JPH02130203A - Steam temperature controller for composite power plant facility - Google Patents

Steam temperature controller for composite power plant facility

Info

Publication number
JPH02130203A
JPH02130203A JP28475688A JP28475688A JPH02130203A JP H02130203 A JPH02130203 A JP H02130203A JP 28475688 A JP28475688 A JP 28475688A JP 28475688 A JP28475688 A JP 28475688A JP H02130203 A JPH02130203 A JP H02130203A
Authority
JP
Japan
Prior art keywords
steam
temperature
signal
superheater
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28475688A
Other languages
Japanese (ja)
Inventor
Shiro Hino
史郎 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28475688A priority Critical patent/JPH02130203A/en
Publication of JPH02130203A publication Critical patent/JPH02130203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To make it possible to promptly follow variations in the temperature of outlet steam by limiting the upper limit of the sum of a feed-back signal and a feed- forward signal for a cooling water valve in accordance with a temperature of steam at the outlet of a temperature reducer and a steam pressure signal. CONSTITUTION:Detectors 41 through 48 detect a temperature and a flow rate of steam, and a flow rate and a temperature of gas and the like in a superheater 16 and a reheater 17 in a heat recovery boiler 15 which is heated by gas discharged from a gas turbine 13, for generating, heating and reheating steam. Detection signals from these detectors are fed to a feed-back signal generating device so as to be used for a feed-back signal delivered to a cooling water valve 25 for controlling the superheater 16, the reheater 17 and the like. Further, the detection signals from the detectors 41 through 48 are also fed to a feed-forward controller and the like so as to be used for a feed-forward signal for controlling the preceding temperature and the like for the cooling water valve 25. These signals are fed to the cooling water valve 25 while their upper limits are controlled, and accordingly, a predetermined volume of cooling water is fed to a temperature reducer 27, thereby the superheater 16, the reheater 17 and the like are controlled so as to maintain suitable temperatures.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、複合発電設備の蒸気温度制御装置に係り、特
に過熱器、再熱器等により加熱された蒸気温度を所定温
度に維持するようにした複合発電設備の蒸気温度制御装
置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a steam temperature control device for combined cycle power generation equipment, and in particular, to a steam temperature control device for a combined power generation facility, and in particular for controlling the temperature of steam heated by a superheater, reheater, etc. to a predetermined value. The present invention relates to a steam temperature control device for a combined power generation facility that maintains the temperature at a certain temperature.

(従来の技術) 一般に、発電設備は、蒸気タービンまたはガスタービン
が単独で原動機として使用されているが、最近では両タ
ービンの特徴を活かしたコンバインドサイクル発電設備
、すなわち複合発電設備が多く使用されている。
(Conventional technology) Generally, power generation equipment uses either a steam turbine or a gas turbine as the prime mover, but recently, combined cycle power generation equipment that takes advantage of the characteristics of both turbines, that is, combined cycle power generation equipment, has been increasingly used. There is.

この複合発電設備の概略的構成は第8図に示すようなも
のであって、以下この設備について説明する。
The schematic configuration of this combined power generation facility is as shown in FIG. 8, and this facility will be explained below.

全体を10で示す複合発電設備は、ガス媒体を圧縮する
圧縮機11が設けられている。この圧縮機11により圧
縮されたガス媒体は燃焼器12に送られ、ここで高温高
圧のガスにされてガスタ−ビン13に送られ、このガス
タービン13が回転駆動される。ガスタービン13には
前記圧縮機11、後述する蒸気タービン等とともに発電
機14が共通軸で連結されており、ガスタービン13が
回転駆動されると発電機14が電力を発生し図示しない
系統に電力が供給される。前記ガスタービン13で使用
されたガスは排出ガスとして排熱回収ボイラ15に排出
され、この排熱回収ボイラ15の内部に設けられた過熱
器16、再熱器17、蒸発器18等において給水あるい
は蒸気と熱交換される。
The combined power generation facility, generally indicated by 10, is provided with a compressor 11 that compresses a gas medium. The gas medium compressed by the compressor 11 is sent to the combustor 12, where it is made into a high-temperature, high-pressure gas and sent to the gas turbine 13, which is driven to rotate. A generator 14 is connected to the gas turbine 13 through a common shaft together with the compressor 11, a steam turbine, etc. which will be described later, and when the gas turbine 13 is rotationally driven, the generator 14 generates electric power and sends the electric power to a system (not shown). is supplied. The gas used in the gas turbine 13 is discharged as exhaust gas to the exhaust heat recovery boiler 15, and is used in the superheater 16, reheater 17, evaporator 18, etc. provided inside the exhaust heat recovery boiler 15 to supply water or Heat exchanged with steam.

すなわち、前記蒸発器18において給水と上記排出ガス
との熱交換によって蒸気が発生させられる。この蒸気は
ドラム19に送られ、ここで気水分離が行われ、蒸気が
管路20を介して過熱器16に送られ、排出ガスにより
加熱され高温高圧の蒸気にされる。この蒸気は管路21
を介して高圧タービン22に送られ、そこで仕事を行い
発電機14を駆動する。高圧タービン22で仕事を行っ
た蒸気は管路23を介して前記再熱器17に送られ、前
記排出ガスにより再加熱され高温高圧の蒸気にされ、低
圧タービン24に送られ、そこで仕事を行い発電機14
が回転駆動される。
That is, steam is generated in the evaporator 18 by heat exchange between the supplied water and the exhaust gas. This steam is sent to a drum 19, where steam and water separation is performed, and the steam is sent to a superheater 16 via a pipe 20, where it is heated by exhaust gas and turned into high-temperature, high-pressure steam. This steam is transferred to pipe 21
is sent to the high-pressure turbine 22, where it performs work and drives the generator 14. The steam that has performed work in the high-pressure turbine 22 is sent to the reheater 17 via the pipe 23, where it is reheated by the exhaust gas to become high-temperature, high-pressure steam, and sent to the low-pressure turbine 24, where it performs work. generator 14
is driven to rotate.

このような複合発電設備10においてはガスタービン1
3の性能向上により、このガスタービン13から排出さ
れる排出ガスの温度が高くなり、また、排熱回収ボイラ
15の熱交換効率がよくなり、全体的に複合発電設備1
0の効率が向上している。しかし、この高効率のため、
排出ガスと燃焼器12の燃焼温度との関係で中間負荷か
ら高負荷域にかけて排出ガスの温度が高くなりすぎ、こ
れに送られてくる蒸気温度が高圧タービン22、低圧タ
ービン24の使用範囲を越えてしまうことがある。
In such a combined power generation facility 10, the gas turbine 1
3, the temperature of the exhaust gas discharged from the gas turbine 13 becomes higher, and the heat exchange efficiency of the exhaust heat recovery boiler 15 improves, resulting in an overall improvement in the combined power generation equipment 1.
0 efficiency has improved. However, due to this high efficiency,
Due to the relationship between the exhaust gas and the combustion temperature of the combustor 12, the temperature of the exhaust gas becomes too high in the intermediate to high load range, and the temperature of the steam sent to it exceeds the usage range of the high pressure turbine 22 and the low pressure turbine 24. Sometimes it happens.

このため、過熱器16、再熱器17にはそれぞれ減温器
27.28が設けられ、冷却水弁25.26により制御
された冷却水を蒸気中に噴霧することにより、高圧ター
ビン22、低圧タービン24に送られる蒸気が所定の温
度を維持するようにされている。
For this purpose, superheater 16 and reheater 17 are each provided with desuperheaters 27 and 28, and by spraying cooling water controlled by cooling water valves 25 and 26 into the steam, high-pressure turbine 22 and low-pressure Steam sent to the turbine 24 is maintained at a predetermined temperature.

前記冷却水弁25.26の制御は、第8図および第9図
に示すように複合発電設備10の過熱器16、再熱器1
7の蒸気出口側に設けられた温度検出器29.30の検
出出力信号により行われる。
The cooling water valves 25 and 26 are controlled by the superheater 16 and reheater 1 of the combined power generation facility 10, as shown in FIGS. 8 and 9.
This is carried out based on the detection output signals of temperature detectors 29 and 30 provided on the steam outlet side of No. 7.

この制御は、過熱器16、再熱器17ともほぼ同一手段
で行われるので以下第9図により過熱器16の制御につ
いて説明する。
Since this control is performed by substantially the same means for both the superheater 16 and the reheater 17, the control of the superheater 16 will be explained below with reference to FIG. 9.

前記温度検出器29の検出出力信号は偏差演算器32に
送られ、ここで温度設定器33の設定信号を受けこの信
号と比較され、偏差信号が比例・積分・微分演算器34
に送られ、この演算信号により前記冷却水弁25の開度
制御が行われる。そのため、過熱器16の蒸気は、冷却
水弁25から送られる冷却水により、所定温度に制御さ
れ高圧タービン22には常に所定温度の蒸気が送られる
The detection output signal of the temperature detector 29 is sent to the deviation calculator 32, where the setting signal of the temperature setting device 33 is received and compared with this signal, and the deviation signal is sent to the proportional/integral/differential calculator 34.
The opening degree of the cooling water valve 25 is controlled based on this calculation signal. Therefore, the steam in the superheater 16 is controlled to a predetermined temperature by the cooling water sent from the cooling water valve 25, and the steam at the predetermined temperature is always sent to the high-pressure turbine 22.

これは、また再熱器17でも同様にして低圧タービン2
4に送られる蒸気が所定温度に維持される。
This also applies to the low pressure turbine 2 in the reheater 17 as well.
4 is maintained at a predetermined temperature.

なお、第8図において35.36.37はドラム19、
管路21.23に取付けた蒸気圧力検出器、38.39
は管路21.23を流れる蒸気流量検出器である。
In addition, in Fig. 8, 35, 36, and 37 are drum 19,
Steam pressure detector installed in line 21.23, 38.39
is a steam flow rate detector flowing through line 21.23.

(発明が解決しようとする課題) しかしながら上述のような制御において、複合発電設備
10、特にガスタービン13の負荷が変動するとガスタ
ービン13から排出する排出ガス温度がその負荷に追従
して変動し、この変動により過熱器16等において加熱
される蒸気温度、すなわち出口蒸気温度が変動させられ
た時、この蒸気温度の変動は温度検出器29により検出
され、前述のように検出信号により冷却水弁25等が制
御され、出口蒸気温度が所定温度に維持されるように制
御されるが、前述のように温度検出器29が過熱器16
の出口側に設けられているため検出遅れがあり、制御が
時間的に遅れ過度的に蒸気温度が変動する。
(Problem to be Solved by the Invention) However, in the above-described control, when the load on the combined power generation equipment 10, particularly the gas turbine 13, changes, the temperature of the exhaust gas discharged from the gas turbine 13 changes to follow the load, When the steam temperature heated in the superheater 16 etc., that is, the outlet steam temperature is varied due to this variation, this variation in steam temperature is detected by the temperature detector 29, and as described above, the detection signal is sent to the cooling water valve 25. etc. are controlled so that the outlet steam temperature is maintained at a predetermined temperature, but as mentioned above, the temperature detector 29
Because it is installed on the outlet side of the steam generator, there is a detection delay, which causes a time delay in control and excessive fluctuations in steam temperature.

これ等の関係を第10図(a)および(b)により説明
する。すなわち、過熱器16の蒸気流量、蒸気入熱量は
、第10図(a)に示すように通常の温庫変化は水平で
あるが、負荷が急激に変動しガスタービン13の排出ガ
スが高温になると過熱器16に流れる蒸気流量、蒸気入
熱量が急激に変動し増加させられる。この変動が温度検
出器29により検出され冷却水弁25の開度制御がされ
、減温器27に冷却水が供給され、過熱器16から流出
する蒸気温度が制御されるが、この制御により蒸気温度
が通常の温度に近くなるまで相当の時間遅れが生ずる。
These relationships will be explained with reference to FIGS. 10(a) and (b). In other words, the steam flow rate and steam heat input of the superheater 16 are normally flat when the temperature changes as shown in FIG. Then, the flow rate of steam flowing into the superheater 16 and the amount of steam heat input are rapidly changed and increased. This fluctuation is detected by the temperature detector 29, and the opening degree of the cooling water valve 25 is controlled, cooling water is supplied to the desuperheater 27, and the temperature of the steam flowing out from the superheater 16 is controlled. There is a considerable time delay until the temperature approaches normal temperature.

例えば検出器が蒸気流量、蒸気入熱量の変動を検出し、
過熱器16が制御されるまでに時間ts−tn−tf時
間がかかってしまう。この間、負荷により過熱器16で
は設計温度以上の高温Tmになり、高温蒸気が過熱器1
6、蒸気タービン22に流れ、これ等過熱器16、蒸気
タービン22に大きな熱応力が加えられることになり、
過熱器16、蒸気タービン22の寿命を低下させる恐れ
がある。特に、複合発電膜(iil。
For example, a detector detects fluctuations in steam flow rate and steam heat input,
It takes time ts-tn-tf until the superheater 16 is controlled. During this time, the superheater 16 reaches a high temperature Tm higher than the design temperature due to the load, and high-temperature steam flows into the superheater 1.
6. It flows into the steam turbine 22, and a large thermal stress is applied to the superheater 16 and the steam turbine 22.
This may reduce the lifespan of the superheater 16 and the steam turbine 22. In particular, composite power membranes (IIL).

は、起動、停止等の繰返しが頻繁に行われるので熱応力
が受は易く、過熱器16の寿命が短くなる等の問題が生
じる。
Since starting, stopping, etc. are frequently repeated, thermal stress is easily applied, resulting in problems such as shortening of the life of the superheater 16.

また、逆に、負荷が急激に減少し冷却水弁25の制御が
遅れると蒸気温度が低下してしまい過熱器16に送られ
る冷却水の水滴が気化されずそのまま過熱器16の内部
を流れ、管内でエロージョン等が発生し過熱器16の内
部管体の減肉をもたらし、最悪の場合には、蒸気タービ
ン22にまで流れ、この蒸気タービン22を損傷する等
の問題があった。
Conversely, if the load suddenly decreases and the control of the cooling water valve 25 is delayed, the steam temperature will drop and the water droplets of the cooling water sent to the superheater 16 will not be vaporized and will flow inside the superheater 16 as is. Erosion or the like occurs within the tube, leading to thinning of the inner tube of the superheater 16, and in the worst case, the leakage flows to the steam turbine 22, causing problems such as damage to the steam turbine 22.

特に、中間負荷域の蒸気流量が少ない状況でガスタービ
ン13の排ガス温度が高くなると過熱器のゲインが大き
くなり、制御装置のゲインの不整合により温度の周期的
、不安定等が生じる問題がある。
In particular, when the exhaust gas temperature of the gas turbine 13 increases in a situation where the steam flow rate is low in the intermediate load region, the gain of the superheater increases, and there is a problem that the temperature becomes periodic and unstable due to mismatching of the gain of the control device. .

これ等の現象は、単なる蒸気タービンプラント等と比べ
て繁雑な起動、停止をされる複合発電設備では特に大き
いため問題となることがある。
These phenomena may become a problem because they are particularly large in combined power generation facilities that are started and stopped more frequently than in simple steam turbine plants.

上記負荷の急激な変動現象による蒸気流量、蒸気入熱量
の変動は、再熱器17においても同様に発生し、再熱器
17、蒸気タービン24を損傷する問題がある。
Fluctuations in the steam flow rate and steam heat input due to the sudden change in load occur in the reheater 17 as well, causing damage to the reheater 17 and the steam turbine 24.

本発明は、上記点に鑑み過熱器、再熱器等の出口蒸気温
度が変化した場合、この変化に迅速に追従し、過熱器、
再熱器等に供給される冷却水を適正に制御するようにし
た複合発電設備の蒸気温度制御装置を提供することを目
的とするものである。
In view of the above points, when the outlet steam temperature of the superheater, reheater, etc. changes, the present invention quickly follows this change, and the superheater, reheater, etc.
The object of the present invention is to provide a steam temperature control device for a combined power generation facility that appropriately controls cooling water supplied to a reheater and the like.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、ガスタービン、排ガスボイラおよび蒸気ター
ビン等からなり、上記排ガスボイラ内に配設された過熱
器、再熱器等の加熱器にそれぞれ減温器を設けた複合発
電設備の蒸気温度制御装置において、上記加熱器出口温
度と蒸気流量対応信号とによる前記減温器の冷却水弁へ
のフィードバック信号発生装置と、複合発電設備の出力
に対応する信号による前記冷却水弁へのフィードフォワ
ード信号発生装置と、減温器出口蒸気温度および蒸気圧
力信号とにより上記フィードバック信号とフィードフォ
ワード信号の和の上限を制限する上限制限器とを備えた
ものである。
(Means for Solving the Problems) The present invention consists of a gas turbine, an exhaust gas boiler, a steam turbine, etc., and a desuperheater is installed in each heater such as a superheater and a reheater disposed in the exhaust gas boiler. In the steam temperature control device for the combined cycle power generation facility provided, a feedback signal generator for generating a feedback signal to the cooling water valve of the attemperator based on the heater outlet temperature and a signal corresponding to the steam flow rate, and a signal corresponding to the output of the combined cycle power generation facility. The apparatus includes a feedforward signal generator for the cooling water valve, and an upper limit limiter that limits the upper limit of the sum of the feedback signal and the feedforward signal based on the attemperator outlet steam temperature and steam pressure signals.

(作 用) ガスタービンから排出される排出ガスにより熱回収ボイ
ラの内部の過熱器、再熱器、蒸発器が加熱され、蒸気の
発生、加熱、再加熱が行われる。
(Function) The superheater, reheater, and evaporator inside the heat recovery boiler are heated by the exhaust gas discharged from the gas turbine, and steam is generated, heated, and reheated.

この過熱器、再熱器等における蒸気温度および蒸気流量
、排出ガスの流量、温度等がそれぞれ検出器により検出
され、この検出信号がフィードバック信号発生装置に送
られ、過熱器、再熱器等を制御する冷却水弁の帰還信号
とされる。また、前記検出器の検出信号がフィードフォ
ワード制御器等に送られ、過熱器、再熱器等を制御する
冷却水弁の先行的温度等の制御を行うフィードフォワー
ド信号にさせられる。これ等信号は上限値が制御されて
冷却水弁に送られ、所定量の冷却水が減温器に供給され
て過熱器、再熱器等の温度を適正に維持するように制御
される。
The steam temperature, steam flow rate, exhaust gas flow rate, temperature, etc. in the superheater, reheater, etc. are each detected by a detector, and this detection signal is sent to a feedback signal generator to control the superheater, reheater, etc. This is used as a feedback signal for the cooling water valve to be controlled. Further, the detection signal of the detector is sent to a feedforward controller or the like, and is made to be a feedforward signal for controlling the preliminary temperature of a cooling water valve that controls a superheater, a reheater, etc. The upper limits of these signals are controlled and sent to the cooling water valve, and a predetermined amount of cooling water is supplied to the desuperheater and controlled so as to properly maintain the temperature of the superheater, reheater, etc.

(実施例) 以下本発明複合発電設備の蒸気温度制御装置の一実施例
を図面について説明する。なお、同図面において第8図
、第9図および第10図の従来の複合発電設備の蒸気温
度制御装置およびその特性図と同一部分は同一符号を以
て説明し、その詳細な説明は省略する。
(Embodiment) An embodiment of the steam temperature control device for combined cycle power generation equipment of the present invention will be described below with reference to the drawings. In addition, in the same drawing, the same parts as the steam temperature control device and its characteristic diagram for the conventional combined cycle power generation facility shown in FIGS. 8, 9, and 10 will be explained using the same reference numerals, and detailed explanation thereof will be omitted.

第1図において複合発電膜!40の主要機器は従来の複
合発電設備算器10と同様である。しかし、本発明複合
発電膜(iii40においては過熱器16、再熱器17
には、その温度、蒸気流量、蒸気圧力を検出する各種の
検出器が取付けられている。これら取付は位置、作用は
過熱器16および再熱器17とも同様であるので以下過
熱器16に取付けたものにづいて説明し、再熱器17に
ついては符号のみを付して詳細な説明は省略する。
In Figure 1, a composite power generation membrane! The main equipment 40 is the same as the conventional combined power generation equipment calculator 10. However, in the composite power generation membrane of the present invention (III40), the superheater 16 and the reheater 17
is equipped with various detectors to detect its temperature, steam flow rate, and steam pressure. The positions and functions of these installations are the same for the superheater 16 and the reheater 17, so the following explanation will be based on the one attached to the superheater 16, and the reheater 17 will only be described with reference numerals and detailed explanations will be omitted. Omitted.

この過熱器16には温度検出器が3つ設けられる。第1
の温度検出器41は、従来と同様に過熱器16の蒸気出
口側に設けられ過熱器16の出口蒸気温度が検出され、
第2の温度検出器42は、過熱器16の中間部であって
減温器27の蒸気入口側に設けられ、この入口蒸気温度
が検出され、第3の温度検出器43は、前記減温器27
の蒸気出口側に設けられ減温器27により減温された出
口蒸気温度が検出される。この他、第4の温度検出器4
4が排熱回収ボイラ15の入口側に設けられ、過熱器1
6に流入する入口排出ガス温度が検出される。また、流
量検出器45は、過熱器16の蒸気出口側に設けられ、
過熱器16により加熱された出口蒸気流量が検出され、
流量検出器46は、過熱器16の蒸気入口側に設けられ
、過熱器16に流入する入口蒸気流量が検出される。圧
力検出器47は、過熱器]6の蒸気出口側に設けられ、
過熱器16により加熱された出口蒸気圧力が検出される
。さらにまた、排出ガスの流量検出器48は、前記排熱
回収ボイラ15の排出ガス入口側に設けられ過熱器16
の入口排出ガス流量が検出されるようになっている。
This superheater 16 is provided with three temperature detectors. 1st
The temperature detector 41 is provided on the steam outlet side of the superheater 16 as in the conventional case, and detects the steam temperature at the outlet of the superheater 16.
The second temperature detector 42 is provided in the middle of the superheater 16 and on the steam inlet side of the attemperator 27, and the inlet steam temperature is detected. Vessel 27
The temperature of the outlet steam reduced by the attemperator 27 provided on the steam outlet side of the is detected. In addition, a fourth temperature detector 4
4 is provided on the inlet side of the exhaust heat recovery boiler 15, and the superheater 1
The temperature of the inlet exhaust gas flowing into 6 is detected. Further, the flow rate detector 45 is provided on the steam outlet side of the superheater 16,
The outlet steam flow rate heated by the superheater 16 is detected;
The flow rate detector 46 is provided on the steam inlet side of the superheater 16, and detects the flow rate of the inlet steam flowing into the superheater 16. The pressure detector 47 is provided on the steam outlet side of the superheater 6,
The outlet steam pressure heated by the superheater 16 is detected. Furthermore, an exhaust gas flow rate detector 48 is provided on the exhaust gas inlet side of the exhaust heat recovery boiler 15 and is connected to the superheater 16.
The inlet exhaust gas flow rate is detected.

これ等谷検出器の出力信号は第2図に示すような制御装
置に送られ、冷却水弁25が制御操作される。すなわち
、第1の温度検出器41の温度信号は、偏差演算器49
に送られ、この偏差演算器4つでは過熱器16の出口側
の蒸気温度を設定する温度設定器50の設定信号を受け
て前記温度信号と比較演算され、その偏差信号が乗算器
51に送られる。
The output signals of these valley detectors are sent to a control device as shown in FIG. 2, and the cooling water valve 25 is controlled and operated. That is, the temperature signal of the first temperature detector 41 is inputted to the deviation calculator 49.
The four deviation calculators receive a setting signal from a temperature setting device 50 that sets the steam temperature on the outlet side of the superheater 16 and compare it with the temperature signal.The deviation signal is sent to a multiplier 51. It will be done.

また、前記流量検出器45が検出した過熱器16の蒸気
流量信号は、関数発生器60に送られ温度と流量との係
数が補正され、この出力信号が前記乗算器51に送られ
る。この乗算器51では、この出力信号と前記温度偏位
信号の出力信号とが乗算され、過熱器16の蒸気出口側
の蒸気温度および蒸気流量が所定値を維持するような乗
算信号とされる。この乗算信号は比例・積分・微分演算
器52に送られて信号補正されて加算器53に送られる
。この加算器53にはこの信号とフィードフォワード演
算部Aのフィードフォワード信号を受けそれぞれ加算信
号とされる。
Further, the steam flow rate signal of the superheater 16 detected by the flow rate detector 45 is sent to a function generator 60 to correct the coefficients of temperature and flow rate, and this output signal is sent to the multiplier 51. In the multiplier 51, this output signal is multiplied by the output signal of the temperature deviation signal to produce a multiplied signal that maintains the steam temperature and steam flow rate on the steam outlet side of the superheater 16 at predetermined values. This multiplied signal is sent to a proportional/integral/differential calculator 52, subjected to signal correction, and sent to an adder 53. The adder 53 receives this signal and the feedforward signal from the feedforward calculation unit A, and converts them into addition signals.

すなわち、第2の温度検出器42により過熱器16の入
口蒸気温度が検出され、この入口蒸気温度信号がフィー
ドフォワード演算部Aのフィードフォワード演算器55
に送られ、ここで過熱器16の入口蒸気温度に先行する
フィードフォワード信号とされて加算器56に送られる
。このフィードフォワード演算部Aには同様にして温度
検出器44により検出された熱回収ボイラ15の人口排
出ガス温度の出力信号がフィードフォワード演算器57
に送られ、ここで熱回収ボイラ15の入口排出ガス温度
に先行するフィードフォワード信号とされて前記加算器
56に送られ、また、排出ガス流量検出器48により検
出された熱回収ボイラ15の入口排出ガス流量の出力信
号がフィードフォワード演算器58に送られ、ここで熱
回収ボイラ15の入口排出ガス流量に先行するフィード
フォワード信号とされて前記加算器56に送られ、さら
にまた、流量検出器45により検出された過熱器16の
出口蒸気流量の出力信号がフィードフォワード演算器5
9に送られ、ここで過熱器16の出口蒸気流量に先行す
るフィードフォワード信号とされて前記加算器56に送
られる。前記加算器56では前記各フィードフォワード
信号をそれぞれ加算して前記加算器53に送る。この加
算器53では前記比例・積分・微分演算器52から送ら
れてくる補正信号とともに各フィードフォワード信号が
加算され、過熱器16の出口蒸気温度、出口蒸気流量を
先行制御する加算信号とされる。
That is, the inlet steam temperature of the superheater 16 is detected by the second temperature detector 42, and this inlet steam temperature signal is sent to the feedforward calculator 55 of the feedforward calculator A.
It is then sent to adder 56 as a feedforward signal that precedes the inlet steam temperature of superheater 16 . Similarly, the output signal of the artificial exhaust gas temperature of the heat recovery boiler 15 detected by the temperature detector 44 is sent to the feedforward calculator 57.
The inlet exhaust gas temperature of the heat recovery boiler 15 detected by the exhaust gas flow rate detector 48 is sent to the adder 56 as a feedforward signal that precedes the exhaust gas temperature at the inlet of the heat recovery boiler 15. The output signal of the exhaust gas flow rate is sent to the feedforward calculator 58, where it is sent as a feedforward signal preceding the inlet exhaust gas flow rate of the heat recovery boiler 15 to the adder 56, and furthermore, the flow rate detector The output signal of the outlet steam flow rate of the superheater 16 detected by the feedforward calculator 5
9, where it is made into a feedforward signal that precedes the outlet steam flow rate of superheater 16 and is sent to the adder 56. The adder 56 adds the respective feedforward signals and sends the result to the adder 53. In this adder 53, each feedforward signal is added together with the correction signal sent from the proportional/integral/differential calculator 52, and is used as an addition signal for pre-controlling the outlet steam temperature and outlet steam flow rate of the superheater 16. .

この加算信号は上限制限器54に送られる。上限制限器
54では設定器66によりその作動範囲が制限され、そ
の制限された範囲の乗算信号が冷却水弁25に送られ、
この冷却水弁25の開度制御が行われる。
This addition signal is sent to an upper limiter 54. In the upper limit limiter 54, its operating range is limited by a setting device 66, and a multiplication signal of the limited range is sent to the cooling water valve 25.
The opening degree of this cooling water valve 25 is controlled.

さらに、第3の温度検出器43により減温器27の出口
蒸気温度が検出され、この出力信号が偏差演算器61に
送られる。また、圧力検出器47により過熱器16の出
口蒸気圧力が検出され、この圧力信号が関数発生器62
に送られる。この関数発生器62では圧力信号が飽和温
度信号に変換されて加算器63に送られる。この加算器
63では上記飽和温度信号に設定器64からのバイアス
信号が加算され、飽和温度信号子αの加算信号とされ前
記偏差演算器61に送られる。この加算信号と前記出力
信号とは偏差演算器61により比較演算され、その偏差
信号が比例・積分・微分演算器65を介して上限制限器
54に送られる。上限制限器54では前記偏差信号によ
り冷却水弁25への制御信号の上限値が定められ、冷却
水弁25の開度が制限される。
Furthermore, the outlet steam temperature of the attemperator 27 is detected by the third temperature detector 43, and this output signal is sent to the deviation calculator 61. Further, the pressure detector 47 detects the steam pressure at the outlet of the superheater 16, and this pressure signal is sent to the function generator 62.
sent to. The function generator 62 converts the pressure signal into a saturated temperature signal and sends it to the adder 63. In this adder 63, the bias signal from the setter 64 is added to the saturation temperature signal, which is converted into an added signal of the saturation temperature signal α and sent to the deviation calculator 61. This addition signal and the output signal are compared and calculated by a deviation calculator 61, and the deviation signal is sent to the upper limit limiter 54 via a proportional/integral/differential calculator 65. In the upper limit limiter 54, the upper limit value of the control signal to the cooling water valve 25 is determined based on the deviation signal, and the opening degree of the cooling water valve 25 is restricted.

これ等の回路構成からなる制御装置の作用を説明する。The operation of the control device having these circuit configurations will be explained.

まず、過熱器16の蒸気流量補正すなわちゲイン補正に
ついて述べる。過熱器16に排気される排出ガスとこの
過熱器16を流れる蒸気との交換熱量をQ1過熱器16
から高圧蒸気タービン22に送られる出口蒸気流量をF
1蒸気の比熱をCp。
First, the steam flow rate correction, that is, the gain correction of the superheater 16 will be described. The amount of heat exchanged between the exhaust gas exhausted to the superheater 16 and the steam flowing through the superheater 16 is
The outlet steam flow rate sent from F to the high pressure steam turbine 22 is F.
1 The specific heat of steam is Cp.

過熱器16に流入する蒸気の温度をTiとすると過熱器
16の出口蒸気温度Toは熱収支から次の式で表される
When the temperature of the steam flowing into the superheater 16 is Ti, the outlet steam temperature To of the superheater 16 is expressed by the following equation from the heat balance.

To−T i 十〇/ (Cp ・F)    (1)
一般に、過熱器16に送られてくる蒸気流ff1Fが少
ないと交換熱iQが受ける影響が大きくなり過熱器16
のゲインが大きくなるから、制御装置のゲインを小さく
する必要がある。また、制御装置のゲインが小さいまま
過熱器16に送られる蒸気流量が多くなると、過熱器1
6のゲインが小さくなるので制御性を悪くする。このた
め、蒸気流量が多量に流れる高流量域でも少量しか流れ
ない低流量域でも制御装置に最適のゲインを与えること
が必要である。
To-T i 10/ (Cp ・F) (1)
Generally, if the steam flow ff1F sent to the superheater 16 is small, the influence on the exchange heat iQ becomes large, and the superheater 16
Since the gain of the control device becomes large, it is necessary to reduce the gain of the control device. Also, if the flow rate of steam sent to the superheater 16 increases while the gain of the control device is small, the superheater 1
Since the gain of 6 becomes small, controllability becomes worse. Therefore, it is necessary to provide the control device with an optimum gain in both a high flow rate region where a large amount of steam flows and a low flow region where only a small amount of steam flows.

このゲインを得るため、まず、過熱器16を流れる蒸気
流量Fが蒸気流量検出器45により検出される。また、
温度検出器41により過熱器16から流出する出口蒸気
温度Toが検出される。蒸気流量検出器45の出力信号
は関数発生器60によって関数補正がされた後、この出
力信号が乗算器51に送られる。また、温度検出器41
の出力信号が設定器50の設定信号とともに偏差演算器
49で比較演算され、この偏差信号が乗算器51に送ら
れ。この乗算器51では関数発生器60の出力信号と偏
差演算器49の偏差信号とが乗算され、この乗算信号が
、比例・積分・微分演算器52を介して加算器53に送
られる。
In order to obtain this gain, first, the steam flow rate F flowing through the superheater 16 is detected by the steam flow rate detector 45. Also,
The temperature detector 41 detects the outlet steam temperature To flowing out from the superheater 16. The output signal of the steam flow rate detector 45 is subjected to function correction by a function generator 60, and then this output signal is sent to a multiplier 51. In addition, the temperature detector 41
The output signal is compared with the setting signal of the setting device 50 in the deviation calculation unit 49, and this deviation signal is sent to the multiplier 51. This multiplier 51 multiplies the output signal of the function generator 60 and the deviation signal of the deviation calculator 49, and this multiplied signal is sent to the adder 53 via the proportional/integral/differential calculator 52.

加算器53ではこの乗算信号とフィードフォワード演算
部Aのフィードフォワード信号とを加算して上限制限器
54に送り上限値が制御されて冷却水弁25の弁開度制
御がされる。
The adder 53 adds this multiplied signal and the feedforward signal from the feedforward calculation unit A, and sends the result to the upper limit limiter 54, where the upper limit value is controlled and the opening degree of the cooling water valve 25 is controlled.

そのため、過熱器16の出口蒸気温度Ti1出ロ蒸気流
量が冷却水弁25の弁開度制御により制御、すなわちフ
ィトバック制御され所定値の蒸気温度、蒸気流量を維持
するようにされ過熱器16のゲイン補正がされる。
Therefore, the outlet steam temperature Ti1 and the steam flow rate at the outlet of the superheater 16 are controlled by the valve opening control of the cooling water valve 25, that is, the phytback control is performed to maintain predetermined values of the steam temperature and steam flow rate. Gain correction is performed.

次に、フィードフォワード演算部Aについて説明する。Next, the feedforward calculation section A will be explained.

前記過熱器16の蒸気出口温度Toは、熱収支から上記
(1)式により表される。
The steam outlet temperature To of the superheater 16 is expressed by the above equation (1) from the heat balance.

また、熱回収ボイラ15に送られる排ガスと過熱器16
を流れる蒸気との交換熱ff1Qは、前記熱回収ボイラ
15に送られる排出ガスの排ガス流量Fg、この排出ガ
ス流入量温度Tg、過熱器16の平均蒸気温度T12と
すると実験的には次の関係がある。
In addition, the exhaust gas sent to the heat recovery boiler 15 and the superheater 16
The exchange heat ff1Q with the steam flowing through the heat recovery boiler 15 is experimentally determined by the following relationship, assuming that the exhaust gas flow rate Fg of the exhaust gas sent to the heat recovery boiler 15, the exhaust gas inflow temperature Tg, and the average steam temperature T12 of the superheater 16 are as follows. There is.

0.65 Q=に−Fg    (Tg−T12)   (2)そ
れゆえ、これらの関係から排出ガス流入量温度Tg、排
ガス流量Fg、蒸気流入温度Ti、蒸気流量Fを検出し
、その先行的な制御信号を取出すようにすればよい。そ
のため、各検出器の信号をフィードフォワード演算器5
5.57.58および59に送り、ここで先行的な出力
信号とじて冷却水弁25の開度制御をすれば、過熱器1
6の出口蒸気温度を常に最適な温度にすることができる
0.65 Q = -Fg (Tg - T12) (2) Therefore, from these relationships, detect the exhaust gas inflow temperature Tg, exhaust gas flow rate Fg, steam inflow temperature Ti, and steam flow rate F, and calculate the preceding What is necessary is to extract the control signal. Therefore, the signals of each detector are fed to the feedforward calculator 5.
5.57.58 and 59, and if the opening degree of the cooling water valve 25 is controlled using the preliminary output signal here, the superheater 1
6, the outlet steam temperature can always be kept at the optimum temperature.

すなわち、温度検出器42により過熱器16の中間部、
望ましくは入口部近くの蒸気流入温度Tiが検出され、
この検出温度信号がフィトフォワード演算器55に送ら
れ先行温度信号として加算器56に送られる。以下同様
にして、温度検出器44により熱回収ボイラ15の入口
部の排出ガスの温度Tgが検出され、この検出温度信号
がフィトフォワード演算器57に送られ先行温度信号と
して加算器56に、排出ガス流量検出器48により熱回
収ボイラ15の人口部の排出ガス流fiFgが検出され
、この検出流量信号がワイドフォワード演算器58に送
られ先行流量信号として加算器56に、さらに、流量検
出器45により過熱器16から高温高圧蒸気タービン2
2に供給される蒸気流ff1Fが検出され、この検出流
量信号がフィトフォワード演算器59に送られ先行流量
信号として加算器56にそれぞれ送られる。これ等の各
フィードフォワード信号は加算器56で加算され、その
加算されたフィードフォワード信号が前記乗算信号を受
ける加算器53に送られる。この加算器53ではフィト
フォワード信号と乗算信号すなわちフィトバック信号と
がそれぞれ加算され、この加算信号が前記上限制限器5
4を介して冷却水弁25に送られ、これを先行的に制御
操作するから過熱器16の蒸気出口温度が所望の温度に
制御できる。
That is, the middle part of the superheater 16 by the temperature detector 42,
Preferably, the steam inlet temperature Ti near the inlet is detected;
This detected temperature signal is sent to a phytoforward calculator 55 and then sent to an adder 56 as a preceding temperature signal. Similarly, the temperature Tg of the exhaust gas at the inlet of the heat recovery boiler 15 is detected by the temperature detector 44, and this detected temperature signal is sent to the phytoforward calculator 57 and sent to the adder 56 as a preceding temperature signal. The exhaust gas flow fiFg of the artificial part of the heat recovery boiler 15 is detected by the gas flow rate detector 48, and this detected flow rate signal is sent to the wide forward calculator 58 and sent to the adder 56 as a preceding flow rate signal. from the superheater 16 to the high temperature and high pressure steam turbine 2
2 is detected, and this detected flow rate signal is sent to a phytoforward calculator 59 and sent to an adder 56 as a preceding flow rate signal. Each of these feedforward signals is added by an adder 56, and the added feedforward signal is sent to an adder 53 that receives the multiplied signal. The adder 53 adds the phytoforward signal and the multiplication signal, that is, the phytoback signal, and this added signal is added to the upper limit limiter 53.
4 to the cooling water valve 25, which is controlled in advance, so that the steam outlet temperature of the superheater 16 can be controlled to a desired temperature.

そのため、蒸気タービン22は、ガスタービン13の負
荷が変動し、その排出ガス温度が変動しても、過熱器1
6は常に先行的な信号により制御されるから蒸気を過度
に高温にすることがない。
Therefore, even if the load on the gas turbine 13 fluctuates and the temperature of its exhaust gas fluctuates, the steam turbine 22 is able to operate the superheater 1
6 is always controlled by an advance signal so that the steam does not get too hot.

また、過熱器16が過度的な温度変化を受けないように
するため、温度検出器43が減温器27の出口蒸気温度
を検出し、この検出温度信号を偏差演算器61に送る。
Further, in order to prevent the superheater 16 from undergoing excessive temperature changes, the temperature detector 43 detects the outlet steam temperature of the desuperheater 27 and sends this detected temperature signal to the deviation calculator 61.

他方圧力検出器47の圧力信号が関数発生器62により
飽和温度信号と変換され、この飽和変換信号に加算器6
3で設定器64からのバイアス信号が加算され、飽和変
換信号子αの加算信号とされ偏差演算器61に送られる
。偏差演算器61では検出温度信号と飽和変換信号子α
とが比較演算され、この偏差信号が比例・積分・微分演
算器65を介して上限制限器54に送られ、この上限制
限器54の上限値が設定される。
On the other hand, the pressure signal from the pressure detector 47 is converted into a saturated temperature signal by a function generator 62, and the adder 6 is applied to this saturated converted signal.
In step 3, the bias signal from the setting device 64 is added, and the signal is made into a sum signal of the saturated conversion signal α and sent to the deviation calculator 61. The deviation calculator 61 calculates the detected temperature signal and the saturation conversion signal α
This deviation signal is sent to the upper limit limiter 54 via the proportional/integral/differential calculator 65, and the upper limit value of the upper limit limiter 54 is set.

それゆえ、前記ワイドフォワード信号とフィトバック信
号とにより冷却水弁25の開度制御する場合、その制御
信号の上限が規制されて冷却水弁25の開度が制限され
、減温器27に所定以上の冷却水を供給することがない
ので負荷変動、特に低温時に過熱器16に多量の水滴が
混入し、過熱器16、タービン22の内部構成部品を減
肉させること等の損傷を起すことがない。
Therefore, when the opening degree of the cooling water valve 25 is controlled by the wide forward signal and the phytoback signal, the upper limit of the control signal is regulated to limit the opening degree of the cooling water valve 25, and the opening degree of the cooling water valve 25 is limited. Since the above amount of cooling water is not supplied, a large amount of water droplets may enter the superheater 16 due to load fluctuations, especially at low temperatures, which may cause damage such as thinning of the internal components of the superheater 16 and the turbine 22. do not have.

以上説明したように本複合発電設備をフィトバック制御
によるゲイン補正、ワイドフォワード制iおよび過度的
な変動防止制御を行うことにより、高温高圧蒸気タービ
ン22に流入する蒸気流量、蒸気入熱量が第3図(a)
のように変化するようになっても第3図(b)で示した
ように制御でき安定した蒸気を高圧タービン22に供給
することができる。このような制御は、再熱器17にお
いても前述の制御と同様制御により行うことができる。
As explained above, by performing gain correction using phytoback control, wide forward control, and excessive fluctuation prevention control in this combined cycle power generation equipment, the flow rate of steam flowing into the high-temperature and high-pressure steam turbine 22 and the amount of steam heat input are Diagram (a)
Even if the steam changes as shown in FIG. 3(b), it can be controlled as shown in FIG. 3(b) and stable steam can be supplied to the high pressure turbine 22. Such control can also be performed in the reheater 17 by the same control as the above-mentioned control.

第4図は、他の実施例を示したもので第2図と同一部分
は同一符号を付してその説明を省略して説明する。この
フィードフォワード演算部Aの出力側には第2図の加算
器56に代えて加算微分器70が接続される。そのため
、各フィードフォワード演算器55.57.58および
59の各フィードフォワード信号が加算微分器70で加
算されるとともに微分信号として取出され、この微分信
号が加算器53、上限制限器54を介して冷却水弁25
に送られ、この冷却水弁25の開度が制御される。
FIG. 4 shows another embodiment, and the same parts as those in FIG. 2 are given the same reference numerals, and the explanation thereof will be omitted. An addition differentiator 70 is connected to the output side of the feedforward calculation section A in place of the adder 56 in FIG. Therefore, each feedforward signal of each feedforward calculator 55, 57, 58, and 59 is added by an addition differentiator 70 and taken out as a differential signal, and this differential signal is passed through an adder 53 and an upper limit limiter 54. Cooling water valve 25
The opening degree of this cooling water valve 25 is controlled.

このようにすると、蒸気流量、蒸気温度、排ガス流量、
排ガス温度等の変動に対して、偏差が残らず応答性の良
く減温器27が制御され、蒸気温度が安定に制御できる
In this way, steam flow rate, steam temperature, exhaust gas flow rate,
The desuperheater 27 is controlled with good responsiveness to fluctuations in exhaust gas temperature, etc., without leaving any deviations, and the steam temperature can be stably controlled.

第5図は、さらに他の実施例を示したもので第2図と同
一部分は同一符号を付してその説明を省略して説明する
と、フィードフォワード演算部Aの各フィードフォワー
ド演算器55.57.58および59の出力信号が加算
器56に送られ、この加算信号が温度検出器41により
検出され、設定器50、偏差演算器49により比較設定
された偏差信号を受ける加算器71に送られる。この加
算器71ではフィードフォワード演算器の加算信号と温
度検出器41の偏差信号とが加算され、前述の乗算器5
1、比例・積分・微分演算器65、上限制限器54を介
して冷却水弁25に送られ、この開度制御するようにし
たものである。
FIG. 5 shows still another embodiment, in which the same parts as in FIG. The output signals of 57, 58 and 59 are sent to the adder 56, this added signal is detected by the temperature detector 41, and is sent to the adder 71 which receives the deviation signal compared and set by the setter 50 and the deviation calculator 49. It will be done. In this adder 71, the addition signal of the feedforward calculator and the deviation signal of the temperature detector 41 are added, and the multiplier 5
1. The water is sent to the cooling water valve 25 via the proportional/integral/differential calculator 65 and the upper limit limiter 54, and its opening degree is controlled.

このように加算器56の加算信号を加算器71において
温度検出器41の偏差信号とともに加算したので、フィ
トバック制御信号とフィードフォワード信号により蒸気
流量の制御ができ、蒸気流量域毎の制御特性を向上させ
ることができる。
Since the addition signal of the adder 56 is added together with the deviation signal of the temperature detector 41 in the adder 71 in this way, the steam flow rate can be controlled by the feedback control signal and the feedforward signal, and the control characteristics for each steam flow rate region can be adjusted. can be improved.

第6図は、さらに他の実施例を示したもので第2図と同
一部分は同一符号を付して説明する。検出器は温度検出
器42、流量検出器45の他に発電機14の電力を検出
する電力検出器72を設ける。この電力検出器72の検
出信号は発電機14の先行電力変化を得るフィードフォ
ワード演算器73に送られ、そのフィードフォワード信
号が加算器56に送られる。また電力検出器72の検出
信号は関数発生器74に送られて関数補正される。
FIG. 6 shows still another embodiment, and the same parts as those in FIG. 2 will be described with the same reference numerals. In addition to the temperature detector 42 and the flow rate detector 45, a power detector 72 for detecting the power of the generator 14 is provided as a detector. The detection signal of this power detector 72 is sent to a feedforward calculator 73 that obtains a preceding power change of the generator 14, and the feedforward signal is sent to an adder 56. Further, the detection signal of the power detector 72 is sent to a function generator 74 for function correction.

この補正信号は、温度検出器41の出力信号が偏差演算
器49を介して送られる偏差信号とともに乗算器74に
送られる。この乗算器74では前記偏差演算器49の偏
差信号と関数発生器73により関数補正された信号を乗
算し、乗算信号を比例・積分・微分演算器52、加算器
53、上限制限器54を介して冷却水弁25を制御する
ようにしたものである。
This correction signal is sent to the multiplier 74 together with a deviation signal from which the output signal of the temperature detector 41 is sent via the deviation calculator 49. This multiplier 74 multiplies the deviation signal from the deviation calculator 49 by the signal corrected by the function generator 73, and sends the multiplied signal through the proportional/integral/differential calculator 52, the adder 53, and the upper limit limiter 54. The cooling water valve 25 is controlled by the

このように発電機14の電力を検出する電力検出器72
の出力信号をフィードフォワード演算器73によりフィ
ードフォワード信号とし、このフィードフォワード信号
と温度検出器41の偏差信号とを乗算器74により乗算
したので、検出機能が簡単になりかつ発電機14の電力
を検出する検出精度が正確であるから蒸気流量域毎の制
御特性を向上させることができる。
The power detector 72 detects the power of the generator 14 in this way.
The output signal of is made into a feedforward signal by the feedforward calculator 73, and this feedforward signal is multiplied by the deviation signal of the temperature detector 41 by the multiplier 74, so that the detection function is simplified and the power of the generator 14 is reduced. Since the detection accuracy is accurate, the control characteristics for each steam flow rate region can be improved.

第7図は、第6図に示した制御装置の他の実施例を示し
たもので、この制御装置から温度検出器42、流量検出
器45を除きフィードフォワード演算部Aに送る検出器
は発電機14の電力を検出する電力検出器72のみにし
たものである。
FIG. 7 shows another embodiment of the control device shown in FIG. Only the power detector 72 for detecting the power of the machine 14 is used.

このようにするとフィードフォワード演算部をさらに簡
単にすることができる。
In this way, the feedforward calculation section can be further simplified.

なお、第6図および第7図では、フィードフォワード演
算部Aの信号源として発電機14の電力信号を用いたが
、この他にガスタービンの燃料流量信号、燃料流量制御
信号等を用いても同様な制御を行うことができる。
In addition, in FIGS. 6 and 7, the power signal of the generator 14 is used as the signal source of the feedforward calculation section A, but the fuel flow signal of the gas turbine, the fuel flow control signal, etc. may also be used in addition to this. Similar control can be performed.

〔発明の効果〕〔Effect of the invention〕

本発明では複合発電設備の過熱器、再熱器の蒸気温度、
蒸気流量、排出ガス流量、排出ガス温度を検出する検出
器の信号をフィードフォワード演算部に送り、このフィ
ードフォワード演算部により各検出器の検出信号に先行
するフィードフォワード信号を取出し、このフィードフ
ォワード信号により過熱器、再熱器の蒸気温度、蒸気流
量が変化する以前にその変化に先行して冷却水弁を制御
するようにしたから、発電機、ガスタービンの負荷が急
激に変動しても過熱器、再熱器の蒸気温度、蒸気流量を
所望値に維持することができる。そのため、過熱器、再
熱器等に熱応力を加えたり、水滴を発生させることがな
い。
In the present invention, the steam temperature of the superheater and reheater of combined power generation equipment,
The signals of the detectors that detect the steam flow rate, exhaust gas flow rate, and exhaust gas temperature are sent to the feedforward calculation section, and this feedforward calculation section extracts the feedforward signal that precedes the detection signal of each detector. Since the cooling water valve is controlled in advance of changes in the steam temperature and steam flow rate of the superheater and reheater, even if the load on the generator or gas turbine changes suddenly, overheating can be avoided. The steam temperature and steam flow rate of the reheater and reheater can be maintained at desired values. Therefore, no thermal stress is applied to the superheater, reheater, etc., and no water droplets are generated.

また、上限制限器は、蒸気の過飽和条件を考慮してその
制限値を定めたから、過熱器に水滴などを流入させるこ
とがない。
Further, since the upper limit limiter has its limit value determined in consideration of the supersaturation condition of steam, water droplets etc. do not flow into the superheater.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明複合発電設備の蒸気温度制御装置の概
要を示すブロック線図1.第2図は、第1図における過
熱器の蒸気温度制御装置のブロック線図、第3図(a)
は、第1図における過熱器の蒸気流量、蒸気入熱量を示
す特性図、第3図(b)は、第1図における過熱器の蒸
気温度を示す特性図、第4図から第7図は、第2図にお
ける過熱器の蒸気温度制御装置の他の実施例を示すそれ
ぞれのブロック線図、第8図は、従来の複合発電設備の
蒸気温度制御装置の概要を示すブロック線図、第9図は
、第8図における過熱器の蒸気温度制御装置のブロック
線図、第10図(a)は、第8図における過熱器の蒸気
流量、蒸気入熱量を示す特性図、第10図(b)は、第
8図における過熱器の蒸気温度を示す特性図である。 10・・・複合発電設備、11・・・圧縮機、12・・
・過熱器、13・・・ガスタービン、14・・・発電機
、15・・・熱回収ボイラ、16・・・過熱器、17・
・・再熱器、18・・・蒸気発生器、19・・・ドラム
、22・・・高圧ガスタービン、24・・・低圧ガスタ
ービン、24.25・・・冷却水弁、26.27・・・
減温器、28・・・温度検出器、30・・・偏差演算器
、31・・・設定器、33・・・比例・積分・微分/j
t算器、40・・・複合発電設備、41.41a、42
.42a、43.43g、44および44a・・・温度
検出器、45.45a、46および46a・・・蒸気流
量検出器、47.47a・・・蒸気圧力検出器、48.
48a・・・排出ガス流量検出器、49.61・・・偏
差演算器、50.64.66・・・設定器、51.74
・・・乗算器、52.65・・・比例・積分・微分演算
器、55.57.58.59および73・・・フィード
フォワード演算器、60.62.74・・・関数発生器
、53.56.71・・・加算器、54・・・上限制限
器、70・・・加算微分器、72・・・電力検出器。
FIG. 1 is a block diagram showing an outline of the steam temperature control device for the combined cycle power generation facility of the present invention. Fig. 2 is a block diagram of the steam temperature control device of the superheater in Fig. 1, and Fig. 3(a)
is a characteristic diagram showing the steam flow rate and steam heat input of the superheater in Figure 1, Figure 3(b) is a characteristic diagram showing the steam temperature of the superheater in Figure 1, and Figures 4 to 7 are , FIG. 2 is a block diagram showing another embodiment of the steam temperature control device for a superheater, FIG. 8 is a block diagram showing an outline of a steam temperature control device for a conventional combined power generation facility, and FIG. The figure is a block diagram of the steam temperature control device of the superheater in Figure 8, Figure 10 (a) is a characteristic diagram showing the steam flow rate and steam heat input amount of the superheater in Figure 8, and Figure 10 (b) is a block diagram of the steam temperature control device of the superheater in Figure 8. ) is a characteristic diagram showing the steam temperature of the superheater in FIG. 8. 10... Combined power generation equipment, 11... Compressor, 12...
・Superheater, 13... Gas turbine, 14... Generator, 15... Heat recovery boiler, 16... Superheater, 17.
... Reheater, 18... Steam generator, 19... Drum, 22... High pressure gas turbine, 24... Low pressure gas turbine, 24.25... Cooling water valve, 26.27.・・・
Desuperheater, 28... Temperature detector, 30... Deviation calculator, 31... Setting device, 33... Proportional/integral/derivative/j
t calculator, 40...combined power generation equipment, 41.41a, 42
.. 42a, 43.43g, 44 and 44a...temperature detector, 45.45a, 46 and 46a...steam flow rate detector, 47.47a...steam pressure detector, 48.
48a... Exhaust gas flow rate detector, 49.61... Deviation calculator, 50.64.66... Setting device, 51.74
...Multiplier, 52.65...Proportional/integral/differential calculator, 55.57.58.59 and 73...Feedforward calculator, 60.62.74...Function generator, 53 .56.71...Adder, 54...Upper limit limiter, 70...Additional differentiator, 72...Power detector.

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービン、排ガスボイラおよび蒸気タービン等
からなり、上記排ガスボイラ内に配設された過熱器、再
熱器等の加熱器にそれぞれ減温器を設けた複合発電設備
の蒸気温度制御装置において、上記加熱器出口温度と蒸
気流量対応信号とによる前記減温器の冷却水弁へのフィ
ードバック信号発生装置と、複合、発電設備の出力に対
応する信号による前記冷却水弁へのフィードフォワード
信号発生装置と、減温器出口蒸気温度および蒸気圧力信
号とにより上記フィードバック信号とフィードフォワー
ド信号の和の上限を制限する上限制限器とを有すること
を特徴とする複合発電設備の蒸気温度制御装置。
1. In a steam temperature control device for a combined power generation facility consisting of a gas turbine, an exhaust gas boiler, a steam turbine, etc., and in which each heater such as a superheater and a reheater installed in the exhaust gas boiler is provided with a desuperheater. , a feedback signal generating device for generating a feedback signal to the cooling water valve of the desuperheater based on a signal corresponding to the heater outlet temperature and the steam flow rate; and a feed forward signal generating device for generating a feedforward signal to the cooling water valve using a signal corresponding to the output of the combined power generating equipment. 1. A steam temperature control device for a combined power generation facility, comprising: a device; and an upper limit limiter that limits the upper limit of the sum of the feedback signal and the feedforward signal based on the steam temperature at the outlet of the desuperheater and the steam pressure signal.
JP28475688A 1988-11-10 1988-11-10 Steam temperature controller for composite power plant facility Pending JPH02130203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28475688A JPH02130203A (en) 1988-11-10 1988-11-10 Steam temperature controller for composite power plant facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28475688A JPH02130203A (en) 1988-11-10 1988-11-10 Steam temperature controller for composite power plant facility

Publications (1)

Publication Number Publication Date
JPH02130203A true JPH02130203A (en) 1990-05-18

Family

ID=17682598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28475688A Pending JPH02130203A (en) 1988-11-10 1988-11-10 Steam temperature controller for composite power plant facility

Country Status (1)

Country Link
JP (1) JPH02130203A (en)

Similar Documents

Publication Publication Date Title
US4437313A (en) HRSG Damper control
JPH02104906A (en) Exhaust heat recovering boiler system and its operation
KR102627385B1 (en) Once-through evaporator systems
EP1533482B1 (en) Rapid power producing system and method for steam turbine
JPS6158644B2 (en)
JPS6239648B2 (en)
EP0933505B1 (en) Steam cooled system in combined cycle power plant
JP2692973B2 (en) Steam cycle startup method for combined cycle plant
US11092331B2 (en) Once-through evaporator systems
US5850740A (en) Fluidized bed power plant, and control apparatus and method thereof
JPH01318802A (en) Steam temperature control system for re-heating type combined plant
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP2002106305A (en) Starting controller of combined cycle power generation plant
JPH02130203A (en) Steam temperature controller for composite power plant facility
KR102627373B1 (en) Once-through evaporator systems
US11242987B2 (en) Once-through evaporator systems
JP2758245B2 (en) Drain water level control device for feed water heater
GB2176248A (en) Turbine control
JP3112579B2 (en) Pressure control device
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPH1054508A (en) Temperature control method and apparatus for main steam
JPH0252904A (en) Control method of steam temperature and controller
JPS63138102A (en) Desuperheating control method for turbine bypass
JPH04116204A (en) Overshoot preventive circuit for controlling turbine bypass desuperheating
JP3613690B2 (en) Turbine control method and control apparatus