JPS62194208A - Heat-resisting and low-temperature-resisting optical fiber cable and its manufacture - Google Patents

Heat-resisting and low-temperature-resisting optical fiber cable and its manufacture

Info

Publication number
JPS62194208A
JPS62194208A JP61036751A JP3675186A JPS62194208A JP S62194208 A JPS62194208 A JP S62194208A JP 61036751 A JP61036751 A JP 61036751A JP 3675186 A JP3675186 A JP 3675186A JP S62194208 A JPS62194208 A JP S62194208A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber cable
tape
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61036751A
Other languages
Japanese (ja)
Inventor
Tetsuya Oosugi
哲也 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61036751A priority Critical patent/JPS62194208A/en
Publication of JPS62194208A publication Critical patent/JPS62194208A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4436Heat resistant

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To eliminate the strain of a cladding by the slip effect of a tape without exerting any direct influence upon an optical fiber by winding with the internals surface of the cladding with a tape which has a low refraction coefficient or no adhesiveness in an open or overlap state. CONSTITUTION:The internal surface of the cladding 3 which forms the sheath of an optical fiber cable is wound with the tape 4 which has the low friction coefficient or no adhesiveness in the open or overlap state, and the optical fiber cable is heated for a certain time below the heat-resistance temperature of the cladding material. Consequently, residual strain induced at the time of the extrusion molding of the cladding materials is released and the contraction of the cladding in the lengthwise direction of the cable is prevented from affecting the optical fiber directly through the slip effect of the tape wound around the external surface of the cladding, thereby eliminating the strain of the cladding.

Description

【発明の詳細な説明】 〔発明の概要〕 光ファイバケーブルのシースを形成する外被の内面に低
摩擦係数または非粘着性を有するテープを開き巻き或い
は重ね巻きで巻き付け、外周に高分子材料を押出し、外
被を形成した光ファイバケーブルを一定時間加熱するこ
とにより、外被の押出成形時に生ずる残留歪が解放され
ケーブル長さ方向に発生する収縮を、テープのすべり効
果で光ファイバに直接影響を与えることなく外被の歪を
解消した耐熱耐低温光ファイバケーブルとその製造方法
[Detailed Description of the Invention] [Summary of the Invention] A tape having a low coefficient of friction or non-adhesiveness is wrapped around the inner surface of the jacket forming the sheath of an optical fiber cable in an open or overlapping manner, and a polymeric material is coated on the outer periphery. By heating an extruded optical fiber cable with a sheath for a certain period of time, the residual strain that occurs during extrusion of the sheath is released, and the shrinkage that occurs in the length direction of the cable is directly affected by the tape's sliding effect on the optical fiber. A heat-resistant and low-temperature resistant optical fiber cable that eliminates distortion of the outer jacket without causing damage, and a method for manufacturing the same.

〔産業上の利用分野〕[Industrial application field]

本発明は耐熱耐低温光ファイバケーブルに関し、とくに
耐熱、耐低温特性を同時に要求される非金属の光ファイ
バケーブルの外被構造の改良およびその製造方法に関す
るものである。
The present invention relates to a heat-resistant and low-temperature resistant optical fiber cable, and more particularly to an improvement in the jacket structure of a non-metallic optical fiber cable that requires both heat and low-temperature resistance properties, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

第3図に従来の光ファイバケーブルの断面構造の例を示
す。■は光ファイバ、2は補強用高強度繊維からなる抗
張力繊維または緩衝層、3は外被を構成する高分子材料
である。従来は非金属を目的とした光ファイバケーブル
の外被材料としてはナイロン、ポリエチレン、塩化ビニ
ルなどの熱可塑性樹脂が用いられている。また耐熱性を
必要とする場合には弗素樹脂、たとえば弗素化エチレン
/弗素化ポリプロピレン共重合体(以下FEPという。
FIG. 3 shows an example of the cross-sectional structure of a conventional optical fiber cable. 2 is an optical fiber, 2 is a tensile strength fiber made of reinforcing high-strength fiber or a buffer layer, and 3 is a polymeric material constituting the outer cover. Conventionally, thermoplastic resins such as nylon, polyethylene, and vinyl chloride have been used as jacket materials for optical fiber cables intended for non-metallic applications. In addition, when heat resistance is required, a fluororesin such as a fluorinated ethylene/fluorinated polypropylene copolymer (hereinafter referred to as FEP) is used.

)や、ポリテトラフルオロエチレン・パーフルオロアル
キルビニルエーテル共重合体く以下PFAという、)ま
たはポリアミドイミド(以下FAIという。)、ポリエ
ーテルスルホン(以下PESという。)、ポリフェニル
スルホン工鳥賊PPSという、)、ポリイミド(以下P
iという。
), polytetrafluoroethylene perfluoroalkyl vinyl ether copolymer (hereinafter referred to as PFA), polyamideimide (hereinafter referred to as FAI), polyether sulfone (hereinafter referred to as PES), polyphenylsulfone (hereinafter referred to as PPS), ), polyimide (hereinafter referred to as P
It's called i.

)などの耐熱性樹脂が用いられる。これらの弗素樹脂の
融点はFEPで275℃、PFAで310℃。
) and other heat-resistant resins are used. The melting points of these fluororesins are 275°C for FEP and 310°C for PFA.

PPSで290℃、また明確な融点を有しないPAl、
PES、PIのガラス転移点はそれぞれ275”C,2
30℃、310℃であり、光ファイバケーブルの外被構
造として用いる場合、信頼性の面から考えてFEPでは
200℃、PFAでは260℃、PPSでは170〜2
00℃、PAT、PES、PIではそれぞれ230℃、
 170℃、270℃で使用可部となる。
PPS at 290°C, and PAl, which does not have a clear melting point,
The glass transition points of PES and PI are 275”C and 2, respectively.
30°C and 310°C, and when used as an outer jacket structure for optical fiber cables, from the standpoint of reliability, the temperature is 200°C for FEP, 260°C for PFA, and 170~2°C for PPS.
00℃, 230℃ for PAT, PES, and PI, respectively.
It becomes usable at 170°C and 270°C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の各種耐熱性樹脂を外被材料として用いる光ファイ
バケーブルでは、これら外被材料たようの押出成形の際
、押出口より引き落される成形温度が高く、しかも押出
し後、室温に急冷されるため、ケーブルの長さ方向に分
子配向した状態で固化してしまい、押出時の残留歪が残
り易い。従って長期的にヒートサイクルを行ったり、連
続的に高温下にさらした場合には残留歪が解放され、こ
れら樹脂で構成された外被が、とくにケーブルの長さ方
向に大きな収縮をおこす。たとえばFEPでは、長時間
高温下に−さらしたことにより約2%の収縮、PFAで
は約3%、PPS、FAI、PES、PIでそれぞれ約
1%、1.8%、2%、3%の収縮をおこすという結果
が得られている。この収縮による光ファイバケーブルへ
の影響は、ヒートサイクルを行うことによって顕著にあ
られれる。
In conventional optical fiber cables that use various heat-resistant resins as jacket materials, when these jacket materials are extruded, the molding temperature at which the cable is drawn down from the extrusion port is high, and after extrusion, the cables are rapidly cooled to room temperature. Therefore, the cable solidifies with its molecules oriented in the length direction, and residual strain tends to remain during extrusion. Therefore, when heat cycles are performed over a long period of time or the cable is continuously exposed to high temperatures, the residual strain is released and the outer sheath made of these resins causes a large contraction, especially in the length direction of the cable. For example, FEP shrinks by about 2% due to long-term exposure to high temperatures, PFA shrinks by about 3%, and PPS, FAI, PES, and PI shrink by about 1%, 1.8%, 2%, and 3%, respectively. Results have been obtained that cause contraction. The influence of this shrinkage on the optical fiber cable becomes more noticeable by performing a heat cycle.

第4図は、外被材料としての弗素樹脂を使用したときの
収縮による光ファイバケーブルへの影響を示すファイバ
ケーブルの温度特性の例である。
FIG. 4 is an example of the temperature characteristics of a fiber cable showing the influence on the optical fiber cable due to shrinkage when a fluororesin is used as the jacket material.

すなわち第3図に断面構造を示した従来の光ファイバケ
ーブルの構造で、外被部分の高分子材料としてFEPを
使用した光ファイバケーブルについて、−65℃〜+1
50℃の温度範囲でヒートサイクルを行った例を示す。
In other words, the conventional optical fiber cable structure whose cross-sectional structure is shown in Figure 3 uses FEP as the polymer material for the outer sheath, and the temperature range is between -65°C and +1°C.
An example in which a heat cycle was performed in a temperature range of 50°C is shown.

すなわち、サイクル数を増すごとに低温側で伝送損失の
増加が見られる。この現象は、高温側では外被部分の樹
脂の収縮歪が解放され、収縮を行うが、樹脂自身の熱膨
張と打消し合い、全体として樹脂の収縮は押えられ、伝
送特性へのの影響は小さい。然し、高温側を経た樹脂は
、残留歪の解放による収縮をおこしており、低温側にお
いて、その収縮が樹脂自身の熱収縮と加算された形とな
り収縮量が増大する。そのため、光ファイバの主として
長さ方向の収縮に起因するマイクロヘンド損失を与え、
伝送損失が増大することになる。この伝送損失の増加は
、残留歪が解放されるにしたがって一定の値に収斂する
。従って、これらの外被材料としての樹脂は、残留歪に
よる伝送特性へのifが大きく、温度変動に対して安定
な伝送特性を得ることができず、しかもこの収縮のため
、光ファイバケーブルの端末部において光ファイバの突
出などが起り、悪影響を及ぼすという問題がある。
That is, as the number of cycles increases, the transmission loss increases on the low temperature side. This phenomenon occurs when the shrinkage strain of the resin in the outer covering part is released and it contracts at high temperatures, but this cancels out the thermal expansion of the resin itself, suppressing the shrinkage of the resin as a whole, and having no effect on the transmission characteristics. small. However, the resin that has passed through the high temperature side contracts due to the release of residual strain, and on the low temperature side, this contraction is added to the thermal contraction of the resin itself, and the amount of shrinkage increases. Therefore, microhend loss is caused mainly by contraction in the length direction of the optical fiber,
Transmission loss will increase. This increase in transmission loss converges to a constant value as residual distortion is released. Therefore, these resins as jacket materials have a large if on the transmission characteristics due to residual strain, making it impossible to obtain stable transmission characteristics against temperature fluctuations, and furthermore, due to this shrinkage, the terminal of the optical fiber cable There is a problem in that the optical fiber may protrude at some points, causing negative effects.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の問題点を解決するため、光ファイバケー
ブルのシースを形成する外被の内面に、低摩擦係数また
は非粘着性を有するテープを開き巻き、或いは重ね巻き
に巻き付けた構造とし、光ファイバケーブルを外被材料
の耐熱性温度以下で一定時間加熱することを特徴として
いる。
In order to solve the conventional problems, the present invention has a structure in which a tape with a low coefficient of friction or non-adhesion is wound open or overlappingly on the inner surface of the outer sheath forming the sheath of an optical fiber cable. It is characterized by heating the fiber cable for a certain period of time below the heat-resistant temperature of the jacket material.

〔作 用〕[For production]

本発明は、光ファイバケーブルのシースを形成する外被
の内面に低摩擦係数または非粘着性を有するテープを開
き巻き或いは重ね巻きで巻き付けた構造とし、光ファイ
バケーブルを外被材料の耐熱温度以下で一定時間加熱す
ることにより、外被材料押出成形の除虫じた残留歪が解
放され、ケーブルの長さ方向に生ずる外被収縮を、外被
内面に巻き付けられたテープのすべり効果で、光ファイ
バに直接影響を与えることのないようにし、外被の歪が
解消される。この効果を確認するため次の実験を行った
The present invention has a structure in which a tape having a low coefficient of friction or non-adhesiveness is wrapped around the inner surface of the jacket forming the sheath of the optical fiber cable in an open or overlapping manner, and the optical fiber cable is heated to a temperature lower than the heat resistance temperature of the jacket material. By heating the cable for a certain period of time, the residual strain caused by extrusion of the outer sheath material is released, and the shrinkage of the outer sheath that occurs in the length direction of the cable is suppressed by the sliding effect of the tape wrapped around the inner surface of the outer sheath. This prevents any direct influence on the fiber and eliminates distortion of the jacket. The following experiment was conducted to confirm this effect.

まず第3図に示す従来の構造の光ファイバケーブルにお
いて、2の補強用高強度繊維としてアラミド繊維を、ま
た3の外被としてPFA樹脂を用い、一定時間、−例と
して150℃×48時間加熱したところ、押出時のPF
A樹脂の残留歪が解放され、外被が1.8%収縮をおこ
した。この収縮は内部の構成材料にも影響を与え、アラ
ミド繊維が0゜3%収縮していた。本来、アラミド繊維
は収縮しない性質のものであり、この収縮はケーブル内
部で配列乱れを生じ、光ファイバに座屈を与える。
First, in the optical fiber cable of the conventional structure shown in Fig. 3, aramid fiber is used as the high-strength reinforcing fiber in 2, and PFA resin is used as the outer jacket in 3, and heated for a certain period of time - for example, 48 hours at 150°C. As a result, the PF during extrusion
Residual strain in resin A was released, and the jacket shrank by 1.8%. This shrinkage also affected the internal constituent materials, with the aramid fibers shrinking by 0.3%. Originally, aramid fibers do not shrink, and this shrinkage causes alignment disorder inside the cable and buckles the optical fiber.

次に第1図に示すテープ4を外被内面に巻き付けた本発
明の構造の耐熱耐低温光ファイバケーブルで、同一の光
ファイバ1.補強用高強度繊維2大としてアラミド繊維
、高分子材料外被3としてPFA樹脂を用い同様な実験
を行ったところ、外被は従来と同様1.8%収縮するの
に対し、アラミド繊維は0.09%の収縮で殆んど収縮
せず、光ファイバには全く悪影響を与えていないという
結果が得られた。
Next, using a heat-resistant and low-temperature resistant optical fiber cable having the structure of the present invention in which the tape 4 shown in FIG. 1 is wrapped around the inner surface of the jacket, the same optical fiber 1. When we conducted a similar experiment using aramid fiber as the two major reinforcing high-strength fibers and PFA resin as the third polymeric outer sheath, we found that the outer sheath shrank by 1.8% as before, while the aramid fiber shrunk by 0. The result was that there was almost no shrinkage at 0.09%, and there was no adverse effect on the optical fiber at all.

従って、本発明の構造を備え、一定時間加熱する工程を
行うことにより、ケーブルとして使用時の外的熱変動に
対する光ファイバへの影!は、ケーブル構成材料の熱収
縮・膨張のみとなり、温度変動に対して安定な伝送特性
を有することとなる。
Therefore, by having the structure of the present invention and performing a heating process for a certain period of time, the optical fiber can be protected against external thermal fluctuations when used as a cable. In this case, only the thermal contraction and expansion of the cable constituent material results in stable transmission characteristics against temperature fluctuations.

また光ファイバケーブルの端末部において光ファイバの
突き出しによる悪影響も除去される。以下図面により実
施例について説明する。
Further, the adverse effects caused by the protrusion of the optical fiber at the terminal portion of the optical fiber cable are also eliminated. Examples will be described below with reference to the drawings.

〔実施例〕 第1図は本発明の耐熱耐低温光ファイバケーブルの実施
例の断面構造である。第3図と同じ符号は同じ部分を示
し、4はテープである。本実施例では、テープ4として
耐熱性の弗素樹脂を用いたが、実施例に限定されるもの
ではなく、ケーブルに対し要求される耐熱性によってテ
ープの材質は適宜選択される。またテープの特性として
も、すべり効果を十分に発揮させるため非粘着性のもの
や、摩擦係数の低いものが好適である。この特性を満た
していないと、外被の残留歪が解放する際、ケーブルの
他の構成材料、たとえば抗張力繊維の補強用高強度繊維
または緩衝層2などが一緒に収縮を起し、光ファイバ1
に座屈を与えることになる。本発明は実施例において、
テープ4によるテープ巻きの効果を明示する目的で、第
2図に示すような比較実験を行った。第2図において実
線Iで示した特性が本発明の構造を有する光ファイバケ
ーブルで点線■で示した特性がテープ巻きを施さず、他
の構造は同一とした光ファイバケーブルである。本実験
に用いた実施例では、テープとして弗素樹脂テープを用
い、外被としてはPFA樹脂を用いた。第2図から明ら
かなように、テープ巻を施さない点線Hの特性を示す構
造のものは、シースの残留歪の影7を受け、光ファイバ
の伝送損失は大きく、またヒートサイクルを増すことに
より伝送損失もより大きくなるという先に示した第4図
と同じ特性を有することが解る。これに対し、本発明の
テープ巻きを施した実線fの特性を有する構造のものは
、残留歪の影響は光ファイバに及ばず、光ファイバケー
ブルは安定した伝送特性を備え、その効果が大である。
[Embodiment] FIG. 1 shows a cross-sectional structure of an embodiment of the heat-resistant and low-temperature optical fiber cable of the present invention. The same reference numerals as in FIG. 3 indicate the same parts, and 4 is a tape. In this embodiment, a heat-resistant fluororesin is used as the tape 4, but the material is not limited to this embodiment, and the material of the tape can be appropriately selected depending on the heat resistance required for the cable. In addition, as for the characteristics of the tape, in order to fully exhibit the sliding effect, it is preferable that the tape be non-adhesive or have a low coefficient of friction. If this characteristic is not met, when the residual strain in the jacket is released, other constituent materials of the cable, such as high-strength reinforcing fibers for tensile strength fibers or the buffer layer 2, will shrink together with the optical fiber 1.
This will cause buckling. In the embodiments of the present invention,
In order to clearly demonstrate the effect of tape winding with tape 4, a comparative experiment as shown in FIG. 2 was conducted. In FIG. 2, the characteristics shown by the solid line I are the optical fiber cables having the structure of the present invention, and the characteristics shown by the dotted lines ■ are the optical fiber cables without tape winding, but with the other structures being the same. In the example used in this experiment, a fluororesin tape was used as the tape, and a PFA resin was used as the outer cover. As is clear from Fig. 2, the structure shown by the dotted line H without tape winding is affected by the residual strain 7 of the sheath, the transmission loss of the optical fiber is large, and the heat cycle is increased. It can be seen that the transmission loss is also larger, which is the same characteristic as in FIG. 4 shown earlier. On the other hand, with the tape-wrapped structure of the present invention having the characteristics shown by the solid line f, the influence of residual strain does not extend to the optical fiber, and the optical fiber cable has stable transmission characteristics and is highly effective. be.

また本発明の光ファイバケーブルを一定時間加熱する工
程において、加熱温度および加熱時間は、外被の材料お
よび外被を押出したときの押出条件により決定される。
Further, in the step of heating the optical fiber cable of the present invention for a certain period of time, the heating temperature and heating time are determined by the material of the jacket and the extrusion conditions when extruding the jacket.

この加熱工程により、外被に残留している歪は解放され
、その後の温度変動に対して0.1%以下の収縮率とな
り、光ファイバケーブル端末部に装着されている光コネ
クタおよび周辺機器に対して何ら影響を及ぼさず、安定
な特性を有する。
This heating process releases any strain remaining in the outer sheath, resulting in a shrinkage rate of 0.1% or less against subsequent temperature fluctuations, allowing the optical connectors and peripheral equipment installed at the end of the optical fiber cable to It has stable characteristics without any influence on

〔発明の効果〕〔Effect of the invention〕

以上述べたように59本発明の構造による耐熱耐低温光
ファイバケーブルは、シースを形成する該被の内面にテ
ープを巻き付けた構造とし、かつ一定時間加熱するごと
により、低温・高温を繰り返す温度変動に対しても光フ
ァイバケーブルとしての安定な伝送特性が確保でき、さ
らに光ファイバケーブル端末部での光ファイバの突き出
しなどの影響はなく、その効果顕著である。
As described above, the heat-resistant and low-temperature resistant optical fiber cable according to the structure of the present invention has a structure in which a tape is wrapped around the inner surface of the sheath, and the temperature changes repeatedly between low and high temperatures by heating for a certain period of time. It is possible to ensure stable transmission characteristics as an optical fiber cable, and there is no influence of protrusion of the optical fiber at the end of the optical fiber cable, which is a remarkable effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の耐熱耐低温光ファイバケーブルの断面
構造図、第2図は本発明の耐熱耐低温光ファイバケーブ
ルと比較構造の光ファイバケーブルとの温度特性、第3
図は従来の光ファイバケーブルの断面構造、第4図は従
来の光ファイバケーブルの温度特性である。
Figure 1 is a cross-sectional structural diagram of the heat-resistant and low-temperature resistant optical fiber cable of the present invention, Figure 2 is the temperature characteristics of the heat-resistant and low-temperature resistant optical fiber cable of the present invention and an optical fiber cable with a comparative structure, and
The figure shows the cross-sectional structure of a conventional optical fiber cable, and FIG. 4 shows the temperature characteristics of the conventional optical fiber cable.

Claims (3)

【特許請求の範囲】[Claims] (1)単心または複数心の光ファイバを必要により緩衝
層或いは抗張力体とともに集合した集合体の外周に外被
を施してなる光ファイバケーブルにおいて、 前記外被の内面に、 低摩擦係数または非粘着性を有するテープを、開き巻き
或いは重ね巻きに巻き付けた構造を備えてなる ことを特徴とする耐熱耐低温光ファイバケーブル。
(1) In an optical fiber cable in which a sheath is applied to the outer periphery of an assembly of single or multi-fiber optical fibers together with a buffer layer or a tensile strength member if necessary, the inner surface of the sheath is coated with a material having a low coefficient of friction or a A heat-resistant and low-temperature resistant optical fiber cable characterized by having a structure in which an adhesive tape is wound in an open winding or an overlapping winding.
(2)前記外被は、 押出成形時に生じる歪による収縮率が0.1%以上の熱
可塑性樹脂からなる ことを特徴とする特許請求の範囲第1項記載の耐熱耐低
温光ファイバケーブル。
(2) The heat-resistant and low-temperature resistant optical fiber cable according to claim 1, wherein the jacket is made of a thermoplastic resin having a shrinkage rate of 0.1% or more due to strain generated during extrusion molding.
(3)単心または複数の光ファイバと補強用高強度繊維
または緩衝層および抗張力体とを集合ダイスにより集合
して集合体を形成し、集合体の外周に押出成形ダイスに
より高分子材料を押出し高分子材料外被を施し光ファイ
バケーブルを形成する光ファイバケーブルの製造方法に
おいて、前記集合体を押出成形ダイスに導入する前段で
、前記集合体の外周に低摩擦係数または非粘着性を有す
るテープを開き巻き或いは重ね巻きによりテープ被覆層
を形成する工程と、 前記テープ被覆層の外周に高分子材料外被を押出し形成
した光ファイバケーブルを、高分子材料の耐熱性限界温
度以下で一定時間加熱する工程と を含んでなることを特徴とする耐熱耐低温光ファイバケ
ーブルの製造方法。
(3) A single core or multiple optical fibers, reinforcing high-strength fibers, a buffer layer, and a tensile strength material are assembled using an assembly die to form an assembly, and a polymer material is extruded around the outer periphery of the assembly using an extrusion molding die. In a method for manufacturing an optical fiber cable in which an optical fiber cable is coated with a polymeric material, a tape having a low coefficient of friction or non-adhesion is applied to the outer periphery of the aggregate before introducing the aggregate into an extrusion molding die. forming a tape coating layer by opening or overlapping the tape coating layer; and heating the optical fiber cable, which has a polymer material jacket formed on the outer periphery of the tape coating layer by extrusion, at a temperature below the heat resistance limit temperature of the polymer material for a certain period of time. A method for manufacturing a heat-resistant and low-temperature optical fiber cable, comprising the steps of:
JP61036751A 1986-02-21 1986-02-21 Heat-resisting and low-temperature-resisting optical fiber cable and its manufacture Pending JPS62194208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61036751A JPS62194208A (en) 1986-02-21 1986-02-21 Heat-resisting and low-temperature-resisting optical fiber cable and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61036751A JPS62194208A (en) 1986-02-21 1986-02-21 Heat-resisting and low-temperature-resisting optical fiber cable and its manufacture

Publications (1)

Publication Number Publication Date
JPS62194208A true JPS62194208A (en) 1987-08-26

Family

ID=12478435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61036751A Pending JPS62194208A (en) 1986-02-21 1986-02-21 Heat-resisting and low-temperature-resisting optical fiber cable and its manufacture

Country Status (1)

Country Link
JP (1) JPS62194208A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035108U (en) * 1989-05-31 1991-01-18
JP2008015414A (en) * 2006-07-10 2008-01-24 Mitsubishi Cable Ind Ltd Optical fiber cord
EP3161530A4 (en) * 2014-06-27 2018-03-14 Corning Optical Communications LLC Extreme environment optical fiber cable with crack-resistant layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035108U (en) * 1989-05-31 1991-01-18
JP2008015414A (en) * 2006-07-10 2008-01-24 Mitsubishi Cable Ind Ltd Optical fiber cord
JP4651585B2 (en) * 2006-07-10 2011-03-16 三菱電線工業株式会社 Optical fiber cord
EP3161530A4 (en) * 2014-06-27 2018-03-14 Corning Optical Communications LLC Extreme environment optical fiber cable with crack-resistant layer

Similar Documents

Publication Publication Date Title
US6654527B2 (en) Optical fiber cable
US5201020A (en) Reinforced protective tube for optical waveguide fibers
EP0178088B1 (en) Optical cable
JP2010538323A (en) Optical fiber cable and manufacturing method
JPH02289805A (en) Optical fiber unit
JPS62194208A (en) Heat-resisting and low-temperature-resisting optical fiber cable and its manufacture
JPS596268B2 (en) Method of reinforcing glass fiber for optical transmission
JPS5999403A (en) Communication cable and manufacture thereof
JP4124307B2 (en) Plastic optical fiber
JPH0610692B2 (en) Plastic fiber optic fiber
JPS6045210A (en) Optical fiber core wire
JPS5938702A (en) Pipe covered optical fiber
JPH0412484Y2 (en)
JPS6028773B2 (en) Method of manufacturing optical fiber cable
JPS62136613A (en) Optical fiber cable
JP2000028876A (en) Plastic optical fiber cord
JPS5931903A (en) Plastic optical fiber cable
JPH0118525B2 (en)
JPS62165610A (en) Plastic optical cord having high heat resistance
JP2783113B2 (en) Optical fiber cable stabilized at low temperature
JPH0248607A (en) Optical fiber unit
JPS6336211A (en) Optical fiber cable
JPH01161208A (en) Optical fiber cord
JPS6265005A (en) Heat resistant and low temperature resistant optical fiber cable
JPS62191450A (en) Production of core wire of optical fiber