JPS6220137A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS6220137A
JPS6220137A JP15900185A JP15900185A JPS6220137A JP S6220137 A JPS6220137 A JP S6220137A JP 15900185 A JP15900185 A JP 15900185A JP 15900185 A JP15900185 A JP 15900185A JP S6220137 A JPS6220137 A JP S6220137A
Authority
JP
Japan
Prior art keywords
film
taking
polymer film
magnetic recording
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15900185A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15900185A priority Critical patent/JPS6220137A/en
Publication of JPS6220137A publication Critical patent/JPS6220137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To make mass production of a high-density magnetic recording medium possible by electrostatically charging a high-polymer film right after un-winding and destaticizing the same just prior to taking-up in the case of moving the high-polymer film along a rotary support and depositing a ferromagnetic metal thereon by electron beam evaporation while taking up the film. CONSTITUTION:The high-polymer film is electrostatically charged right after un-winding and is destaticized just prior to taking-up in the stage of moving the high-polymer film along the rotary support and depositing the ferromagnetic metal by evaporation on said film while taking up the film. The film is electrostatically charged by the effect of a high-voltage probe 20 and since the film is brought into tight contact with the respective surfaces of rollers and can by the effect of the electrostatic attraction in the direction perpendicular to said surfaces during the movement of the film in contact with elements 24, 25, 13, etc. constituting the take-up system and therefore, the vapor deposition and taking up are executed after the generation of rubbing grazes is thoroughly suppressed. The stress perpendicular to a take-up shaft is integrated if the film is kept electrostatically charged after the film is wound to a long size. The film is thereby transversely wrinkled and is consequently required to be destaticized. Since the destaticization without contact is desirable, the film is passed in glow discharge and either of ions or electrons are utilized according to polarities.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度磁気記録に適する強磁性金属薄膜を磁気
記録層とする磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium having a magnetic recording layer made of a ferromagnetic metal thin film suitable for high-density magnetic recording.

従来の技術 現在実用に供されている酸化鉄微粒子、成力は合金微粒
子を高分子フィルム上に結合剤で固定した。いわゆる塗
布型磁気テープ、磁気ディスク等の磁気記録媒体による
記録密度の向上には限界がみえはじめたため、新しい製
法により得られる強磁性金属薄膜を磁気記録層とする磁
気記録媒体の実用化が望まれるようになっている。
Prior Art Iron oxide fine particles and alloy fine particles currently in practical use are fixed on a polymer film with a binder. As improvements in recording density using magnetic recording media such as so-called coated magnetic tapes and magnetic disks have begun to reach their limits, it is desirable to put into practical use magnetic recording media whose magnetic recording layer is a ferromagnetic metal thin film obtained by a new manufacturing method. It looks like this.

現在検討されている代表的な製法は、電子ビーム蒸着法
、スパッタリング法、湿式めっき法であるが、そのうち
電子ビーム蒸着法が生産性の面で最も有望といえる。〔
例えば外国論文誌アイイーイーイートランザクション 
オン マグネテックス(I E E E Transa
ctions on magnetics )Vol、
MAG  20.&1 、PP、51〜56(1984
) 参照〕第2図は従来の磁気記録層の形成に用いられ
た蒸着装置の内部構成図である。第2図において、1は
円筒状キャン、2は基板で、3は巻出し軸、4は巻取り
軸、6は蒸発源、6は蒸気流、了はマスク、8,9.1
0は夫々放電電極、11はガイドローラ、12はエキス
パンダローラである。
Typical manufacturing methods currently being considered include electron beam evaporation, sputtering, and wet plating, of which electron beam evaporation is the most promising in terms of productivity. [
For example, foreign journal IEE Transaction
On Magnetex (I E E E Transa
tions on magnetics) Vol.
MAG 20. &1, PP, 51-56 (1984
) Reference] FIG. 2 is an internal configuration diagram of a vapor deposition apparatus used for forming a conventional magnetic recording layer. In Fig. 2, 1 is a cylindrical can, 2 is a substrate, 3 is an unwinding shaft, 4 is a winding shaft, 6 is an evaporation source, 6 is a vapor flow, 2 is a mask, 8, 9.1
0 is a discharge electrode, 11 is a guide roller, and 12 is an expander roller.

これらの構成要素は真空容器内に配置され、真空ポンプ
で排気され、必要に応じて外部より導入された酸素ガス
等の雰囲気中で電子ビーム蒸着を行うように働く。
These components are placed in a vacuum container, evacuated by a vacuum pump, and work to perform electron beam evaporation in an atmosphere containing oxygen gas or the like introduced from the outside as necessary.

巻出し軸3を出た高分子フィルムから成る基板2は、放
電電極8でグロー放電処理され、エキスパンダローラ1
2でしわをのばされて円筒状キャン1に沿って矢印Aの
方向に移動しながら限定された蒸気流6に露呈され、こ
の場合は刻々と変わる入射角で積分型の斜め蒸着による
磁気記録層の形成が行われる。磁気記録層の形成を終え
た基板は、放電電極9,10に挾1れた形で放電処理さ
れ、再びエキスパンダ12でシワを伸ばされて、巻取シ
軸4で巻取られる。
The substrate 2 made of a polymer film that has come out of the unwinding shaft 3 is subjected to glow discharge treatment with a discharge electrode 8, and then transferred to an expander roller 1.
2 and is exposed to a limited vapor flow 6 while moving along the cylindrical can 1 in the direction of arrow A, in this case magnetic recording by integral oblique deposition with an ever-changing incident angle. Formation of the layer takes place. The substrate on which the magnetic recording layer has been formed is sandwiched between discharge electrodes 9 and 10 and subjected to discharge treatment, then wrinkles are smoothed out again by the expander 12, and the substrate is wound up by the winding shaft 4.

所定の長さの電子ビーム蒸着が終了したら、巻取り軸4
に巻取られた状態の加工済基板は、大気中に取り出され
、熱処理、コーティング処理等の複数の加工工程を経て
、磁気テープや磁気ディスクなどの磁気記録媒体となる
When the electron beam evaporation of a predetermined length is completed, the winding shaft 4
The processed substrate in a wound state is taken out into the atmosphere and undergoes multiple processing steps such as heat treatment and coating treatment to become a magnetic recording medium such as a magnetic tape or a magnetic disk.

発明が解決しようとする問題点 しかしながら上記した方法では、ガイドローラ。The problem that the invention seeks to solve However, in the method described above, the guide roller.

円筒状キャン等の回転体と、移動する基板が完全に同期
した状態で運動しないので、基板に極めて浅いスリ傷が
予期以上に発生することがあり、短波長ディジタル記録
に供した時にブロックエラーレイトがテープの長手位置
で異常に増加することがあるため改良が望まれていた。
Because the rotating body, such as a cylindrical can, and the moving substrate do not move in perfect synchronization, extremely shallow scratches may occur on the substrate than expected, resulting in a block error rate when used for short wavelength digital recording. Since there are cases where the amount increases abnormally in the longitudinal position of the tape, an improvement has been desired.

本発明は上記した問題点に鑑みてなされたもので、基板
と回転体との間に相対運動が起らないようにすることで
ブロックエラーレイトの改良された高密度磁気記録媒体
を大量に生産することの出来る磁気記録媒体の製造方法
を提供するものである。
The present invention has been made in view of the above-mentioned problems, and allows mass production of high-density magnetic recording media with improved block error rate by preventing relative motion between the substrate and the rotating body. The present invention provides a method for manufacturing a magnetic recording medium that can perform the following steps.

問題点を解決するだめの手段 上記問題点を解決するために本発明の磁気記録媒体の製
造方法は、高分子フィルムを巻取υながら回転支持体に
沿わせて強磁性金属を電子ビーム蒸着する方法にあって
、高分子フィルムを巻出し直後に静電帯電せしめ、巻取
シ直前に除電することを特徴とするものである。
Means for Solving the Problems In order to solve the above problems, the method for producing a magnetic recording medium of the present invention involves electron beam evaporation of a ferromagnetic metal along a rotating support while winding a polymer film. The method is characterized in that the polymer film is electrostatically charged immediately after unwinding, and static electricity is removed immediately before winding.

作   用 本発明は上記した方法にょ9、ガイドローラ。For production The present invention relates to the above-described method 9 and a guide roller.

エキスパンダローラ、円筒状キャン等の回転体と高分子
フィルムの間に引力が働くため、相対運動せず、完全に
同期して運動するので、柔かい高分子フィルムにスリ傷
が入ることがないので、スリ傷が入ることでできるフィ
ルムのくずがトリガーとなるブロックエラーレイトが異
常増加することは長手で全くみられないようにできるこ
ととなる。
Because an attractive force acts between rotating bodies such as expander rollers and cylindrical cans and the polymer film, they do not move relative to each other, but move in complete synchronization, so there is no scratching on the soft polymer film. This means that the abnormal increase in the block error rate, which is triggered by film scraps caused by scratches, can be completely eliminated in the longitudinal direction.

実施例 以下、本発明の実施例の磁気記録媒体の製造方法につい
て図面を参照しながら説明する。
EXAMPLE Hereinafter, a method for manufacturing a magnetic recording medium according to an example of the present invention will be described with reference to the drawings.

第1図は本発明を実施するために用いる蒸着装置の内部
構成図である。
FIG. 1 is an internal configuration diagram of a vapor deposition apparatus used to carry out the present invention.

第1図において、13は円筒状キャン、14は高分子フ
ィルムから成る基板、15は巻出し軸、16は巻取り軸
、1了は電子ビーム蒸発源、18は蒸気流、19はマス
ク、2oは高分子フィルムを巻出し直後に静電帯電せし
めるだめの高圧グローブである。21.22は除電のた
めのグロー放電電極で、23は蒸着前のグロー放電処理
またはイオンエツチング処理などの目的に使用出来る放
電電極、24はガイドローラ、26はエキスパンダロー
ラである。
In FIG. 1, 13 is a cylindrical can, 14 is a substrate made of polymer film, 15 is an unwinding shaft, 16 is a winding shaft, 1 is an electron beam evaporation source, 18 is a vapor flow, 19 is a mask, 2 o is a high-pressure glove that electrostatically charges polymer film immediately after unwinding it. 21 and 22 are glow discharge electrodes for static elimination, 23 is a discharge electrode that can be used for purposes such as glow discharge treatment or ion etching treatment before vapor deposition, 24 is a guide roller, and 26 is an expander roller.

20は、この場合はタングステンカーバイドのホイスカ
ーを先端に保持した電極で、接地電位に対して負の10
0KVを印加し、強電界により電子を放出させてフィル
ムを帯電させるようにしたものである。高圧グローブ2
oの作用によりフィルムは静電帯電し、24.25.1
3等の巻取り系構成要素と接しながら移動する際も、夫
々のローラ、キャン表面と垂直方向に静電引力の作用で
密着するため相互に清シが生じないので、スリ傷の発生
を完全に抑制した上で蒸着し1巻取ることができる。
20 is an electrode with a tungsten carbide whisker at its tip, which is 10 negative with respect to the ground potential.
The film is charged by applying 0 KV and emitting electrons by a strong electric field. High pressure glove 2
The film becomes electrostatically charged due to the action of 24.25.1
Even when moving while in contact with winding system components such as 3rd etc., the rollers and cans are in close contact with each other in the vertical direction due to the action of electrostatic attraction, so there is no mutual scratching, completely preventing the occurrence of scratches. It is possible to perform vapor deposition and take up one roll after suppressing the amount.

長尺を巻き上げた時に静電帯電したま\にすると、巻取
り軸に対して垂直応力が積算されるためにフィルムに横
シワが入ったシするので、除電する必要がある。除電は
非接触が望ましいので、良く知られるグロー放電中を通
過させ、イオンが電子のいずれかを極性に応じて利用す
れば良い。
If a long film is electrostatically charged when it is wound up, the stress perpendicular to the winding axis will be accumulated, resulting in horizontal wrinkles in the film, so it is necessary to remove the static charge. Since static elimination is preferably done without contact, it is sufficient to pass through a well-known glow discharge and use either ions or electrons depending on the polarity.

高分子フィルムとして厚み1oμmのポリエチレンテレ
フタレートフィルムを3,000m準備し、円筒状キャ
ンの直径1mの直下30zに電子ビーム蒸発源を配し、
4X10’Torrの酸素分圧〔予め真空容器内ばI 
Xl 0−6Torrまで排気した〕中で90度から蒸
着をはじめて、最小入射角45度までの斜め蒸着を行い
、厚み0.1μm、保磁力1o50(Oe)のCo −
N i −0(Ni 20wt%)膜を形成し、その上
にステアリン酸を40人真空蒸着し、平坦化し、スリッ
トして8M1幅の磁気テープを得た。
A 3,000 m polyethylene terephthalate film with a thickness of 1 µm was prepared as a polymer film, and an electron beam evaporation source was placed directly below the 1 m diameter of the cylindrical can.
Oxygen partial pressure of 4X10' Torr [I
Co -
A N i -0 (Ni 20 wt %) film was formed, and stearic acid was vacuum-deposited thereon by 40 people, flattened, and slit to obtain a magnetic tape with a width of 8M1.

市販の8ミリビデオテープレコーダでPCM録音、再生
を行い、ブロックエラーレイトを全長にわたり測定した
PCM recording and playback were performed using a commercially available 8 mm video tape recorder, and the block error rate was measured over the entire length.

比較例も同じ手順でテープ化して測定した。A comparative example was also made into a tape and measured using the same procedure.

本発明は、−10QKvで静電帯電させた場合で、比較
例は、グローブ電圧をo■とした場合である。
In the present invention, electrostatic charging is performed at -10QKv, and in the comparative example, the globe voltage is set to o■.

除電処理は80Hz、300V、IA、0.15Tor
rのアルゴングローで基板の両面を処理することで共通
にした。
Static elimination processing is 80Hz, 300V, IA, 0.15 Tor
This was made common by treating both sides of the substrate with argon glow.

90mをカセットに入れて、任意抽出で50巻。Put 90m into a cassette and randomly extract 50 volumes.

エラーレイトを測定したところ、本発明は平均で10−
4のエラーレイトで最大値が2.I X 10−4であ
ったのに対して、比較例は平均値が3.9 X 10 
 で最大値が2×10−2と大きかった上に、60巻中
子、2X10  を越えるカセットが31巻あった。
When the error rate was measured, the present invention achieved an average error rate of 10-
With an error rate of 4, the maximum value is 2. I x 10-4, whereas the comparative example had an average value of 3.9 x 10
The maximum value was as large as 2x10-2, and there were 60 cores and 31 cassettes exceeding 2x10.

以上のように本実施例によれば、巻出し直後の高分子フ
ィルムを静電帯電することで、ガイドローラ、エキスパ
ンダローラ、円筒状キャン等と同期して移動巻取られる
ので、スリ傷発生が防げ。
As described above, according to this embodiment, by electrostatically charging the polymer film immediately after unwinding, it is moved and wound in synchronization with the guide roller, expander roller, cylindrical can, etc., so that scratches occur. Prevent it.

けずりとられた高分子フィルムの構成材料が磁気記録層
表面に付着してブロックエラーレイトの異常をもたらす
ことがなくなるものである。
This prevents the scraped constituent material of the polymer film from adhering to the surface of the magnetic recording layer and causing an abnormal block error rate.

なお前述の本発明の実施例において、回転支持体は円筒
状キャ/としたが、回転ベルト及び回転キャンと回転ベ
ルトとの組み合わせにおいても同様の効果をもたらすも
のである。
In the above-described embodiments of the present invention, the rotary support body is a cylindrical can, but a rotary belt or a combination of a rotary can and a rotary belt can also produce the same effect.

静電帯電の方法は、電子注入、イオン注入、或いはこの
両者の組み合わせを基本にして、具体化すればよく、そ
の方法による差異は特にない。
The electrostatic charging method may be based on electron injection, ion injection, or a combination of both, and there is no particular difference depending on the method.

本発明により磁気記録媒体を得るだめに用いられる材料
は、ポリエチレンテレフタレートフィルムの他に、ポリ
カーボネート、ポリサル7オン。
In addition to polyethylene terephthalate film, the materials used to obtain the magnetic recording medium according to the present invention include polycarbonate and polysal 7on.

ポリアミド、ポリイミド、ポリエチレンナフタレート等
のフィ/l/ A 、 Co −N i−0の他に、C
o −0゜Co −Cr  、 Co −Ti  、 
Go −Si  、 Co −Ta  。
In addition to polyamide, polyimide, polyethylene naphthalate, etc., F/l/A, Co-N i-0, C
o -0゜Co-Cr, Co-Ti,
Go-Si, Co-Ta.

Co −W 、Co −Mo  、Co −Mg  、
Co−Cr −Ga。
Co-W, Co-Mo, Co-Mg,
Co-Cr-Ga.

Co−Ru−0等の強磁性金属等がある。Examples include ferromagnetic metals such as Co-Ru-0.

発明の効果 以上のように本発明によれば、短波長ディジタル記録に
おいても極めてエラーレイトの少ない長尺の媒体または
大面積の媒体材料を大量生産することができるといっだ
すぐれた効果を得ることができる。
Effects of the Invention As described above, according to the present invention, even in short wavelength digital recording, it is possible to mass-produce long media or large area media materials with extremely low error rates, and an excellent effect can be obtained. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するために用いる蒸着装置の一例
の内部構成図、第2図は従来の蒸着装置の内部構成図で
ある。 13・・−・・・円筒状キャン、14・・・・・基板(
高分子フィルム)、17・・・・・・電子ビーム蒸発源
、2o・・・・・・高圧プローブ、21.22・・・・
・・グロー放電電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名13
−一一円筒イ大午イン
FIG. 1 is an internal configuration diagram of an example of a vapor deposition apparatus used to carry out the present invention, and FIG. 2 is an internal configuration diagram of a conventional vapor deposition apparatus. 13... Cylindrical can, 14... Substrate (
polymer film), 17...electron beam evaporation source, 2o...high pressure probe, 21.22...
...Glow discharge electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person13
-11 Cylindrical Idaigo Inn

Claims (1)

【特許請求の範囲】[Claims] 高分子フィルムを巻取りながら回転支持体に沿わせて強
磁性金属を蒸着する方法にあって、高分子フィルムを巻
出し直後に静電帯電せしめ、巻取り直前に除電すること
を特徴とする磁気記録媒体の製造方法。
A method of vapor-depositing a ferromagnetic metal along a rotating support while winding a polymer film, which is characterized by electrostatically charging the polymer film immediately after unwinding and removing the charge immediately before winding. A method for manufacturing a recording medium.
JP15900185A 1985-07-18 1985-07-18 Production of magnetic recording medium Pending JPS6220137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15900185A JPS6220137A (en) 1985-07-18 1985-07-18 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15900185A JPS6220137A (en) 1985-07-18 1985-07-18 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6220137A true JPS6220137A (en) 1987-01-28

Family

ID=15684060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15900185A Pending JPS6220137A (en) 1985-07-18 1985-07-18 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6220137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163693A (en) * 2010-04-12 2010-07-29 Ulvac Japan Ltd Winding type vacuum deposition method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057539A (en) * 1983-09-07 1985-04-03 Fuji Photo Film Co Ltd Production for magnetic recording medium
JPS6089828A (en) * 1983-10-21 1985-05-20 Matsushita Electric Ind Co Ltd Manufacture of vertical magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057539A (en) * 1983-09-07 1985-04-03 Fuji Photo Film Co Ltd Production for magnetic recording medium
JPS6089828A (en) * 1983-10-21 1985-05-20 Matsushita Electric Ind Co Ltd Manufacture of vertical magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163693A (en) * 2010-04-12 2010-07-29 Ulvac Japan Ltd Winding type vacuum deposition method

Similar Documents

Publication Publication Date Title
US4354909A (en) Process for production of magnetic recording medium
JPH061551B2 (en) Method of manufacturing magnetic recording medium
JPS6220137A (en) Production of magnetic recording medium
JPH0334616B2 (en)
JPS5817543A (en) Manufacture of magnetic recording medium
JPH0582652B2 (en)
JP2833444B2 (en) Manufacturing method of magnetic recording medium
JPS6174143A (en) Production of magnetic recording medium
JPH0479065B2 (en)
JPS5948450B2 (en) Method for manufacturing magnetic recording media
JP2987406B2 (en) Film forming method and film forming apparatus
JPS6297133A (en) Production of magnetic recording medium
JPS58222439A (en) Magnetic recording medium and its manufacture
JPH06223368A (en) Manufacture of magnetic recording medium
JPH0528487A (en) Production of magnetic recording medium
JPS5914129A (en) Production of magnetic recording medium
JPH07238376A (en) Production of metallic thin film body and device therefor
JPS62146435A (en) Production of magnetic recording medium
JPS6154040A (en) Manufacture of magnetic recording medium
JPH07192259A (en) Production of magnetic recording medium
JPS6045943A (en) Production of magnetic recording medium
JPS6378336A (en) Production of magnetic recording medium
JPS5972655A (en) Device for manufacturing magnetic recording medium
JPH0198123A (en) Production of magnetic recording medium
JPH01162226A (en) Production of magnetic recording medium