸気圧力信号Pが低下し、第2要求圧力設定器32からの第2要求圧力設定値信号P2bも減少し、最終的に加熱蒸気調節弁17により加熱蒸気流量が絞り込まれる。加熱蒸気流量の低下に伴い第2段加熱蒸気温度Tも低下して第2段加熱器11に供給されるため、第1段加熱器出口温度T’と第2段加熱蒸気温度Tとの温度差(T−T’)は小さく抑えられ、また第2段加熱器11の出入口温度差△Tも小さくなり、加熱器の熱変形の発生を防ぐことが出来る。図4(c)は上記図3(b)に示すように制御された状態をタービン出力に対応させた温度特性を示す。
【0033】
図5は、第1要求圧力設定器31(図2)で用いる関数を作成する過程を示す図である。図5(a)はタービン出力に対応する、高圧タービン出口蒸気圧力P、高圧タービン出口蒸気温度T、第1段加熱器出口温度T’及び第2段加熱器出口温度T’の関係を示す。これは第1段加熱器9の出入口温度差△T及び第2段加熱器11の出入口温度差△Tの値を規定値内に抑え、かつ加熱器の熱交換量を十分に得られるように設定したものである。図5(b)は同じくタービン出力と第2段加熱蒸気圧力Pと第2段加熱器出口温度Tの関係を示す。ここで図5(b)における第2段加熱器出口温度T’を、図5(a)の目標値T’に合わせることにより、図5(c)に示すように高圧タービン出口蒸気圧力Pと第2段加熱蒸気圧力P関係(P=f(P))を作成することができる。なお図5(c)中のPは図2中のP2aに該当する。
【0034】
また、図6は、第2要求圧力設定器32(図2)で用いる関数を作成する過程を示す図である。図6(a)はタービン出力と、第1段加熱蒸気圧力P、高圧タービン出口蒸気温度T、第1段加熱器出口温度T’及び第2段加熱器出口温度T’との関係を示す。図6(b)は同じくタービン出力と第2段加熱蒸気圧力Pと第2段加熱器出口温度T’の関係を示す。この2つの関係から、第2段加熱器出口温度T’を図6(a)の目標値T’に合わせるようにして図6(c)に示すように第1段加熱蒸気圧力Pと第2段加熱蒸気圧力Pの関係(P=f(P))を作成することができる。ここで図6(c)中のPは図2中のP2bに該当する。
【0035】
尚、第2段加熱蒸気の供給がない場合には、第2段加熱器11による熱交換がなくなるだけであり、加熱器の損傷には問題ない。
【0036】
また本実施の形態では、各蒸気の流量を、蒸気圧力を測定することにより制御に用いる方法を記載したが、圧力の代わりに流量を直接に流量計で測定したり、高圧タービン出口蒸気圧力とほぼ比例関係にあるタービン出力を用いても同様な効果が得られる。
【0037】
【発明の効果】
本発明によれば、2段以上の再熱方式をもつ蒸気タービンにおいて、タービンの全出力運転状態を通じて、各段加熱器における熱交換量を安定して得られ、仮に何らかの要因で加熱蒸気の供給に異状が生じた場合でも、自動的に加熱蒸気量が制御されるため、常に加熱器の熱変形や熱応力に対する保護も実現できる。
【図面の簡単な説明】
【図1】本発明のタービン制御方法を用いる蒸気タービンプラントの構成図である。
【図2】タービン制御装置の制御ブロック図である。
【図3】本発明の制御方法を用いた加熱器における蒸気温度特性を、該制御方法を用いない場合と比較して、示す図である。
【図4】図3に示す蒸気温度特性を、タービン出力に対応して展開した蒸気温度特性である。
【図5】タービン制御装置の第1要求圧力設定器で用いる関数について説明する図である。
【図6】タービン制御装置の第2要求圧力設定器で用いる関数について説明する図である。
【符号の説明】
1 蒸気発生器
2 主蒸気
3 蒸気加減弁
4 高圧タービン
5 高圧タービン出口蒸気
6 湿分分離加熱器
7 湿分分離器
8 高圧タービン抽気蒸気
9 第1段加熱器
11 第2段加熱器
13 低圧タービン
14 発電機
15 復水器
16 給水加熱器
17 加熱蒸気調節弁
18、19、21 蒸気圧力検出器
22 タービン制御装置
31 第1要求圧力設定器
32 第2要求圧力設定器
33 低値優先選択器
34 演算器
35 比例積分演算器
高圧タービン出口蒸気圧力
第1段加熱蒸気圧力
第2段加熱蒸気圧力
高圧タービン出口蒸気温度
第1段加熱蒸気温度
’ 第1段加熱器出口温度
第2段加熱蒸気温度
’ 第2段加熱器出口温度
[0001]
[Industrial application fields]
The present invention relates to a turbine control method and control apparatus including a heater that reheats exhaust gas from a high-pressure turbine and supplies it for driving a low-pressure turbine, and more particularly, a steam turbine that has a large daily load change width and a large necessity for rapid start-up. And a control method improved to balance the heat exchange between the pre-stage heater and the post-stage heater constituting the multi-stage reheat type heater and to protect the heater from thermal deformation, etc. The present invention relates to a control device.
[0002]
[Prior art]
As a method for controlling the heating steam of the steam turbine heater, for example, Japanese Patent Application Laid-Open No. 63-16409 discloses an inlet / outlet temperature difference of a moisture separation reheater equipped with first and second stage heaters and a low-pressure turbine inlet steam temperature. It is disclosed to detect the rate of change of the second and control the second stage heating steam. In this method, since the control is performed using the temperature obtained by adding the heating amounts of the first stage and the second stage, the individual heat exchange balance of each stage heater cannot be monitored.
[0003]
Japanese Patent Application Laid-Open No. 1-230908 discloses a method in which when the first stage heater fails, this is stopped, the pressure setting function of the second stage heater is switched, and the second stage heater is operated independently. It is disclosed. However, in this method, when an abnormality that does not reach the switching point occurs due to the failure detection of the first stage heater, the temperature difference between the inlet and outlet of the second stage heater becomes large, and the first stage heater is completely connected above the switching point. Therefore, it is considered that there is a problem that the heat exchange amount of the moisture separator / heater rapidly decreases.
[0004]
[Problems to be solved by the invention]
When main steam is used as heating steam in a steam turbine having a heater, if the high-pressure turbine outlet steam is at a low temperature, each stage heater constituting the heater uses the high-pressure turbine outlet steam flowing into the main steam and the main steam. The amount of heat exchange with the high-temperature heating steam is large, a temperature difference is caused by rapid heating at the entrance and exit of each stage heater, and thermal deformation of each stage heater body occurs. In order to prevent this, the heating steam system is provided with a flow rate adjustment mechanism, the main steam as the steam source is depressurized and supplied to the subsequent stage heater, and the temperature difference between the high-pressure turbine outlet steam and the heating steam is within the specified value. It is necessary to control it to be smaller.
[0005]
As this control method, the heating steam pressure is set by the turbine output and the heating steam flow rate for each turbine output is controlled, or the rate of change is limited for this pressure control setting. There is a method to mitigate the rate of change of the reheat steam temperature.
[0006]
This method is effective if the reheat method is a one-stage reheat method using main steam as a heating source, but in the case of a multi-stage reheat method installed in a large-capacity steam turbine, Since the amount of heating steam is controlled in a state in which the amount of heat exchange by the heater is unclear, it is difficult to obtain an optimum reheat steam temperature with a subsequent heater.
[0007]
In general, when a steam turbine has two or more stages of heaters, each stage heater is planned to specify the amount of heat to be handled, and the previous stage heater cannot be exchanged due to a failure or the like. In such a case, in the latter stage heater, a temperature mismatch between the steam to be heated and the heating steam or a difference in temperature at the heater inlet / outlet will occur.
[0008]
For example, in a two-stage reheating system, if the high-pressure turbine outlet steam at a temperature of 192 ° C. is heated to 222 ° C. by the first stage heater and 264 ° C. by the second stage heater in a steady state, in this case The inlet / outlet temperature difference of the first heater is 222 ° C.-192 ° C. = 30 ° C., and the inlet / outlet temperature difference of the second stage heater is 264 ° C.-222 ° C. = 42 ° C.
[0009]
If the first stage heater malfunctions and the temperature of the first stage heater outlet steam decreases, the heat balance of the second stage heater deteriorates as the temperature decreases. Consider the case where the first stage heater stops due to a failure. In the second stage heater, if heat exchange is performed by heating steam at 282 ° C., the temperature of the heating steam used for heating in the second stage heater and the temperature of the steam flowing into the second stage heater (= first The difference from the outlet temperature of the stage heater increases from 282 ° C.-222 ° C. = 60 ° C. at the steady state to 282 ° C.-192 ° C. = 90 ° C. at the time of failure stop. Will be invited.
[0010]
The present invention has been made in view of the above circumstances, and by reusing the state quantity of the outlet steam of the pre-stage heater as a control factor for the heated steam introduced into the post-stage heater, it is reheated to an optimum temperature. It is an object of the present invention to provide a turbine control method and a control apparatus that can supply steam from the outlet of the subsequent stage heater and can protect the subsequent stage heater when the preceding stage heater malfunctions or stops.
[0011]
[Means for Solving the Problems]
In the steam turbine of the reheat system of two or more stages, the present invention uses the extraction steam of the high-pressure turbine as the heating steam source of the first stage heater, and a part of the main steam as the heating steam source of the second stage heater. When a reheater is installed to reheat the high-pressure turbine outlet steam, the state quantity (flow rate, temperature) of the high-pressure turbine outlet steam is calculated from the turbine output or the high-pressure turbine outlet steam pressure. The outlet temperature of the first stage heater is calculated by calculating the amount of heat exchange with the quantity, the required flow rate of the second stage heating steam is determined, the heating steam control valve is controlled, and the output of the turbine is changed. It is the method of relieving the temperature change of the accompanying steam turbine reheater exit steam.
[0012]
That is, in order to achieve the above object, the first turbine control method of the present invention reheats the outlet steam (P 0 ) of a high-pressure turbine driven by main steam supplied from a steam source through a steam control valve, In order to supply the reheated steam (T 1 ′) for driving the low-pressure turbine, the high-pressure turbine extraction steam (P 0 ) as the heating steam extracted from the high-pressure turbine is used as the incoming high-pressure turbine outlet steam (P 0 ). The first stage heater that heats by exchanging heat by P 1 ), and the steam (T 1 ′) heated by the first stage heater as the heated steam introduced from the steam source through the heating steam control valve A method of controlling a reheater comprising a second stage heater that is heated by exchanging heat (T 2 ′) with a part (P 2 ) of main steam and is supplied to a low-pressure turbine, (1 ) pressure at the outlet steam of the high pressure turbine (P ) To calculate the temperature and flow rate of the steam from (2) to calculate the temperature and flow rate of the extraction steam (P 1) from the extraction steam of the high pressure turbine (P 1), (3) a high pressure turbine outlet steam (P 1 ) And the temperature and flow rate of the extraction steam (P 1 ) of the high-pressure turbine, and the extraction steam of the high-pressure turbine introduced into the first stage heater and the outlet steam of the high-pressure turbine introduced into the first stage heater. The temperature (T 1 ′) of the outlet steam of the first stage heater that is reheated and flows out by heat exchange with the steam (P 1 ) is calculated, and (4) the temperature of the outlet steam of the first stage heater ( The flow rate of a part (P 2 ) of the main steam introduced into the second stage heater from T 1 ′) and the flow rate and the temperature calculated from the pressure of the main steam part (P 2 ) is as follows: (5) The flow rate of a part of the main steam (P 2 ) is calculated as the outlet steam of the first stage heater and The outlet steam of the first stage heater and the temperature (T 2 ′) of the outlet steam of the second stage heater that flows out by exchanging heat with part of the main steam (P 2 ) introduced into the second stage heater, Is calculated as a flow rate such that the temperature difference is equal to or less than the temperature difference defined by the deformation allowable amount of the second stage heater, and is controlled by the heating steam control valve so as to be this flow rate.
Here, P 1 , T 1 ′, etc. shown in parentheses are the same as the symbols described in the drawings.
[0013]
By the way, since saturated steam is used in the steam turbine, the steam temperature is uniquely determined by the steam pressure. The steam flow rate is proportional to the steam pressure if the flow path cross-sectional area is constant. Therefore, if the steam path is fixed, the steam flow rate is proportional to the steam pressure. Therefore, the steam temperature and the steam flow rate can be calculated from the steam pressure.
[0014]
By using the heating steam control method as described above, even when the heat exchange amount is reduced due to a failure of the first stage heater, control is automatically performed so as to narrow down the second stage heating steam flow rate. Further, it is possible to prevent excessive heating of the subsequent heater.
[0015]
Further, the second turbine control method of the present invention is similar to the control method of the first steam turbine reheater, in that the steam source, the steam control valve, the high pressure turbine, the first stage heater and the second A turbine control method comprising a heater composed of a stage heater and a low-pressure turbine, and supplying a second stage heating steam amount to be supplied to a second stage heater defined according to each turbine output For this purpose, (1) the high pressure turbine outlet pressure (P 0 ) using a function for obtaining the steam pressure corresponding to the heating steam amount optimal for heat exchange in the second stage heater with respect to the high pressure turbine outlet steam pressure (P 0 ). 0 ) based on the second stage heating steam pressure (P2a) set value, and (2) heating steam that is optimal for heat exchange in the second stage heater with respect to the high-pressure turbine bleed steam pressure (P 1 ) First-stage heating steam using a function to determine the steam pressure corresponding to the volume Set the second stage heating steam pressure (P2b) setpoint flow rate (P 1) based on, (3) a second stage heating steam pressure (P2a) set value set from the high pressure turbine outlet steam pressure (P 0) The second stage heating steam pressure (P2b) set value set from the first stage heating steam pressure (P 1 ) is compared, and the lower one of the two setting values (P2a, P2b) is given priority. (2) The opening degree of the heating steam control valve is controlled by feedback control so that the second heating steam pressure becomes equal to the final setting value (P2c).
Here, P 1 , T 1 ′, etc. shown in parentheses are the same as the symbols shown in FIG.
[0016]
According to the control method for each turbine described above, in a steam turbine having a reheat system of two or more stages, the flow rate of the heating steam at each output of the turbine is controlled while monitoring the state quantity of the heating steam in the previous stage. In addition to providing the reheat steam temperature, it prevents the operating condition of the subsequent heater alone due to the failure of the preceding heating steam system, etc., and prevents the temperature mismatch between the exhaust pressure of the high pressure turbine and the heating steam that is excessively large. In addition, it is possible to prevent damage due to thermal deformation of the heater due to the temperature difference between the inlet and outlet of the latter stage heater.
[0017]
To achieve the above object, turbines control apparatus of the present invention includes a first stage heater for heating the outlet steam of the high pressure turbine with the extracted steam of the high pressure turbine, a portion of the main steam supplied to the high pressure turbine In the control device for controlling the opening degree of the heating steam control valve for adjusting the flow rate of a part of the main steam of the heater having the second stage heater for heating the outlet steam of the first stage heater using The opening degree of the heating steam control valve is controlled based on the state quantity of the extracted steam of the high-pressure turbine and the state quantity of the outlet steam of the high-pressure turbine.
[0018]
That is, a turbine control device according to the present invention includes a first required state quantity setting device that outputs a first required state quantity set value signal by multiplying a signal of a state quantity of an outlet steam of a high pressure turbine by a first function, and a high pressure turbine. A second required state quantity setter that outputs a second required state quantity set value signal by multiplying a signal of the state quantity of the extracted steam by a second function, and output signals of the first and second required state quantity setters And a low-value priority selector that outputs a signal having a small value, and the opening degree of the heating steam control valve is controlled based on the output signal of the low-value priority selector.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a steam turbine plant that employs a turbine control method according to the present invention. This steam turbine plant includes a steam generator 1, a steam control valve 3 that adjusts the flow rate of main steam 2 supplied from the steam generator 1 to the turbine, and a high pressure that converts thermal energy of the main steam 2 into rotational energy of the turbine rotor. Turbine 4, moisture separator / heater 6 that reheats high-pressure turbine outlet steam 5 that is the exhaust of high-pressure turbine 4, moisture separator 7 that is a component of moisture separator / heater 6, first stage heating Generator 9 and second stage heater 11, low pressure turbine 13 for converting the heat energy of the steam reheated by moisture separator heater 6 into rotational energy, and generator driven by high pressure turbine 4 and low pressure turbine 13 14, a condenser 15 that condenses the exhaust steam of the low-pressure turbine 13, and a feed water heater 16 that raises the temperature of the condensate and supplies the steam to the steam generator 1.
[0021]
Here, the speed of the turbine, the inlet steam pressure, the output, and the like are controlled by adjusting the flow rate of the main steam 2 supplied from the steam generator 1 to the turbine by the steam control valve 3.
[0022]
Further, the steam turbine plant includes a pressure detector 18 that detects the pressure (P 0 ) of the outlet steam 5 of the high-pressure turbine 4 as a heating steam system related to the moisture separation heater 6, and the first from the high-pressure turbine 4. A pressure detector 19 that detects the pressure (P 1 ) of the extracted steam 8 of the high-pressure turbine 4 supplied to the stage heater 9, and a second stage heater that is a part of the main steam generated from the steam generator 1. 11 is a heating steam control valve 17 for adjusting the flow rate of the steam 20 supplied to the pressure sensor 11, a pressure detector 21 for detecting the pressure (P 2 ) of the steam 20, and output signal values of the pressure detectors 21 and the generator 14. And a control device 22 for controlling the heating steam control valve 17.
[0023]
The main steam 2 generated by the steam generator 1 is flow-controlled by the steam control valve 3 and then flows into the high-pressure turbine 4. The high-pressure turbine outlet steam 5 that has worked in the high-pressure turbine 4 separates the moisture in the moisture separator 7 of the moisture separator heater 6 and is reheated in the first stage heater 9 and the second stage heater 11. Electric power is generated by the generator 14 guided to the low-pressure turbine 13 and rotated by these turbines. The steam that has worked in the low-pressure turbine 13 is led to the condenser 15 to become condensed water, and the condensed water is heated by the feed water heater 16 and returned to the steam generator 1.
[0024]
On the other hand, the extraction steam 8 of the high-pressure turbine 4 is led to the first stage heater 9 as heating steam, where the steam 5 flowing from the outlet of the high-pressure turbine 4 and passing through the moisture separator 7 is heated, and a steam generator Part of the main steam 2 fed from 1 is flow-controlled by the steam control valve 1 as heated steam and guided to the second stage heater 11, where the steam 10 flowing from the first stage heater 9 is passed through. Heat. The extraction steam extraction point of the high-pressure turbine 4 is determined by the heat balance of the entire plant.
[0025]
FIG. 2 is a control block diagram of the control device 22 that controls the steam control valve 17 that adjusts the flow rate of the heating steam supplied to the second stage heater 11. The control device 22 will be described in detail next. The first required pressure setter 31, the second required pressure setter 32, the low value priority selector 33, the calculator 34, the proportional integral calculator 35, and the like. , Is composed of.
[0026]
The first required pressure setting device 31 receives the signal P 0 of the pressure detector 18 that detects the pressure of the outlet steam 5 of the high-pressure turbine 4, and generates the first required pressure setting value signal P 2 a based on the value of the signal P 0. calculate. The second required pressure setting device 32 receives the signal P 1 of the pressure detector 19 of the extraction steam 8 of the high-pressure turbine 4 that is the heating steam of the first stage heater 9 and inputs the second based on the value of the signal P 1 . The required pressure set value signal P2b is calculated. The low value priority selector 33 compares the first required pressure set value signal P2a and the second required pressure set value signal P2b, and outputs the lower value as the set value. Calculator 34, a heating steam set pressure P2c output from the low value preference selector 33, a deviation signal between a signal P 2 of the pressure detector 21, regulated heating steam 20 in heat steam regulating valve 17 △ P 2 Is calculated. Then, the proportional-plus-integral calculator 35 outputs a valve opening command signal SL to the heating steam control valve 17 based on the deviation signal ΔP 2 to adjust the valve opening, and detects the detected pressure P of the pressure detector 21. 2 is controlled to be the set pressure P2c set by the low value priority selector 33.
[0027]
When the turbine is started and the load increases, the opening of the steam control valve 3 increases, and the amount of steam supplied to the high-pressure turbine 4 increases. Along with this, the pressure P 0 of the outlet steam 5 of the high-pressure turbine 4 increases, and the first required pressure set value signal P 2 a is output from the first required pressure setter 31 by this pressure signal P 0 . So that optimum heating steam flow to the heat exchange amount in the second stage heater 11 relative to the pressure P 0 of the outlet steam 5 of the first request pressure setter 31 in the high-pressure turbine 4 is obtained, the first required pressure by a function A set value signal P2a is defined. On the other hand, the pressure P 1 of the extraction steam 8 of the high-pressure turbine 4 also increases with load increase of the turbine, the pressure signal P 1 from the second required pressure setter 32 second required pressure setpoint signal P2b is output. So that optimum heating steam flow to the heat exchange amount in the second stage heater 11 relative to the pressure P 1 of the second required pressure setter 32 in the extraction steam 8 of the high-pressure turbine 4 is obtained, the second required pressure by a function A set value signal P2b is defined. The first required pressure set value signal P2a and the second required pressure set value signal P2b are input to the low value priority selector 33, and the lower pressure is selected and output as the heating steam set pressure P2c. The deviation signal △ P 2 of the pressure signal P 2 detected by the pressure detector 21 of the heating steam set pressure P2c the heating steam 20 is output is calculated by the calculation 34. A valve opening command signal SL is output from the proportional-plus-integral calculator 35 to the heating steam control valve 17 so as to control the detected pressure to the set pressure based on the deviation signal ΔP 2 to obtain a prescribed heating steam flow rate It is.
[0028]
Here, a function setting method of the first required pressure setting device 31 and the second required pressure setting device 32 for providing the optimum amount of heating steam will be described.
[0029]
FIG. 3A shows the vapor temperature characteristics when passing through the first stage heater 9 and the second stage heater 11. In the first stage heater 9, the high-pressure turbine outlet steam temperature T 0 (for example, 192 ° C.) and the first stage heater steam temperature T 1 (236 ° C.) are heat-exchanged, and the first stage heater outlet temperature T 1 ′ (222) ° C) is obtained. In the second stage heater 11, the first stage heater outlet temperature T 1 ′ (222 ° C.) and the second stage heating steam temperature T 2 (282 ° C.) are heat-exchanged, and the second stage heater outlet temperature T 2 ′. (264 ° C.) is obtained. The inlet / outlet temperature difference ΔT 1 (30 ° C.) of the first stage heater 9 is uniquely determined because the high-pressure turbine 4 outlet steam flow rate and the high-pressure turbine 4 extraction steam flow rate are generally proportional. Since the inlet / outlet temperature difference ΔT 2 (42 ° C.) of the second stage heater 11 is determined by the heating steam flow rate, it can be controlled by the control device 22. Inlet and outlet temperature difference between the inlet and outlet temperature difference △ T 1 and a second stage heater 11 of the first stage heater 9 from these △ T 2 within the specified values, can be set to for example, within 55 ° C., respectively.
[0030]
FIG. 4A shows an example of temperature characteristics when the heating steam pressure is controlled by setting the heating steam pressure by the control method of the present invention. Each steam temperature rises as the turbine output increases, but the relationship among the high-pressure turbine 4 outlet steam temperature T 0 , the first stage heater 9 outlet temperature T 1 ′, and the second stage heater 11 outlet temperature T 2 ′. first stage inlet and outlet temperature difference △ T 1 and a second stage heater 11 inlet and outlet temperature difference △ T 2 is a temperature such that the specified value does not become a problem in the thermal deformation of the heater during the entire load range of the heater 9 by Characteristics are obtained.
[0031]
FIG. 3B shows temperature characteristics when the supply amount of the first stage heating steam 9 is decreased due to an erroneous operation or failure of an operator without using the control method of the present invention. Since the steam pressure P 1 and the temperature T 1 decrease with the decrease in the first stage heating steam amount and the heating amount by the first stage heater 9 decreases, for example, the outlet temperature T 1 ′ of the first stage heater 9 is 200. When the temperature reaches 0 ° C., the temperature difference from the second stage heating steam temperature T 2 (282 ° C.) increases, and the inlet / outlet temperature difference ΔT 2 of the second stage heater 11 also increases, resulting in excessive thermal stress on the heater. Occurs and heat deformation occurs. FIG. 4B is a diagram showing a defective state as shown in FIG. 3B corresponding to the turbine output.
[0032]
FIG.3 (c) shows the temperature characteristic when the control method of this invention is implemented and the supply amount of 1st stage heating steam reduces similarly to FIG.3 (b). With decreasing the supply amount of the first stage heating steam, the first heating steam pressure signal P 1 is reduced, also reduced the second required pressure setpoint signal P2b from the second required pressure setter 32, and finally heated The steam flow is reduced by the steam control valve 17. As the heating steam flow rate decreases, the second stage heating steam temperature T 2 also decreases and is supplied to the second stage heater 11, so the first stage heater outlet temperature T 1 ′ and the second stage heating steam temperature T 2. temperature difference between the (T 2 -T 1 ') is kept small, also inlet and outlet temperature difference of the second stage heater 11 △ T 2 becomes small, it is possible to prevent the occurrence of thermal deformation of the heater. FIG. 4C shows temperature characteristics in which the state controlled as shown in FIG. 3B corresponds to the turbine output.
[0033]
FIG. 5 is a diagram showing a process of creating a function used in the first required pressure setting device 31 (FIG. 2). FIG. 5A shows the high-pressure turbine outlet steam pressure P 0 , high-pressure turbine outlet steam temperature T 0 , first stage heater outlet temperature T 1 ′, and second stage heater outlet temperature T 2 ′ corresponding to the turbine output. Show the relationship. This is obtained sufficiently doorway temperature difference △ T suppressed 1 and the value of the inlet and outlet temperature difference △ T 2 of the second stage heater 11 within a prescribed value, and the heat exchange amount of the heating device of the first stage heater 9 It is set as follows. FIG. 5 (b) also shows a turbine output and the second stage heating steam pressure P 2 and the second stage heater relationship outlet temperature T 2. Here, by adjusting the second stage heater outlet temperature T 2 ′ in FIG. 5B to the target value T 2 ′ in FIG. 5A, as shown in FIG. A relationship between P 0 and the second stage heating steam pressure P 2 (P 2 = f (P 0 )) can be created. Note P 2 in FIG. 5 (c) corresponds to P2a in FIG.
[0034]
FIG. 6 is a diagram showing a process of creating a function used in the second required pressure setting device 32 (FIG. 2). FIG. 6A shows the turbine output, the first stage heating steam pressure P 1 , the high pressure turbine outlet steam temperature T 0 , the first stage heater outlet temperature T 1 ′, and the second stage heater outlet temperature T 2 ′. Show the relationship. FIG. 6B also shows the relationship between the turbine output, the second stage heating steam pressure P 2, and the second stage heater outlet temperature T 2 ′. From these two relations, the second stage heater outlet temperature T 2 ′ is adjusted to the target value T 2 ′ in FIG. 6A, and the first stage heating steam pressure P 1 as shown in FIG. 6C. And the second-stage heating steam pressure P 2 (P 2 = f (P 1 )). Wherein P 2 in FIG. 6 (c) corresponds to P2b in FIG.
[0035]
In addition, when there is no supply of 2nd stage heating steam, only the heat exchange by the 2nd stage heater 11 is lost, and there is no problem in damage to a heater.
[0036]
In the present embodiment, a method of controlling the flow rate of each steam by measuring the steam pressure has been described. However, instead of the pressure, the flow rate is directly measured with a flow meter, or the high-pressure turbine outlet steam pressure is A similar effect can be obtained even when turbine power having a substantially proportional relationship is used.
[0037]
【The invention's effect】
According to the present invention, in a steam turbine having a reheat system of two or more stages, the heat exchange amount in each stage heater can be stably obtained through the entire output operation state of the turbine, and the supply of heated steam for some reason. Even when an abnormality occurs, the amount of heating steam is automatically controlled, so that protection against thermal deformation and thermal stress of the heater can always be realized.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a steam turbine plant using a turbine control method of the present invention.
FIG. 2 is a control block diagram of the turbine control device.
FIG. 3 is a diagram showing steam temperature characteristics in a heater using the control method of the present invention, compared with a case where the control method is not used.
4 is a steam temperature characteristic obtained by developing the steam temperature characteristic shown in FIG. 3 corresponding to the turbine output.
FIG. 5 is a diagram illustrating a function used in a first required pressure setter of the turbine control device.
FIG. 6 is a diagram illustrating a function used in a second required pressure setting device of the turbine control device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steam generator 2 Main steam 3 Steam control valve 4 High pressure turbine 5 High pressure turbine exit steam 6 Moisture separation heater 7 Moisture separator 8 High pressure turbine extraction steam 9 First stage heater 11 Second stage heater 13 Low pressure turbine 14 Generator 15 Condenser 16 Feed water heater 17 Heated steam control valve 18, 19, 21 Steam pressure detector 22 Turbine controller 31 First required pressure setter 32 Second required pressure setter 33 Low value priority selector 34 Calculator 35 Proportional integral calculator P 0 High pressure turbine outlet steam pressure P 1 First stage heating steam pressure P 2 Second stage heating steam pressure T 0 High pressure turbine outlet steam temperature T 1 First stage heating steam temperature T 1 ′ First Stage heater outlet temperature T 2 Second stage heater steam temperature T 2 ′ Second stage heater outlet temperature

Claims (3)

蒸気源から蒸気加減弁を介して供給される主蒸気によって駆動される高圧タービンの出口蒸気を再熱し、該再熱された蒸気を低圧タービンの駆動用に供給するために、流入した高圧タービン出口蒸気を、前記高圧タービンから抽出した高圧タービンの抽気蒸気により熱交換して加熱する第1段加熱器と、該第1段加熱器で加熱された蒸気を、前記蒸気源から加熱蒸気調節弁を介して導入した主蒸気の一部により熱交換して加熱し、前記低圧タービンに供給する第2段加熱器とから構成された加熱器を備えるタービンの制御方法において、
高圧タービンの出口蒸気の圧力から算出した該蒸気の温度及び流量と、高圧タービンの抽気蒸気の圧力から算出した該抽気蒸気の温度及び流量とを基に、前記第1段加熱器での熱交換により再熱されて流出する第1段加熱器の出口蒸気の温度を計算し、さらに前記第1段加熱器の出口蒸気の温度及び流量と、前記主蒸気の一部の圧力から算出した温度とから前記第2段加熱器に導入する主蒸気の一部の流量を次のように計算する、すなわち該主蒸気の一部の流量は、前記第2段加熱器での熱交換により再熱されて流出する第2段加熱器の出口蒸気の温度と前記第1段加熱器の出口蒸気との温度差が、前記第2段加熱器の許容変形量から規定される温度差以下となるような流量として計算し、該流量となるように前記加熱蒸気調節弁で制御することを特徴とするタービン制御方法。
The high pressure turbine outlet that has flowed in to reheat the outlet steam of the high pressure turbine driven by the main steam supplied from the steam source through the steam control valve and to supply the reheated steam for driving the low pressure turbine. A first stage heater that heats steam by exchanging heat with the extracted steam of the high pressure turbine extracted from the high pressure turbine, and a steam heated by the first stage heater, and a heating steam control valve from the steam source In a turbine control method comprising a heater composed of a second stage heater that is heated by exchanging heat with a part of the main steam introduced through the second steam heater,
Heat exchange in the first stage heater based on the temperature and flow rate of the steam calculated from the pressure of the outlet steam of the high-pressure turbine and the temperature and flow rate of the extracted steam calculated from the pressure of the extracted steam of the high-pressure turbine Calculating the temperature of the outlet steam of the first stage heater that is reheated and flowing out, and the temperature and flow rate of the outlet steam of the first stage heater and the temperature calculated from the pressure of a part of the main steam, The flow rate of a part of the main steam introduced into the second stage heater is calculated as follows, that is, the part flow rate of the main steam is reheated by heat exchange in the second stage heater. The temperature difference between the outlet steam of the second stage heater flowing out and the outlet steam of the first stage heater is equal to or less than the temperature difference defined by the allowable deformation amount of the second stage heater. Calculate as the flow rate and control with the heating steam control valve so that the flow rate is reached Turbine control method comprising and.
蒸気源から蒸気加減弁を介して供給される主蒸気によって駆動される高圧タービンの出口蒸気を再熱し、該再熱された蒸気を低圧タービンの駆動用に供給するために、流入した高圧タービン出口蒸気を、前記高圧タービンから抽出した高圧タービンの抽気蒸気により熱交換して加熱する第1段加熱器と、該第1段加熱器で加熱された蒸気を、前記蒸気源から加熱蒸気調節弁を介して導入した主蒸気の一部により熱交換して加熱し、前記低圧タービンに供給する第2段加熱器とから構成された加熱器を備えるタービンの制御方法において、
各タービン出力に応じて規定される前記第2段加熱器に供給する第2段加熱蒸気量を供給するため、前記高圧タービン出口蒸気圧力に対して前記第2段加熱器での熱交換に最適な加熱蒸気量に対応する圧力を求める関数を用いて、前記高圧タービン出口圧力を基に第2段加熱蒸気圧力設定値を設定し、更に高圧タービン抽気蒸気圧力に対して前記第2段加熱器での熱交換に最適な加熱蒸気量に対応する圧力を求める関数を用いて、第1段加熱蒸気圧力を基に第2段加熱蒸気圧力設定値を設定し、高圧タービン出口蒸気圧力から設定した第2段加熱蒸気圧力設定値と、第1段加熱蒸気圧力から設定した第2段加熱蒸気圧力設定値とを比較し、双方の設定値のうち低い方の値を優先して第2段加熱蒸気圧力最終設定値とし、該最終設定値に第2加熱蒸気圧力がなるようフィードバック制御により前記加熱蒸気調節弁の開度を制御することを特徴とするタービン制御方法。
The high pressure turbine outlet that has flowed in to reheat the outlet steam of the high pressure turbine driven by the main steam supplied from the steam source through the steam control valve and to supply the reheated steam for driving the low pressure turbine. A first stage heater that heats steam by exchanging heat with the extracted steam of the high pressure turbine extracted from the high pressure turbine, and a steam heated by the first stage heater, and a heating steam control valve from the steam source In a turbine control method comprising a heater composed of a second stage heater that is heated by exchanging heat with a part of the main steam introduced through the second steam heater,
Optimum for heat exchange in the second stage heater with respect to the steam pressure at the outlet of the high-pressure turbine, because the amount of second stage heating steam supplied to the second stage heater specified according to each turbine output is supplied A second stage heating steam pressure set value is set based on the high-pressure turbine outlet pressure using a function for obtaining a pressure corresponding to the amount of heating steam, and the second-stage heater is further set against the high-pressure turbine extraction steam pressure. Using the function for obtaining the pressure corresponding to the amount of heating steam optimal for heat exchange in the factory, the second stage heating steam pressure set value was set based on the first stage heating steam pressure, and was set from the high pressure turbine outlet steam pressure. The second stage heating steam pressure setting value is compared with the second stage heating steam pressure setting value set from the first stage heating steam pressure, and the lower one of the two setting values is given priority to the second stage heating. Set the steam pressure as the final set value, and add a second value to the final set value. Turbine control method characterized by controlling the opening of the heating steam regulating valve by a feedback control so that the steam pressure becomes.
高圧タービンの抽気蒸気を用いて前記高圧タービンの出口蒸気を加熱する第1段加熱器と、前記高圧タービンに供給する主蒸気の一部を用いて前記第1段加熱器の出口蒸気を加熱する第2段加熱器とを有する加熱器の、前記主蒸気の一部の流量を調節する加熱蒸気調節弁の開度を制御するタービン制御装置において、
前記高圧タービンの抽気蒸気の状態量と、前記高圧タービンの出口蒸気の状態量とに基づいて、前記加熱蒸気調節弁の開度を制御するものであり、前記高圧タービンの出口蒸気の状態量の信号に第1の関数を乗じて第1要求状態量設定値信号を出力する第1要求状態量設定器と、前記高圧タービンの抽気蒸気の状態量の信号に第2の関数を乗じて第2要求状態量設定値信号を出力する第2要求状態量設定器と、前記第1要求状態量設定器の出力信号と前記第2要求状態量設定器の出力信号の何れか値が小さい信号を出力する低値優先選択器とを有し、前記低値優先選択器の出力信号に基づいて前記加熱蒸気調節弁の開度を制御することを特徴とするタービン制御装置。
A first stage heater that heats the outlet steam of the high pressure turbine using the extraction steam of the high pressure turbine, and a part of the main steam that is supplied to the high pressure turbine is used to heat the outlet steam of the first stage heater. In the turbine control device that controls the opening degree of the heating steam control valve that adjusts the flow rate of a part of the main steam of the heater having the second stage heater,
Based on the state quantity of the extraction steam of the high-pressure turbine and the state quantity of the outlet steam of the high-pressure turbine, the opening degree of the heating steam control valve is controlled , and the state quantity of the outlet steam of the high-pressure turbine is A first required state quantity setter that multiplies the signal by a first function and outputs a first required state quantity set value signal; and a second function that multiplies the signal of the state quantity of the extracted steam of the high-pressure turbine by a second function. A second required state quantity setter that outputs a requested state quantity set value signal, and a signal having a smaller value of either the output signal of the first required state quantity setter or the output signal of the second required state quantity setter is output. And a low-value priority selector for controlling the opening degree of the heating steam control valve based on an output signal of the low-value priority selector .
JP30608496A 1996-11-18 1996-11-18 Turbine control method and control apparatus Expired - Fee Related JP3613690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30608496A JP3613690B2 (en) 1996-11-18 1996-11-18 Turbine control method and control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30608496A JP3613690B2 (en) 1996-11-18 1996-11-18 Turbine control method and control apparatus

Publications (2)

Publication Number Publication Date
JPH10148304A JPH10148304A (en) 1998-06-02
JP3613690B2 true JP3613690B2 (en) 2005-01-26

Family

ID=17952846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30608496A Expired - Fee Related JP3613690B2 (en) 1996-11-18 1996-11-18 Turbine control method and control apparatus

Country Status (1)

Country Link
JP (1) JP3613690B2 (en)

Also Published As

Publication number Publication date
JPH10148304A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
US4578944A (en) Heat recovery steam generator outlet temperature control system for a combined cycle power plant
JPS6158644B2 (en)
US10436058B2 (en) Turbine control unit comprising a thermal stress controller as a master controller
KR100243551B1 (en) Method of minimizing thermal stress of steam turbine
JP3613690B2 (en) Turbine control method and control apparatus
JP2007051565A (en) Warm water overheat temperature control device and cogeneration power plant
JP4415189B2 (en) Thermal power plant
KR100299439B1 (en) System for controlling cooling operation of steam turbine
JP7077257B2 (en) Turbine controller, turbine control method, and turbine power generation equipment
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP2765637B2 (en) Steam turbine power generation equipment
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH10299424A (en) Steam temperature controlling method for refuse incinerating power plant
JP2004169621A (en) Controller of extraction condensing turbine
JPH0248880B2 (en)
JPH08210107A (en) Bleed steam turbine plant
JPH02130203A (en) Steam temperature controller for composite power plant facility
KR19980038365A (en) Temperature control method of power boiler
JPH06129208A (en) Composite cycle plant
JPS59224406A (en) Protective mechanism of nuclear turbine
JPS62237012A (en) Heated steam pressure controller of heater for steam turbine
JPH0211807A (en) Low pressure turbine bypass controller
JPH04130235A (en) Steam turbine apparatus and control method thereof
JPH08135405A (en) High pressure turbine bypass steam temperature control method and its device
JPS6237206B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees