JPS6220420A - Buffer circuit - Google Patents

Buffer circuit

Info

Publication number
JPS6220420A
JPS6220420A JP60158178A JP15817885A JPS6220420A JP S6220420 A JPS6220420 A JP S6220420A JP 60158178 A JP60158178 A JP 60158178A JP 15817885 A JP15817885 A JP 15817885A JP S6220420 A JPS6220420 A JP S6220420A
Authority
JP
Japan
Prior art keywords
input
circuit
ecl
terminal
buffer circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60158178A
Other languages
Japanese (ja)
Other versions
JPH0775315B2 (en
Inventor
Hisayuki Higuchi
樋口 久幸
Makoto Suzuki
誠 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60158178A priority Critical patent/JPH0775315B2/en
Publication of JPS6220420A publication Critical patent/JPS6220420A/en
Publication of JPH0775315B2 publication Critical patent/JPH0775315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/09448Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET in combination with bipolar transistors [BIMOS]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements
    • H03K19/017518Interface arrangements using a combination of bipolar and field effect transistors [BIFET]
    • H03K19/017527Interface arrangements using a combination of bipolar and field effect transistors [BIFET] with at least one differential stage

Abstract

PURPOSE:To shorten the practical delay time of a BiCMOS or CMOS logic LSI by giving the logic function to a buffer circuit to cope with both of ECL and TTL signals. CONSTITUTION:The ECL signal is inputted to the first terminal A11. The ECL signal has the level shifted by bipolar transistors TRs QA1 and DA1 and is supplied to an input TR QA2. If the second input is a large signal from BiCMOS or CMOS circuit, it is supplied to a terminal A21 and is supplied to an input TR QA3 through a MOSFET. If the second inpt is the ECL signal, it has the level shifted similarly to the first input and is connected directly to a terminal A2. The same operation is performed with respect to the third input terinal A31, but a terminal A3 is connected directly to the emitter of a TR QA4 if there is not the input. In this circuit, OR and NOR are outputted to output terminals with a minimum delay time when both of ECL and TTL signals are inputted.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体集積回路にかがねり、特に高速論理LS
Iのバッファ回路に好適なLSI回路に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention applies to semiconductor integrated circuits, and particularly to high-speed logic LS.
The present invention relates to an LSI circuit suitable for a buffer circuit of I.

〔発明の背景〕[Background of the invention]

従来のバッファ回路は、特開昭57−113483号に
みられるように出力信号を入力側回路に帰還している、
いわゆるフリップ・フロップ型の回路であった。このた
め動作速度が十分でない、信号の切り変わりにおいて消
費電力が大きいほど高速、低消費電力回路としては性能
が不足していた。
Conventional buffer circuits feed back the output signal to the input side circuit, as seen in Japanese Patent Laid-Open No. 57-113483.
It was a so-called flip-flop type circuit. For this reason, the operating speed is not sufficient, and the higher the power consumption during signal switching, the lower the performance as a high-speed, low-power consumption circuit.

〔発明の目的〕[Purpose of the invention]

本発明の目的は高速な人出力バツファ回路を具備した論
理LSIを提供することにある。
An object of the present invention is to provide a logic LSI equipped with a high-speed human output buffer circuit.

〔発明の概要〕[Summary of the invention]

基本ゲート回路と入出力バッファ回路をLSI上に製作
しておき、これらの回路を組合せ接続することによって
ユーザの要求する論理LSIを製作する、いわゆるゲー
ト・アレー・マスタスライスLSIがある。このLSI
によって製作した論理LSIの1ゲートあたりの平均遅
延時間は、内部回路の遅延時間に人、出力画バッファ回
路の遅延時間を加え、これを論理段数で割った値となる
There is a so-called gate array master slice LSI in which a basic gate circuit and an input/output buffer circuit are fabricated on an LSI, and a logic LSI requested by a user is fabricated by combining and connecting these circuits. This LSI
The average delay time per gate of the logic LSI manufactured by is the value obtained by adding the delay time of the internal circuit to the delay time of the output image buffer circuit, and dividing this by the number of logic stages.

マスクスライスLSIにおける内部回路の論理段数は少
ない場合2〜3段、平均値でも5段程度の論理回路を少
なくない。このように論理段数が少ないと、内部ゲート
回路が速く動作しても、入出力バッファ回路の遅れのた
めに平均遅延時間が大きくなり、高速の論理LSIが得
られない。
The number of logic stages of internal circuits in a mask slice LSI is 2 to 3 stages at the most, and the average number of logic circuits is about 5 stages. When the number of logic stages is small in this way, even if the internal gate circuit operates quickly, the average delay time increases due to the delay of the input/output buffer circuit, making it impossible to obtain a high-speed logic LSI.

本発明はこの入出力回路の遅延時間の影響を低減するた
めになされたもので、入カバツファ、出カバッファ回路
にも論理機能を持たせたことを特徴とする。
The present invention was made to reduce the influence of the delay time of this input/output circuit, and is characterized in that the input buffer and output buffer circuits also have logic functions.

このように入出力バッファ回路にも論理機能を持たせた
回路はバイポーラECLマスタスライスには採用されて
いるが0MO3やB1CMOSゲート・アレーマスタス
ライスLSIでは人出力バツファ回路には論理機能を持
たせていない。これは人出力バツファ回路に論理機能を
持たせにくい回路であることのほかに、内部論理の段数
が多く、人出力バツファ回路の遅延時間の影響が少ない
論理回路を応用分解としていることもある。
In this way, a circuit in which the input/output buffer circuit also has a logic function is used in bipolar ECL master slices, but in 0MO3 and B1CMOS gate array master slice LSIs, the human output buffer circuit does not have a logic function. do not have. This is not only because it is difficult to provide a logic function to a human output buffer circuit, but also because the logic circuit has a large number of internal logic stages and is less affected by the delay time of the human output buffer circuit.

しかしながら上述したようにバイポーラECLマスタス
ライスの内部論理段数が少ない上に、消費電力とデバイ
ス歩留りの制約から高集積化、高速化が困難となってい
る現在、この分野への0MO3もしくはBiCMO3回
路の適用が強く求められている。
However, as mentioned above, the number of internal logic stages of a bipolar ECL master slice is small, and it is difficult to achieve high integration and high speed due to power consumption and device yield constraints, so it is difficult to apply 0MO3 or BiCMO3 circuits to this field. is strongly required.

このような応用分野の回路では上述のように論理段数の
きわめて少ない論理回路が多用されており、入出力バッ
ファ回路の遅延時間の影響を低減することが高速論理L
SIを製作するために不可欠である6 またバイポーラECLマスタスライスエ、SIの応泪分
野では超高速動作が要求されることがらECL入出力レ
ベルが常用されており、この信号レベルに対応できる人
出力バッファ回路であることも必要条件である。
As mentioned above, logic circuits with a very small number of logic stages are often used in circuits in such application fields, and high-speed logic L
6 In addition, bipolar ECL master slicer is essential for manufacturing SI, and ECL input/output level is commonly used because ultra-high speed operation is required in the field of SI, and human output that can handle this signal level is required. A buffer circuit is also a necessary condition.

本発明はこのような要求に対してなされたもので、基本
的にはバイポーラECL論理LSiで用いられているカ
レント・スイッチ回路のスイッチング・トランジスタの
ベース電極にMOSFETを1妾続し、このMOSFE
TのゲートにTTLレベルもしくはこれ以上の大振幅の
信号を加え、必要ならばECLレベルの信号は直接スイ
ッチング・トランジスタのベース電極に供給することに
よって、ECL。
The present invention was made in response to such a demand, and basically consists of connecting a MOSFET to the base electrode of a switching transistor of a current switch circuit used in a bipolar ECL logic LSi, and
ECL can be achieved by applying a large amplitude signal of TTL level or higher to the gate of T, and if necessary, supplying an ECL level signal directly to the base electrode of the switching transistor.

TTL両信号レベルに対応できる人出力バッファ回路を
提供することにある。
An object of the present invention is to provide a human output buffer circuit that can handle both TTL and TTL signal levels.

〔発明の実施例〕[Embodiments of the invention]

以下本実施例にもとづき詳細に説明する。 A detailed explanation will be given below based on this embodiment.

第1図は本発明になる入力バッファ回路である。FIG. 1 shows an input buffer circuit according to the present invention.

バイポーラECLマスタスライスで用いられるカレント
・スイッチ回路を基本とじ入カバイボーラトランジスタ
のコレクタ・ベース間、ベースと電源77間にそれぞれ
PMO3,NHO2が付加された回路である。人力バッ
ファ回路では少なくとも1箇の入力はE CL イ’a
号が入力するので、これは端子Allに接続される。カ
レント・スイッチの出力OA、OAはBiCMO3もし
くはCMO8回路に供給されるので、その振幅は大きい
ことが望ましいので、バイポーラ・トランジスタQAI
およびダイオード接続されたバイポーラ・トランジスタ
DAIによってレベルシフトしたのち入力トランジスタ
QA2に供給する。第2の入力がBiCMO5もしくは
CMO3回路からの大振幅信号であるときにはA21に
供給され、入力トランジスタQA3のベース端子A2に
電流を供給しQA3を動作させる。第2の入力がECL
レベルであるときには第1の入力と同様にバイポーラト
ランジスタQAI、ダイオードDAIに相当するデバイ
スによるレベルシフトをおこなったのちに端子A2に直
接接続することはいうまでもない。第3の入力信号につ
いても第2の入力と同様であるが、第3の入力がない場
合にはMO3FET接続をせず、A3をQA4のエミッ
タ端子に接続するのみでよい。このほかの動作について
はECLバイポーラ論理回路と同じが、きわめて類似し
ているので説明を省く。
This circuit basically incorporates the current switch circuit used in the bipolar ECL master slice, and PMO3 and NHO2 are added between the collector and base of the bipolar transistor, and between the base and the power supply 77, respectively. In a manual buffer circuit, at least one input is E CL I'a
Since the signal is input, it is connected to terminal All. Since the outputs OA and OA of the current switch are supplied to the BiCMO3 or CMO8 circuit, it is desirable that their amplitude be large, so the bipolar transistor QAI
After being level-shifted by a diode-connected bipolar transistor DAI, the signal is supplied to the input transistor QA2. When the second input is a large amplitude signal from the BiCMO5 or CMO3 circuit, it is supplied to A21, supplies current to the base terminal A2 of input transistor QA3, and operates QA3. The second input is ECL
Needless to say, when it is at the level, it is connected directly to the terminal A2 after performing a level shift using a device corresponding to the bipolar transistor QAI and the diode DAI in the same way as the first input. The third input signal is also similar to the second input, but if there is no third input, it is sufficient to connect A3 to the emitter terminal of QA4 without connecting the MO3FET. The other operations are the same as those of the ECL bipolar logic circuit, but since they are very similar, the explanation will be omitted.

この回路によれば、ECL、TTI、両(g号が入力し
た場合に出力端子にはそれぞれOR,NORが出力され
、これによって論理回路を構成できることはいうまでも
ない。この回路の遅延時間は3.2  nsであり、論
理機能をもたない入力バッファ回路の3nsにくらべ遅
延時間の増加はわずかであった。
According to this circuit, when ECL, TTI, and both (g) are input, OR and NOR are output to the output terminal, respectively, and it goes without saying that a logic circuit can be constructed by this.The delay time of this circuit is The delay time was 3.2 ns, which was a small increase in delay time compared to 3 ns for an input buffer circuit without a logic function.

第2図は第2の実施例の出力バッファ回路を示す。基本
的には第1図に示した入力バッファ回路と同様である。
FIG. 2 shows an output buffer circuit of a second embodiment. It is basically the same as the input buffer circuit shown in FIG.

ただし、入力バイポーラ・トランジスタのすべてに対し
、ECL、TTL信号いずれにも対応できるようにする
ため、MOSFETが用意されており、また、ECL入
力に対してはレベルシフトすることなく直接入力トラン
ジスタのベース端子に接続するのみでよい。
However, in order to be able to handle both ECL and TTL signals for all input bipolar transistors, MOSFETs are provided, and for ECL inputs, MOSFETs are provided directly at the base of the input transistors without level shifting. Just connect it to the terminal.

この回路における遅延時間はECL回路の遅延時間とほ
ぼ同じ値が得られ、出力回路に論理機能をもたせること
によって実効的には出力バッファ回路の遅延時間を削く
ことができた。
The delay time in this circuit was approximately the same as the delay time in the ECL circuit, and by providing the output circuit with a logic function, it was possible to effectively reduce the delay time in the output buffer circuit.

第1図、第2図の実施例においてはNHO2−FETの
ソース端子を電源vTに接続したが、この端子を入力バ
イポーラ・トランジスタのエミッタ端子へ接続すること
、電源■9.に接続することも可能である。前者の接続
をおこなう場合にはNHO2−FETのゲート幅を第1
図の回路にくらべ広くし、後者。
In the embodiments shown in FIGS. 1 and 2, the source terminal of the NHO2-FET is connected to the power supply vT, but this terminal should be connected to the emitter terminal of the input bipolar transistor, the power supply ■9. It is also possible to connect to When making the former connection, the gate width of the NHO2-FET is
The latter is wider than the circuit shown in the figure.

の接続をおこなう場合には逆に狭くすることが望ましい
。これらの接続における特徴は、前者の接続法が、デバ
イス配置と接続の占有面積が小さく、実施例(第1図、
第2図)および後者の接続法では占有面積にほとんど差
がなかった。回路の遅延時間はNMO5FETのソース
端子を電源■、、に接続した後者の接続法になる回路が
最も小さかった。
On the contrary, it is desirable to make the connection narrower. The characteristics of these connections are that the former connection method occupies a small area for device placement and connection;
2) and the latter connection method, there was almost no difference in the occupied area. The delay time of the circuit was the smallest in the circuit using the latter connection method in which the source terminal of the NMO5FET was connected to the power supply (2) and (2).

また、第1図、第2図においてPMO3FETのソース
端子をバイポーラ・1ヘランジスタのコレクタ端子A6
.B6に接続しているが、これに第2の電源を接続し、
この第2の電源電圧をECL入力信号に相当する高電位
レベルに設定することも可能である。このようにすると
入力信号による端子All、Bllの電位変化量が低減
され、より高速な回路が実現できる効果がある。
In addition, in Figures 1 and 2, the source terminal of the PMO3FET is connected to the collector terminal A6 of the bipolar 1 helang transistor.
.. It is connected to B6, but connect a second power supply to this,
It is also possible to set this second power supply voltage to a high potential level corresponding to the ECL input signal. In this way, the amount of change in the potential of the terminals All and Bll due to the input signal is reduced, which has the effect of realizing a faster circuit.

第3図は第3の実施例に示す出力バッファ回路である。FIG. 3 shows an output buffer circuit according to a third embodiment.

基本的には第2図に示した出力バッファ回路と同様であ
る。ただし、第2図では入力バイポーラ・トランジスタ
の導通、非導通をMOSFETの入力によって制御した
が本実施例ではECL入力信号に対しては直接バイポー
ラ・トランジスタのベース端子に接続し、大振幅信号入
力に対してはNMO3FETのゲートに直接入力し、こ
のM OS I−’ E Tの裏通非導通によって論理
機能をもたせることを特徴とする。第3図ではNMO3
FET MC11、MC21。
It is basically the same as the output buffer circuit shown in FIG. However, in Fig. 2, the conduction and non-conduction of the input bipolar transistor are controlled by the input of the MOSFET, but in this embodiment, the ECL input signal is directly connected to the base terminal of the bipolar transistor, and the input bipolar transistor is connected directly to the base terminal of the bipolar transistor. On the other hand, it is characterized in that it is directly input to the gate of the NMO3FET, and a logic function is provided by back-conducting non-conduction of this MOS I-'ET. In Figure 3, NMO3
FET MC11, MC21.

MC31を用いたが、これをPMO3F[Tにすること
も、また混在させることも可能である。
Although MC31 was used, it is also possible to use PMO3F[T or a mixture thereof.

〔発明の効果〕〔Effect of the invention〕

以上のべたように本発明によれば従来入力バツファ回路
、出力バッファ回路の遅延時間が内部論理回路の遅延時
間に加算され実質的な遅延時間を増加させていたものを
、バッファ回路にも論理機能を付与し、かつ、その入力
信号レベルにECL。
As described above, according to the present invention, the delay time of the input buffer circuit and the output buffer circuit is added to the delay time of the internal logic circuit, which increases the actual delay time, but the buffer circuit also has a logic function. and ECL to the input signal level.

TTL両信号に対応できる回路とすることによりBiC
MO3やCMO8論理LSIの実質的な遅延時間を低減
し、バイポーラECL論理LSIに西遊する高速動作を
より低消費電力のもとに実現することができた。
By making the circuit compatible with both TTL signals, BiC
By reducing the substantial delay time of MO3 and CMO8 logic LSIs, we were able to achieve high-speed operation comparable to bipolar ECL logic LSIs with lower power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明によるECL。 TTL両信号レベルが混在する入力信号に対応できる入
カバツファ、出力バツファ回路を示す回路図、第3図は
、本発明による他の出力バッファ回路を示す図である。 QAI、・・・、QA6.QBI、・・・、QB7゜Q
CI、・・・、QC7・・・バイポーラトランジスタ、
RAI、・・・、RA3.RBI、・・・、RB5゜R
CI、・・・、RC4・・・抵抗。
FIG. 1 and FIG. 2 each show an ECL according to the present invention. FIG. 3 is a circuit diagram showing an input buffer circuit and an output buffer circuit capable of handling input signals having both TTL and TTL signal levels. FIG. 3 is a diagram showing another output buffer circuit according to the present invention. QAI, ..., QA6. QBI,...,QB7゜Q
CI, ..., QC7... bipolar transistor,
RAI, ..., RA3. RBI,..., RB5゜R
CI,..., RC4...Resistance.

Claims (1)

【特許請求の範囲】[Claims] バイポーラ・トランジスタよりなるECL回路において
ECL信号レベルのほかに少なくとも、1箇の異なる信
号レベルの信号が混在して入力したときにこれら入力に
対し論理機能をもつことを特徴とするバッファ回路。
A buffer circuit comprising a bipolar transistor having a logic function when at least one signal at a different signal level is mixedly inputted in addition to the ECL signal level in an ECL circuit.
JP60158178A 1985-07-19 1985-07-19 Buffer circuit Expired - Lifetime JPH0775315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60158178A JPH0775315B2 (en) 1985-07-19 1985-07-19 Buffer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158178A JPH0775315B2 (en) 1985-07-19 1985-07-19 Buffer circuit

Publications (2)

Publication Number Publication Date
JPS6220420A true JPS6220420A (en) 1987-01-29
JPH0775315B2 JPH0775315B2 (en) 1995-08-09

Family

ID=15665973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158178A Expired - Lifetime JPH0775315B2 (en) 1985-07-19 1985-07-19 Buffer circuit

Country Status (1)

Country Link
JP (1) JPH0775315B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153593A (en) * 1995-11-30 1997-06-10 Nec Corp Bimos logic circuit
JP2007536399A (en) * 2004-05-03 2007-12-13 オプティマー・フォトニクス・インコーポレイテッド Nonlinear optically active molecules, their synthesis and use
DE102008031499A1 (en) 2007-07-05 2009-01-08 Musashi Seimitsu Industry Co., Ltd., Toyohashi Method for mounting bags involves mounting on sleeves with large and small diameters and adapted to bearing linkage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051327A (en) * 1983-08-31 1985-03-22 Hitachi Ltd Semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051327A (en) * 1983-08-31 1985-03-22 Hitachi Ltd Semiconductor integrated circuit device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153593A (en) * 1995-11-30 1997-06-10 Nec Corp Bimos logic circuit
US5850155A (en) * 1995-11-30 1998-12-15 Nec Corporation BIMOS logic circuit directly controllable by a CMOS block formed on same IC chip
JP2007536399A (en) * 2004-05-03 2007-12-13 オプティマー・フォトニクス・インコーポレイテッド Nonlinear optically active molecules, their synthesis and use
DE102008031499A1 (en) 2007-07-05 2009-01-08 Musashi Seimitsu Industry Co., Ltd., Toyohashi Method for mounting bags involves mounting on sleeves with large and small diameters and adapted to bearing linkage

Also Published As

Publication number Publication date
JPH0775315B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
JPH06103837B2 (en) Tri-state output circuit
JPH07193488A (en) Level shifter circuit
JPS6220420A (en) Buffer circuit
JPS5384578A (en) Semiconductor integrated circuit
KR930007566B1 (en) Bi-cmos circuit
JPS5856354A (en) Master slice large-scale integrated circuit
JP3418993B2 (en) Semiconductor integrated circuit
JPH0529847A (en) Active load circuit and differential amplifier circuit using the same
JPH0322615A (en) Cmos-ecl transducer
JP2855796B2 (en) Semiconductor output circuit
JPH02248115A (en) Integrated circuit
JPH02248116A (en) Semiconductor integrated circuit
JP2734531B2 (en) Logic circuit
SU1465940A1 (en) Flip-flop with mis-transistors
JPS60217726A (en) Logic circuit
JPS5937736A (en) Current switching type logical circuit
JPH0334723A (en) Gate array type semiconductor integrated circuit device
EP0455079B1 (en) CMOS to ECL level converter for digital signals
JPS58151053A (en) Semiconductor integrated circuit device
JPH0481120A (en) Cmos level shift circuit
JPS60254824A (en) Output circuit of cmos integrated circuit
JPH03272221A (en) Chemical compound semiconductor integrated circuit
JPS59117330A (en) Semiconductor integrated circuit device
JP2000039939A (en) One chip cpu and its voltage converting circuit
JPH01251819A (en) Buffered fet logic circuit