JPS62204566A - Complementary mos semiconductor device - Google Patents

Complementary mos semiconductor device

Info

Publication number
JPS62204566A
JPS62204566A JP61046954A JP4695486A JPS62204566A JP S62204566 A JPS62204566 A JP S62204566A JP 61046954 A JP61046954 A JP 61046954A JP 4695486 A JP4695486 A JP 4695486A JP S62204566 A JPS62204566 A JP S62204566A
Authority
JP
Japan
Prior art keywords
type
semiconductor substrate
well region
region
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61046954A
Other languages
Japanese (ja)
Inventor
Nobuaki Hotta
堀田 信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61046954A priority Critical patent/JPS62204566A/en
Publication of JPS62204566A publication Critical patent/JPS62204566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a latch up from occurring by preventing the insulation-isolating characteristics from deteriorating while restraining the base node voltage change of parasitic thyristor from occurring by a method wherein impurity regions in the impurity concentration two figures higher than that of a semiconductor substrate and a well region are provided on the interconnection layer insulation-isolating respective MOS transistors and respective boundaries between the semiconductor substrate and the well region. CONSTITUTION:Within a CMOS semiconductor device, polycrystalline interconnections 45-50 formed through the intermediary of a thin oxide film 13 are fixed to a field region at the same potential as that of an N-type semiconductor substrate 11 in a P-type channel MOS side region likewise at the same potential as that of a P-type well region 12 in an N-type channel MOS side region. Furthermore, in the boundary part on the P-type well region 12, N<+> type impurity regions 20, 21 in the concentration two figures higher than that of the N-type semiconductor substrate 11 and at the same potential as that of said substrate 11 are provided likewise in the boundary part on the N-type semiconductor substrate 11, P<+> type impurity regions 22, 23 in the concentration two figures higher than that of the P-type well region 12 and at the same potential as that of said well region 12 are provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補型MO3417J、体装置に関し、特に、
耐放射性を向上させる素子分離構造を有した相補型MO
S半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a complementary MO3417J body device, in particular,
Complementary MO with element isolation structure that improves radiation resistance
S related to semiconductor devices.

〔従来の技術〕[Conventional technology]

従来の相補型MOS半導体装置(以下 CMO3と称する)として、例えば、第3図ムこ示すも
のがある。
As a conventional complementary MOS semiconductor device (hereinafter referred to as CMO3), there is one shown in FIG. 3, for example.

第3図において、111はN型シリコン基板、112は
P型ウェル領域、113はNチャフ ネ/I/ M O
S 4!l領域のフィールド: f+1 化膜114(
後述)下部に形成されたチャンネルストッパとしてのP
゛型型数散層領域114はLOCO3法で形成された厚
いフィールド酸化膜、115.116は熱酸化法で形成
された薄いゲート酸化膜、117.118はリンドープ
された多結晶シリコンゲート電極、119.120.1
21はNチャンネルMOSトランジスタのソース・ドレ
イン領域となるN゛型型数散層領域122.123.1
24はPチャンネルMO3トランジスタのソース・ドレ
イン領域となるP°型型数散層領域125は眉間絶縁層
としての気相成長法によるシリコン酸化膜、126.1
27はアルミ配線層である。
In FIG. 3, 111 is an N-type silicon substrate, 112 is a P-type well region, and 113 is an N-type silicon substrate.
S4! Field of l region: f+1 film 114 (
(described later) P as a channel stopper formed at the bottom
The type scattering layer region 114 is a thick field oxide film formed by LOCO3 method, 115.116 is a thin gate oxide film formed by thermal oxidation method, 117.118 is a phosphorus-doped polycrystalline silicon gate electrode, 119 .120.1
21 is an N-type scattering layer region 122.123.1 which becomes the source/drain region of the N-channel MOS transistor.
24 is a P° type scattered layer region 125 which becomes the source/drain region of a P channel MO3 transistor, and a silicon oxide film grown by vapor phase growth as an insulating layer between the eyebrows; 126.1
27 is an aluminum wiring layer.

以上のCMO5I−ランジスタにおいて、多結晶シリコ
ンゲート電極117.118を入力に接続し、ソース・
ドレイン領域119〜124のドレインを出力に接続す
るとともにNチャンネルあるいはPチャンネルの一方の
ソースを電RV o oに、かつ、他方のソースをアー
スに接続することによりNチャンネルおよびPチャンネ
ルのMOSトランジスタの直列の接続構成を得ることが
できる。この構成において、NチャンネルあるいはPチ
ャンネルのMOSトランジスタのどちらかをオンにして
他方をオフにすることができ、電力消費の少ない利用を
可能にしている。
In the above CMO5I-transistor, the polycrystalline silicon gate electrodes 117 and 118 are connected to the input, and the source and
By connecting the drains of the drain regions 119 to 124 to the output, and connecting one source of the N-channel or P-channel to the voltage RV o o and the other source to the ground, the N-channel and P-channel MOS transistors are connected. A series connection configuration can be obtained. In this configuration, either the N-channel or P-channel MOS transistor can be turned on and the other turned off, allowing use with low power consumption.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来のCMOS半導体装置によれば、放射線環
境下で使用すると、放射線照射によって電子正札対が発
生し、このうち正孔がフィールド酸化膜114、ゲート
酸化膜115.116の熱酸化膜中にトラップされると
、正の固定電荷が増加するとともに熱酸化膜・シリコン
界面に界面準位が発生するという不都合がある。この傾
向は熱酸化膜が厚いほど顕著であるため、フィールド酸
化膜114の絶縁分離特性が劣化してリーク電流が増加
したり、素子の破壊を招くことさえある。
However, according to conventional CMOS semiconductor devices, when used in a radiation environment, electron pairs are generated due to radiation irradiation, and holes among them are transferred to the thermal oxide films of the field oxide film 114 and gate oxide film 115 and 116. When trapped, positive fixed charges increase and interface states are generated at the thermal oxide film/silicon interface, which is disadvantageous. Since this tendency becomes more pronounced as the thermal oxide film becomes thicker, the insulation isolation characteristics of the field oxide film 114 may deteriorate, resulting in an increase in leakage current or even destruction of the device.

また、F、等の高エネルギー重イオン粒子の放射線の入
射によって多量の電子正孔対が発生すると、寄生ザイリ
スタのベースノードに電圧変化が生じてラッチアップを
引きおこし、電源電圧が切断されるまで大きな電流が流
れるため、素子が破壊することがある。
In addition, when a large number of electron-hole pairs are generated by the incidence of radiation from high-energy heavy ion particles such as F, a voltage change occurs at the base node of the parasitic zyristor, causing latch-up, until the power supply voltage is disconnected. Because a large current flows, the device may be destroyed.

c問題点を解決するための手段〕 本発明は上記に迄みてなさたものであり、絶縁分離特性
の劣化を防ぐため、第1の導電型の半導体基板、および
この基板に形成された第2の導電型のウェル領域にそれ
ぞれ形成された第1および第2の4電型のMO3I−ラ
ンジスタのゲート酸化膜と同じ位置レベルに薄い酸化膜
を形成し、この酸化膜上に前記半導体基板および前記ウ
ェル領域と同電位に接続された配線層を設けたCMOS
半導体装置を提供するものである。
c. Means for Solving Problems] The present invention has been made in view of the above, and in order to prevent deterioration of insulation isolation characteristics, a first conductivity type semiconductor substrate and a second conductivity type semiconductor substrate formed on this substrate are provided. A thin oxide film is formed at the same position and level as the gate oxide film of the first and second MO3I-transistors of the first and second conductivity types formed in the well regions of the conductivity type, and the semiconductor substrate and the CMOS with a wiring layer connected to the same potential as the well region
The present invention provides a semiconductor device.

また、多量の電子正孔対が発生してもこれを収集して寄
住サイリスクのベースノードの電圧変化を抑えてランチ
アップを防止するため、前記した薄い酸化膜の下方に、
かつ、少なくとも前記半導体基板と前記ウェル領域のそ
れぞれの境界部に前記半導体基板あるいは前記ウェル領
域と同電型および同電位でそれより少なくとも2桁以上
大きい不純物濃度を有した不純物領域の電子正孔対収集
層を設けたCMOS半導体装置を提供するものである。
In addition, even if a large number of electron-hole pairs are generated, in order to collect them and suppress the voltage change at the base node of the parasitic silicon risk and prevent launch-up, a
and electron-hole pairs of an impurity region having the same electric type and potential as the semiconductor substrate or the well region, and having an impurity concentration at least two orders of magnitude higher than the semiconductor substrate or the well region, at least at the boundary between the semiconductor substrate and the well region. A CMOS semiconductor device provided with a collection layer is provided.

〔実施例〕〔Example〕

以下、本発明のCMOS半導体装置を詳細に説明する。 Hereinafter, the CMOS semiconductor device of the present invention will be explained in detail.

第1図は本発明の一実施例を示し、11はN型シリコン
基板、12はP型ウェル領域、13はフィールド領域に
形成された薄いシリコン酸化膜、20.21はN型シリ
コン基板11内でP型ウェル領域に形成された基板11
より2桁以上高濃度で基板11と同電位のN゛゛不純物
領域、22.23はP型ウェル領域12内でN型シリコ
ン基板11との境界部分のフィールド領域に形成された
I〕型ウェル12より2桁以上高濃度でP型ウェル12
と同電位のP゛゛不純物領域、35、36.37.38
.39  はPチャンネルMO3側領域の薄いフィール
ド酸化膜13の下部に形成された基板11より高濃度の
N型子97屯物令頁域、40.41.42.43.44
はNチャンネルMO3側領域の薄いフィールド酸化膜1
3の下部に形成されたP型ウェル12より高濃度のP型
不純物領域、45.46.47はPチャンネルMO3側
領域の薄いフィールド酸化膜13の上に形成され基板1
1と同電位のリンドープされた多結晶シリコン配線、4
8.49.50はNチャンネルMO3側領域の薄いフィ
ールド酸化膜13の上部に形成され、P型ウェル12と
同電位のリンドープされた多結晶シリコン配線、52は
熱酸化法で多結晶シリコン配線45.46.47.48
.49.50上に形成された層間絶縁層としてのシリコ
ン酸化膜、53.54.55.56は熱酸化法で素子形
成領域に形成された薄いゲート酸化膜、57.58はリ
ンドープされた多結晶シリコンゲート電極、59.60
.61はPチャンネ・ルMOSトランジスタのソース・
ドレイン領域となるP1型拡散M領域、62.63.6
4はNチャンネルMO3I−ランリスクのソース・ドレ
イン領域となるN゛型型数散層領域65は眉間絶縁層と
しての気相成長法によるリンガラス層、66.67.6
8.69.70.71は電極取り出し用のコンタクト開
口部、72.73はアルミ配線層である。
FIG. 1 shows an embodiment of the present invention, in which 11 is an N-type silicon substrate, 12 is a P-type well region, 13 is a thin silicon oxide film formed in the field region, and 20.21 is inside the N-type silicon substrate 11. The substrate 11 formed in the P-type well region in
22.23 is an I] type well 12 formed in the field region at the boundary with the N type silicon substrate 11 within the P type well region 12; P-type well 12 at a concentration more than two orders of magnitude higher than
P゛゛ impurity region with the same potential as 35, 36.37.38
.. 39 is a higher concentration N-type element 97 area than the substrate 11 formed under the thin field oxide film 13 in the P-channel MO3 side region, 40.41.42.43.44
is the thin field oxide film 1 in the N-channel MO3 side region.
P-type impurity regions 45, 46, and 47 with a higher concentration than the P-type well 12 formed under the substrate 1 are formed on the thin field oxide film 13 in the P-channel MO3 side region.
Phosphorus-doped polycrystalline silicon wiring at the same potential as 1, 4
8.49.50 is a phosphorus-doped polycrystalline silicon wiring formed on the thin field oxide film 13 in the N-channel MO3 side region and has the same potential as the P-type well 12, and 52 is a polycrystalline silicon wiring 45 formed by thermal oxidation. .46.47.48
.. 49.50 is a silicon oxide film formed as an interlayer insulating layer, 53.54.55.56 is a thin gate oxide film formed in the element formation region by thermal oxidation, and 57.58 is a phosphorus-doped polycrystalline film. Silicon gate electrode, 59.60
.. 61 is the source of the P-channel MOS transistor.
P1 type diffused M region which becomes the drain region, 62.63.6
4 is a N-type scattering layer region 65, which becomes the source/drain region of the N-channel MO3I-run risk, is a phosphor glass layer grown by vapor phase growth as an insulating layer between the eyebrows, 66.67.6
Reference numerals 8, 69, 70, and 71 are contact openings for taking out electrodes, and 72.73 is an aluminum wiring layer.

以上のCMO3半導体装置において、フィールド領域は
薄い酸化膜13を介して形成された多結晶シリコン配線
45〜50を、PチャンネルM OS (11,!I 
N域ではN型半導体基板と同電位に固定し、Nチャンネ
ルMO5側頌域ではP型ウェルと同電位に固定している
。また、PチャンネルMOS側フィールド領域のうちP
型ウェル領域12との境界部分には、N型土4体基板よ
り2桁以上高温度でN型半導体基板と同電位のN°°不
純物領域20.21が形成され、NチャンネルMOSフ
ィールド領域のうちN型半導体基板との境界部には、P
型ウェル領域12より2桁以上高温度でP型ウェル領域
12と同電位のP゛゛不純物領域22.23が形成され
ている。
In the above CMO3 semiconductor device, the field region connects the polycrystalline silicon wirings 45 to 50 formed through the thin oxide film 13 to P channel MOS (11,!I
The N region is fixed at the same potential as the N-type semiconductor substrate, and the N-channel MO5 side region is fixed at the same potential as the P-type well. In addition, P of the P channel MOS side field area
At the boundary with the N-type well region 12, an N°° impurity region 20.21 is formed which is at least two orders of magnitude higher in temperature than the N-type soil substrate and has the same potential as the N-type semiconductor substrate. Among them, P is located at the boundary with the N-type semiconductor substrate.
P' impurity regions 22 and 23 are formed at a temperature two or more orders of magnitude higher than that of the P-type well region 12 and at the same potential as the P-type well region 12.

従って、フィールド領域は厚いLOGO3領域が不要に
なって薄い酸化膜13により形成されることになるので
放射線照射量の増、加に伴う絶縁分離特性の副化を減ら
すことができる。また、PチャンネルMO3I−ランリ
スクのソース・ドレイン領域となるP゛型型数散層領域
N型半導体基板、P型ウェル領域、およびNチャンネル
MO3!−ランリスクのソース・トレイン領域となるN
°型型数散層領域構成される寄生サイリスクにF。等の
高エネルギー重イオン粒子の放射線が入射して多量の電
子正孔対が発生しても、それらはP型つェル内のN型半
導体基板との境界部分に形成されたP型ウェルと同電位
でP型・シェル領域より21j以上高濃度のp−型不純
物領域22.23や、N半導体基板内のP型ウェル領域
との境界部分に形成されたN型基板と同電位でN型基板
より2桁以上高温度のN゛゛不純物領域20.21で収
集されるので、寄生サイリスクのベースノードの電圧変
化を抑えてランチアンプを防止することができる。
Therefore, the field region does not require a thick LOGO3 region and is formed of a thin oxide film 13, so that it is possible to reduce the deterioration of the insulation isolation characteristics due to an increase in the amount of radiation irradiation. In addition, the P-type scattering layer region which becomes the source/drain region of the P-channel MO3I-run risk, the N-type semiconductor substrate, the P-type well region, and the N-channel MO3! -N which is the source train area of run risk
F to the parasitic sirisk composed of the °-type scattering layer region. Even if a large number of electron-hole pairs are generated by the incidence of radiation from high-energy heavy ion particles such as At the same potential, the p-type impurity region 22.23 has a higher concentration than the P-type/shell region by 21j or more, and the N-type impurity region 22.23 formed at the boundary with the P-type well region in the N-semiconductor substrate at the same potential. Since it is collected in the N' impurity regions 20 and 21, which have a temperature two or more orders of magnitude higher than the substrate, it is possible to suppress the voltage change at the base node of the parasitic silicon risk and prevent a launch amplifier.

次に、本発明のCM OS半導体装置の製造方法を第2
図(al〜(hlを用いて説明する。
Next, the method for manufacturing a CMOS semiconductor device of the present invention will be described in a second manner.
This will be explained using figures (al to (hl).

第2図(a)において、N型シリコン基板11上にP型
ウェル領域12を形成した後、基板全面に薄いシリコン
酸化膜13を形成し、光食刻法によりフォトレジスト1
4をパターニングしてPチャンネルMOS側フィールド
領域のうらP型ウェル領域12との境界部分に前記フォ
トレジスト14をマスクとして薄い酸化膜13を通して
イオン注入法によりリンを3 X 10 ”cm−”N
型シリコン基)反11内に打ち込んでリン注入領域15
.16を形成する。
In FIG. 2(a), after forming a P-type well region 12 on an N-type silicon substrate 11, a thin silicon oxide film 13 is formed on the entire surface of the substrate, and a photoresist 1 is formed by photolithography.
4 is patterned, and 3×10 ”cm-”N of phosphorus is applied by ion implantation through the thin oxide film 13 using the photoresist 14 as a mask at the boundary between the field region on the P-channel MOS side and the P-type well region 12.
phosphorus implantation region 15
.. form 16.

第2図(blにおいて、前記フォトレジスト14を除去
した後、新たにフォトレジスト17を光食刻法によりパ
ターニングしてNチャンネルMO3側フィールド11]
域のうちN型シリコン基板との境界部分に前記フォトレ
ジスト17をマスクとして薄い酸化Jl!14を通して
イオン注入法によりボロンを3X1015cm−2p型
ウエル領域12内に打ち込んで注入領域18.19を形
成する。
FIG. 2 (in BL, after removing the photoresist 14, a new photoresist 17 is patterned by photolithography and the N-channel MO3 side field 11)
Using the photoresist 17 as a mask, thin oxide Jl! Boron is implanted into the 3.times.10@15 cm@-2p type well region 12 by ion implantation through 14 to form implanted regions 18.19.

第2図fc)において、フォトレジスト17を除去した
後、熱処理を行って前記リン注入領域15.16および
ボロン注入領域18.19をアニールして、それぞれ、
N型基板11およびP型ウェル領域12より高濃度のN
゛型不純物領域20.21およびP゛型不純物領域22
.23を形成する。また、全面に気相成長法によりシリ
コン窒化膜24および多結晶シリコン層25を被着した
後、光食刻法によりフォトレジストパターン26を形成
した後、このレジストパターン26をマスクとしてフィ
ールド領域の多結晶シリコン層25およびシリコン窒化
膜24をエツチング除去する。
In FIG. 2 fc), after removing the photoresist 17, a heat treatment is performed to anneal the phosphorus implanted region 15.16 and the boron implanted region 18.19, respectively.
A higher concentration of N than the N type substrate 11 and the P type well region 12
゛ type impurity region 20.21 and P ゛ type impurity region 22
.. form 23. Further, after depositing a silicon nitride film 24 and a polycrystalline silicon layer 25 on the entire surface by vapor phase epitaxy, a photoresist pattern 26 is formed by photoetching, and then a photoresist pattern 26 is formed in the field region using this resist pattern 26 as a mask. Crystalline silicon layer 25 and silicon nitride film 24 are removed by etching.

第2図(dlにおいて、フォトレジスト26を除去した
後、新たに光食刻法によりフォトレジストパターン27
を形成し、レジストパターン27および多結晶シリコン
層パターン25をマスクとしてPチャンネルMO3側フ
ィールド領域に薄い酸化膜13を通してイオン注入法に
よりリンを約I X 10 Izcm−”N型基板ll
内に打ち込んで注入領域28.29.30を形成する。
In FIG. 2 (dl), after removing the photoresist 26, a new photoresist pattern 27 is formed by photolithography.
Using the resist pattern 27 and the polycrystalline silicon layer pattern 25 as a mask, phosphorus is implanted into the P channel MO3 side field region through the thin oxide film 13 by ion implantation to a thickness of about I x 10 Izcm-''N type substrate.
implant regions 28, 29, 30.

第2図(elにおいて、フォトレジスト27を除去した
後、新たに光食刻法によりフォトレジストパターン3工
を形成し、このレジストパターン27および多結晶シリ
コン層パターン25をマスクとしてNチャンネルMO3
側フィールド領域に薄い酸化膜13を通してイオン注入
法によりボロンを約I X 1012cm−”P型ウェ
ル領域12内に打ち込んでボロン注入領域32.33.
34を形成する。
In FIG. 2 (el), after removing the photoresist 27, a new photoresist pattern 3 is formed by photolithography, and using this resist pattern 27 and the polycrystalline silicon layer pattern 25 as a mask, an N-channel MO3
Boron is implanted into the P-type well region 12 by approximately I.times.10@12 cm by ion implantation through the thin oxide film 13 in the side field region to form boron implanted regions 32, 33.
form 34.

第2図([1において、フォトレジスト31および多結
晶シリコンパターン層25を除去した後、熱処理を行っ
てリン注入領域28.29.30およびボロン注入領域
32.33.34をアニールして、それぞれ、N型基板
11およびP型ウェル領域12より高濃度のN型不純物
領域35.36.37.38.39およびP型不純物領
域40.41.42.43.44を形成する。更に、全
面にリンドープされた多結晶シリコン層を被着形成し、
光食刻法によりフォトレジストパターン51を形成した
後、このレジストパターン51をマスクとしてリンドー
プされた多結晶シリコン層をエツチング除去してフィー
ルド領域にリンドープ多結晶9937層パターン45.
46.47.48.49.50を形成する。
After removing the photoresist 31 and the polycrystalline silicon pattern layer 25 in FIG. , N-type impurity regions 35, 36, 37, 38, 39 and P-type impurity regions 40, 41, 42, 43, 44 are formed with a higher concentration than the N-type substrate 11 and the P-type well region 12. depositing a phosphorus-doped polycrystalline silicon layer;
After forming a photoresist pattern 51 by photolithography, the phosphorus-doped polycrystalline silicon layer is etched away using the resist pattern 51 as a mask to form a phosphorus-doped polycrystalline 9937 layer pattern 45. in the field region.
Form 46.47.48.49.50.

第2図(g)において、フォトレジスト51を除去した
後、熱酸化法によりリンドープ多結晶9937層パター
ン45.46.47.48.49.50の表面および側
面にシリコン酸化膜52を形成し、さらに、シリコン酸
化膜52をマスクとしてシリコン窒化膜24をエツチン
グ除去し、さらに、シリコン窒化膜24下の薄い熱酸化
膜13をエツチング除去して新たに熱酸化法により薄い
ゲート酸化Hり53.54.55.56を形成する。
In FIG. 2(g), after removing the photoresist 51, a silicon oxide film 52 is formed on the surface and side surfaces of the phosphorus-doped polycrystalline 9937 layer pattern 45, 46, 47, 48, 49, 50 by thermal oxidation method, Furthermore, using the silicon oxide film 52 as a mask, the silicon nitride film 24 is removed by etching, and the thin thermal oxide film 13 under the silicon nitride film 24 is further etched and removed, and a thin gate oxide film 53.54 is newly etched using a thermal oxidation method. Form .55.56.

第2図(hlにおいて、多結晶シリコンゲート電極57
.5Bを形成し、Nチャンネル側MO3I−ランリスタ
のソース・ドレイン領域となるN1型拡散層領域62.
63.64を砒素のイオン注入法により形成し、Pチャ
ンネル側MOSトランジスタのソース・ドレイン領域と
なるP゛型拡散N領域59.60.61をボロンのイオ
ン注入法により形成し、全面に気相成長法によりリンガ
ラス層を形成し、コンタクト開口部66.67.68.
69.70.71をフォトエツチング法により形成し、
そのアルミ配線層72.73を形成して、CMO3半導
体装置が完成する。
FIG. 2 (in hl, polycrystalline silicon gate electrode 57
.. 5B and become the source/drain regions of the N-channel side MO3I-run lister.
63 and 64 are formed by arsenic ion implantation, and P'-type diffused N regions 59, 60, and 61, which will become the source/drain regions of the P-channel side MOS transistor, are formed by boron ion implantation. A phosphorus glass layer is formed by a growth method and contact openings 66, 67, 68 .
69.70.71 is formed by photoetching method,
The aluminum wiring layers 72 and 73 are formed to complete the CMO3 semiconductor device.

なお、以上の実施例では、N型半導体基板を用いた場合
を示したが、P型半導体基板に対しても適用可能であり
、N゛型半導体基板上にN型のエピタキシャル層を成長
させた基板についても同様に適用可能である。
In addition, although the above example shows the case where an N-type semiconductor substrate is used, it is also applicable to a P-type semiconductor substrate, and an N-type epitaxial layer is grown on an N-type semiconductor substrate. The same applies to substrates.

また、フィールド領域の薄い酸化膜の上部に形成する配
線層は多結晶シリコンを用いた場合を示したが、高融点
全屈または、品融点金属と多結晶シリコンの二層構造な
ども適用可能である。
In addition, although polycrystalline silicon is used for the wiring layer formed on top of the thin oxide film in the field region, it is also possible to use a high-melting point metal or a double-layer structure of high-melting point metal and polycrystalline silicon. be.

さらに、フィールド領域に用いる薄い絶縁膜としては、
熱酸化法によるシリコン酸化膜の場合を示したが、気相
成長法によるシリコン酸化膜やシリコン窒化膜などを用
いてもよい。
Furthermore, as a thin insulating film used in the field region,
Although a silicon oxide film formed by thermal oxidation is shown, a silicon oxide film, a silicon nitride film, or the like formed by vapor phase growth may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明のCMO3半導体装置によれ
ば、第1の導電型の半導体基板、およびこの基板に形成
された第2の導電型のウェル領域にそれぞれ形成された
第1および第2の導電型のMOSトランジスタのゲート
酸化膜と同じ位置レベルに薄い酸化膜を形成し、この酸
化膜上に前記半導体基板および前記ウェル領域と同電位
に接続された配線層を設けたため、絶縁分離特性の劣化
を防くことができる。
As explained above, according to the CMO3 semiconductor device of the present invention, the first conductivity type semiconductor substrate and the first and second conductivity type well regions formed in the second conductivity type well region are respectively formed in the first conductivity type semiconductor substrate and the second conductivity type well region formed in this substrate. A thin oxide film is formed at the same level as the gate oxide film of a conductive type MOS transistor, and a wiring layer connected to the same potential as the semiconductor substrate and the well region is provided on this oxide film, which improves insulation isolation characteristics. Deterioration can be prevented.

また、前記した薄い酸化絶縁膜の下方に、かつ、少なく
とも前記半W体基板と前記ウェル領域のそれぞれの境界
部に前記半導体基板あるいは前記ウェル領域と同電型お
よび同電位でそれより少なくとも2桁以上大きい不純物
濃度を有した不純物領域の電子正孔対収集層を設けたた
め、多量の電子正孔対が全件してもこれを収集して寄生
サイリスクのベースノードの電圧変化を抑えてラッチア
ップを防止することができる。
Further, below the thin oxide insulating film and at least at the boundary between the half-W body substrate and the well region, the semiconductor substrate or the well region has the same electric type and potential, and is at least two orders of magnitude higher than the semiconductor substrate or the well region. Since we have provided an electron-hole pair collection layer in the impurity region with a large impurity concentration, even if a large number of electron-hole pairs are present, they will be collected, suppressing the voltage change at the base node of the parasitic silicon risk, and latch-up. can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のCMO5半導体装置の一実施例を示す
断面図、第2図(al〜(hlは本発明のCMO3半導
体装置の製造工程を示すtll’i面図、第3図は従来
のCMO3半導体装置を示す断面図。 符号の説明 11−−−−−−−−−−− N型シリコン基板12−
−−−−−・−P型ウェル領域 20.21−・−−−−−−−−一基板より十分に高濃
度のN゛型不純物5M域 22.23−−−−−−−・・−ウェルより十分に高濃
度のP+型不純物領域 13〜−一・・・−・薄いフィールド酸化膜3.5.3
6.37.38.39・−・−・・・基板より高濃度の
N型不純物領域 40.41.42.43.44− ・−ウェルより高濃
度のP型不純物領域 45 、46 、4.7−−一−−−−・一基板と同電
位に固定された多結晶シリコン配線層 4 B 、 49 、50−−−−−−・−・−ウェル
と同電位に固定された多結晶シリコン配線層
FIG. 1 is a cross-sectional view showing one embodiment of the CMO5 semiconductor device of the present invention, FIG. A cross-sectional view showing a CMO3 semiconductor device.
-------P-type well region 20.21------N-type impurity 5M region with a sufficiently higher concentration than one substrate 22.23----- - P+ type impurity region 13 with a sufficiently higher concentration than the well - -1...- Thin field oxide film 3.5.3
6.37.38.39---N-type impurity regions with higher concentration than the substrate 40.41.42.43.44--P-type impurity regions with higher concentration than the well 45, 46, 4. 7--1--Polycrystalline silicon wiring layer fixed to the same potential as the substrate 4B, 49, 50--Polycrystalline silicon fixed to the same potential as the well wiring layer

Claims (1)

【特許請求の範囲】 第1の導電型の半導体基板に形成された第2の導電型の
MOSトランジスタと、前記半導体基板に形成された第
2の導電型のウェル領域に形成された第1の導電型のM
OSトランジスタを備えた相補型MOSトランジスタに
おいて、 前記第1および第2の導電型のMOSトランジスタのゲ
ート酸化膜と略同じ位置レベルに形成された薄い酸化絶
縁膜上に設けられ、かつ、対応する前記半導体基板およ
び前記ウェル領域と同電位に接続されて前記MOSトラ
ンジスタをそれぞれ絶縁分離する配線層と、前記酸化絶
縁膜を介して前記配線層の下方に、かつ、前記半導体基
板と前記ウェル領域のそれぞれの境界部に少なくとも設
けられ、対応する前記半導体基板あるいは前記ウェル領
域と同電型および同電位でその不純物濃度よりも少なく
とも2桁以上濃度が高い不純物領域を有することを特徴
とする相補型MOS半導体装置。
[Scope of Claims] A MOS transistor of a second conductivity type formed in a semiconductor substrate of a first conductivity type, and a MOS transistor of a second conductivity type formed in a well region of a second conductivity type formed in the semiconductor substrate. conductivity type M
In a complementary MOS transistor including an OS transistor, the thin oxide insulating film is provided on a thin oxide insulating film formed at approximately the same position level as the gate oxide films of the first and second conductivity type MOS transistors, and A wiring layer that is connected to the same potential as the semiconductor substrate and the well region and insulates and isolates the MOS transistors, and a wiring layer that is connected to the semiconductor substrate and the well region under the wiring layer via the oxide insulating film, and A complementary MOS semiconductor comprising an impurity region provided at least at a boundary of the corresponding semiconductor substrate or the well region, having the same electric type and potential as the corresponding semiconductor substrate or the well region, and having an impurity concentration that is at least two orders of magnitude higher than that of the corresponding semiconductor substrate or the well region. Device.
JP61046954A 1986-03-04 1986-03-04 Complementary mos semiconductor device Pending JPS62204566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61046954A JPS62204566A (en) 1986-03-04 1986-03-04 Complementary mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61046954A JPS62204566A (en) 1986-03-04 1986-03-04 Complementary mos semiconductor device

Publications (1)

Publication Number Publication Date
JPS62204566A true JPS62204566A (en) 1987-09-09

Family

ID=12761681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61046954A Pending JPS62204566A (en) 1986-03-04 1986-03-04 Complementary mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS62204566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399895A (en) * 1993-03-23 1995-03-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing thereof
JP2007109873A (en) * 2005-10-13 2007-04-26 Seiko Epson Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399895A (en) * 1993-03-23 1995-03-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing thereof
JP2007109873A (en) * 2005-10-13 2007-04-26 Seiko Epson Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP2974211B2 (en) SOI semiconductor device
US4085498A (en) Fabrication of integrated circuits containing enhancement-mode FETs and depletion-mode FETs with two layers of polycrystalline silicon utilizing five basic pattern delineating steps
US6337253B1 (en) Process of making buried capacitor for silicon-on-insulator structure
JPH039631B2 (en)
JPS6372164A (en) Manufacture of improved type integrated circuit
JPH02284462A (en) Process for forming high voltage and low voltage cmos transistors on single integrated circuit chip
JP3148977B2 (en) Method for manufacturing semiconductor device
JPH02166762A (en) Compact cmos device and
JPS63102264A (en) Thin film semiconductor device
JPH0824144B2 (en) Method for manufacturing semiconductor device
EP0097375B1 (en) Three-dimensional semiconductor device
JPS63129647A (en) Semiconductor device
JPS62204566A (en) Complementary mos semiconductor device
JP2914000B2 (en) Method for manufacturing semiconductor device
JPH08316335A (en) Semiconductor device and fabrication thereof
US4772568A (en) Method of making integrated circuit with pair of MOS field effect transistors sharing a common source/drain region
JPH0492449A (en) Semiconductor device
JPS62123736A (en) Semiconductor device
JPH06275830A (en) Accumulation-type polycrystalline silicon thin-film transistor
JPS61220454A (en) Manufacture of semiconductor integrated circuit device
JPH0328071B2 (en)
JPH06181312A (en) Manufacture of semiconductor device
EP0112662A1 (en) Stacked MOS devices with polysilicon interconnects
JPH06232372A (en) Semiconductor storage device
JPS59138363A (en) Semiconductor device and manufacture thereof