JPH0481120A - Cmos level shift circuit - Google Patents

Cmos level shift circuit

Info

Publication number
JPH0481120A
JPH0481120A JP2195354A JP19535490A JPH0481120A JP H0481120 A JPH0481120 A JP H0481120A JP 2195354 A JP2195354 A JP 2195354A JP 19535490 A JP19535490 A JP 19535490A JP H0481120 A JPH0481120 A JP H0481120A
Authority
JP
Japan
Prior art keywords
channel mos
type mos
level shift
gate
shift circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2195354A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takeda
武田 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2195354A priority Critical patent/JPH0481120A/en
Publication of JPH0481120A publication Critical patent/JPH0481120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

PURPOSE:To generate a CMOS level shift circuit with a small element area and excellent high speed performance by providing a couple of series connection circuits each comprising a P-channel MOS TR and an N-channel MOS TR between a power terminal and ground and operating them based on a level of a Si substrate. CONSTITUTION:Two signals whose phase is inverted are inputted respectively to each gate of N-channel MOS TRs 14,15 in a high voltage operation from inverters 10,11 in low voltage operation. The N-channel MOS TRs 14,15 are so designed that the size of the TR is increased nearly twice more than that of the P-channel MOS TRs 12,13 and their threshold voltage is decreased more than 1/2VDD, then one of the Nchannel MOS TRs 14,15 is made conductive and the other is made nonconductive. Thus, the input level to the gate of the P-channel MOS TR is VDD and the TR is surely nonconductive, and therefore no through-current flows.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、CMOSレベルシフト回路に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to CMOS level shift circuits.

従来の技術 以下に従来のCMOSレベルシフト回路について説明す
る。第2図にレベルシフト回路の従来例を示す。
2. Description of the Related Art A conventional CMOS level shift circuit will be described below. FIG. 2 shows a conventional example of a level shift circuit.

P型MO3をドライバとして使用した回路と、第3図に
示すように電源端子と接地間にN型MOSトランジスタ
とP型MOS トランジスタのトランジスタサイズ比を
変えてスレッシュホールド電圧を下げた回路がある。
There is a circuit that uses a P-type MO3 as a driver, and a circuit that lowers the threshold voltage by changing the transistor size ratio of the N-type MOS transistor and the P-type MOS transistor between the power supply terminal and the ground, as shown in FIG.

CMOSプロセスにおいてはN型Si基板を用いて、S
i基板を電源電圧(V D、D )に設定するため、チ
ップ周辺部にVDDのアルミ配線があり、一般にマスク
設計上、VDDを基準として行なう。
In the CMOS process, an N-type Si substrate is used, and S
In order to set the i-substrate to the power supply voltage (V D, D ), there is aluminum wiring for VDD around the chip, and VDD is generally used as a reference for mask design.

また、第3図の回路形式は素子数が少ないという利点は
あるが、常に貫通電流が流れてしまうため、集積回路と
して使用したときの消費電流を増やす結果となる。
Further, although the circuit format shown in FIG. 3 has the advantage of having a small number of elements, a through current always flows, resulting in an increase in current consumption when used as an integrated circuit.

発明が解決しようとする課題 一方、P型Si基板を用いてSiのN層をエピタキシャ
ル成長させたウェハ上にCMO3回路を形成する場合、
81基板は接地(GND)であり、チップ周辺部にGN
Dのアルミ配線があるためSi基板を基準にできず、ま
た、マスク設計上P型MO3トランジスタをドライバと
して用いているため、面積的に大きくなり、また高速性
に劣るという欠点を有していた。
Problems to be Solved by the Invention On the other hand, when forming a CMO3 circuit on a wafer on which an N layer of Si is epitaxially grown using a P-type Si substrate,
The 81 board is grounded (GND), and there is a GN around the chip.
Because of the D aluminum wiring, it was not possible to use a Si substrate as a reference, and due to the mask design, a P-type MO3 transistor was used as a driver, which resulted in a large area and poor high-speed performance. .

本発明は上記従来の問題点を解決するもので、低消費電
流で且つ81基板を基準にしたCMOSレベルシフト回
路の提供を目的とするものである。
The present invention solves the above-mentioned conventional problems, and aims to provide a CMOS level shift circuit with low current consumption and based on an 81 substrate.

課題を解決するための手段 本発明は電源端子と接地間に各一対のP型MOSトラン
ジスタとN型MOSトランジスタの直列接続を有し、S
i基板を基準として動作させるため低電圧部から位相の
反転した2つの信号を高電圧部の前記N型MOSトラン
ジスタの各ゲートに入力し、且つこのN型MOSトラン
ジスタのトランジスタサイズをP型MOSトランジスタ
より太きくした構成のCMOSレベルシフト回路である
Means for Solving the Problems The present invention has a pair of P-type MOS transistors and an N-type MOS transistor connected in series between a power supply terminal and ground, and an S
In order to operate with the i-board as a reference, two signals with inverted phases are input from the low voltage section to each gate of the N-type MOS transistor in the high voltage section, and the transistor size of the N-type MOS transistor is changed to that of the P-type MOS transistor. This is a CMOS level shift circuit with a thicker configuration.

従って、スレッシュホールド電圧を1、・′2・VDD
より下げることにより、低電圧入力においても確実にN
型MOSトランジスタを導通、非導通にてき、また、貫
通電流を少なくするために、2個のP型MOSトランジ
スタの一方のゲートを他方のドレインに接続する構成を
有するため入力レベルに関係なくN型MOSトランジス
タの導通、非導通のみにより確実にP型MOSトランジ
スタをカットオフさせるものである。
Therefore, the threshold voltage is set to 1,・'2・VDD
By lowering the voltage even at low voltage input, the N
In order to make the P-type MOS transistor conductive and non-conductive, and to reduce the through current, the gate of one of the two P-type MOS transistors is connected to the drain of the other. The P-type MOS transistor is reliably cut off only by making the MOS transistor conductive or non-conductive.

作用 本発明によると、P型Si基板を用いた場合、容易にG
ND (基板)を基準にでき、これにより素子面積も小
さく、高速性に優れたCMOSレベルシフト回路を作成
できる。
According to the present invention, when a P-type Si substrate is used, G
ND (substrate) can be used as a reference, and thereby a CMOS level shift circuit with a small element area and excellent high speed can be created.

実施例 以下本発明の実施例を図面に基づき詳細に説明する。Example Embodiments of the present invention will be described in detail below based on the drawings.

第1図に本発明の一実施例を示す。図においてインバー
タ10.11は低電圧で動作する。その出力をN型MO
Sトランジスタ14.15の各ゲートにそれぞれ接続す
る。N型MOSトランジスタ1.4.15のドレインを
P型MOSトランジスタ13,12の各ゲートに入力接
続する。
FIG. 1 shows an embodiment of the present invention. In the figure, inverter 10.11 operates at low voltage. The output is N type MO
Connected to each gate of S transistors 14 and 15, respectively. The drains of N-type MOS transistors 1, 4, and 15 are input connected to the respective gates of P-type MOS transistors 13 and 12.

上記のように構成されたCMOSレベルシフト回路につ
いて、以下その動作を説明する。
The operation of the CMOS level shift circuit configured as described above will be described below.

まず、低電圧で動作しているインバータ10゜11より
互いに位相の反転した2つの信号を、高電圧動作のN型
MOSトランジスタ14.15の各ゲートにそれぞれ入
力する。N型MOSトランジスタ14.15はP型MO
Sトランジスタ12゜13に比べてトランジスタサイズ
を2倍程度太き(し、スレッシュホールド電圧を1/2
・VDDより下げることにより、低電圧入力でもN型M
OSトランジスタ14,15は、一方が導通、他方が非
導通状態とすることができる。この導通したN型MOS
トランジスタのドレインは非導通状態のN型MOSトラ
ンジスタのドレインとドレインを共通としているP型M
OSトランジスタのゲートに接続されていることからP
型MOsトランジスタへの入力レベルはGNDであり確
実に導通する。従って、導通状態のN型MOSトランジ
スタのドレインとトレインを共通としているP型MOS
トランジスタのゲートへの入力レベルはVDDであり確
実に非導通となるため貫通電流がほとんど流れることは
ない。
First, two signals whose phases are inverted from each other are input from the inverter 10.degree. 11 operating at a low voltage to each gate of the N-type MOS transistors 14 and 15 operating at a high voltage. N-type MOS transistors 14 and 15 are P-type MOS transistors.
Compared to the S transistor 12°13, the transistor size is about twice as thick (and the threshold voltage is 1/2).
・N-type M even with low voltage input by lowering the voltage below VDD
One of the OS transistors 14 and 15 can be in a conductive state and the other can be in a non-conductive state. This conductive N-type MOS
The drain of the transistor is a P-type M whose drain is common to the drain of an N-type MOS transistor in a non-conducting state.
Since it is connected to the gate of the OS transistor, P
The input level to the type MOS transistor is GND, so that it is reliably conductive. Therefore, a P-type MOS transistor whose drain and train are common to an N-type MOS transistor in a conductive state
Since the input level to the gate of the transistor is VDD and the transistor is definitely non-conductive, almost no through current flows.

発明の効果 本発明は、GND (基板〉を基準にでき、ドライバに
N型MOSトランジスタを用いることにより素子面積も
小さくでき、また高速性にも優れ、バイポーラ素子との
接続にも有利となる利点を有する。
Effects of the Invention The present invention has the advantage that it can be based on GND (substrate), the element area can be reduced by using an N-type MOS transistor for the driver, it is excellent in high speed, and it is advantageous for connection with bipolar elements. has.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のCMOSレベルシフト回路、第2図、
第3図はCMOSレベルシフト回路の従来例である。 10.11・・・・・・インバータ、12.13・・・
・・・P型MOSトランジスタ、14 、15・旧−・
N型MOSトランジスタ、■・・・・・・入力端子、0
・・・・・・出力端子。
FIG. 1 shows a CMOS level shift circuit of the present invention, FIG.
FIG. 3 shows a conventional example of a CMOS level shift circuit. 10.11... Inverter, 12.13...
...P-type MOS transistor, 14, 15, old--
N-type MOS transistor, ■...Input terminal, 0
...Output terminal.

Claims (1)

【特許請求の範囲】[Claims] 電源と接地との間にP型MOSトランジスタとN型MO
Sトラジスタとを直列接続した構成を並列に一対で有し
、二段接続したインバータの各段の出力を、前記並列電
路中の各N型MOSトランジスタの各ゲートに接続し、
同N型MOSトランジスタの各ドレインと前記並列電路
中の各P型MOSトランジスタの各ゲートとを互いに交
差接続し、且つ前記並列電路のうちの一方のN型MOS
トランジスタのドレインにインバータ16を接続し、且
つ前記各N型MOSトランジスタのサイズを前記各P型
MOSトランジスタサイズに比して大きくしたことを特
徴とするCMOSレベルシフト回路。
P-type MOS transistor and N-type MO between power supply and ground
A pair of S transistors connected in series are connected in parallel, and the output of each stage of the two-stage connected inverter is connected to each gate of each N-type MOS transistor in the parallel circuit,
Each drain of the same N-type MOS transistor and each gate of each P-type MOS transistor in the parallel circuit are cross-connected to each other, and one of the N-type MOS transistors in the parallel circuit
A CMOS level shift circuit characterized in that an inverter 16 is connected to the drain of the transistor, and the size of each of the N-type MOS transistors is larger than the size of each of the P-type MOS transistors.
JP2195354A 1990-07-23 1990-07-23 Cmos level shift circuit Pending JPH0481120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2195354A JPH0481120A (en) 1990-07-23 1990-07-23 Cmos level shift circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2195354A JPH0481120A (en) 1990-07-23 1990-07-23 Cmos level shift circuit

Publications (1)

Publication Number Publication Date
JPH0481120A true JPH0481120A (en) 1992-03-13

Family

ID=16339778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2195354A Pending JPH0481120A (en) 1990-07-23 1990-07-23 Cmos level shift circuit

Country Status (1)

Country Link
JP (1) JPH0481120A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19526564C2 (en) * 1994-07-20 2001-06-28 Micron Technology Inc CMOS driver circuit for low-high voltage control of capacitive loads
US8854348B2 (en) 2009-10-15 2014-10-07 Samsung Electronics Co., Ltd. Negative level shifters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19526564C2 (en) * 1994-07-20 2001-06-28 Micron Technology Inc CMOS driver circuit for low-high voltage control of capacitive loads
US8854348B2 (en) 2009-10-15 2014-10-07 Samsung Electronics Co., Ltd. Negative level shifters

Similar Documents

Publication Publication Date Title
JPH0653807A (en) Cmos-ecl converter provided with incorporated latch
JPS63240126A (en) Bimos logic circuit
JPH0481120A (en) Cmos level shift circuit
JP3120492B2 (en) Semiconductor integrated circuit
JP3540401B2 (en) Level shift circuit
JPH03132115A (en) Semiconductor integrated circuit
JPS60236322A (en) Mos transistor circuit
JP3550954B2 (en) High hysteresis width input circuit
KR910009804B1 (en) Substrate potential detection circuit
US6218867B1 (en) Pass transistor circuit
JPS62208715A (en) Semiconductor integrated circuit
JPH0218960A (en) Complementary clocked nand circuit
JPH0210763A (en) Semiconductor integrated circuit
JPH11214981A (en) Level shift circuit
JP3073064B2 (en) Multi-input logic circuit and semiconductor memory
JP2002100978A (en) Bipolar level shift circuit
JPS6094740A (en) Master slice ic
JPH04213919A (en) Semiconductor integrated circuit
JPS6323349A (en) Cmos semiconductor integrated circuit
JPH03201620A (en) Level shift circuit
JP2002026693A (en) Schmitt circuit
JPH03159313A (en) Output circuit and semiconductor integrated circuit device
JPH10341151A (en) Path transistor logic circuit
JPH114157A (en) Semiconductor integrated circuit
JPH0377537B2 (en)