JPS6265005A - Heat resistant and low temperature resistant optical fiber cable - Google Patents
Heat resistant and low temperature resistant optical fiber cableInfo
- Publication number
- JPS6265005A JPS6265005A JP60205544A JP20554485A JPS6265005A JP S6265005 A JPS6265005 A JP S6265005A JP 60205544 A JP60205544 A JP 60205544A JP 20554485 A JP20554485 A JP 20554485A JP S6265005 A JPS6265005 A JP S6265005A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- optical fiber
- resistant
- fiber cable
- resistant resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/4436—Heat resistant
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Communication Cables (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の概要〕
光ファイバケーブルの外被となるシース構造を、耐熱樹
脂テープの重ね巻きとし、重ね巻きの重なり部を接着ま
たは加熱融着してチェープ状とすることにより、高温お
よび低温においても光ファイバとしての安定な伝送特性
を有し、かつ光ファイバケーブルとしての機械特性を備
えた耐熱耐低温光ファイバケーブル。[Detailed Description of the Invention] [Summary of the Invention] The sheath structure serving as the outer sheath of an optical fiber cable is formed by overlapping heat-resistant resin tapes, and the overlapping portions of the overlapping windings are bonded or heat-sealed to form a chain shape. A heat-resistant and low-temperature resistant optical fiber cable that has stable transmission characteristics as an optical fiber even at high and low temperatures, and has mechanical properties as an optical fiber cable.
本発明は耐熱耐低温光ファイバケーブルに関し、とくに
耐熱、耐低温特性を同時に要求される光ファイバケーブ
ルの外被構造の改良に関するものである。The present invention relates to a heat-resistant and low-temperature resistant optical fiber cable, and particularly to an improvement in the jacket structure of an optical fiber cable that requires both heat and low-temperature resistance properties.
第5図に従来の光71イパケープルの断面構造の例を示
す。1は光フフイパ、2は抗張力繊維。FIG. 5 shows an example of the cross-sectional structure of a conventional optical 71 ipakable. 1 is optical fiber and 2 is tensile strength fiber.
j?を汎論か澹り号子入糾蝕匍口譬でム 1 斤立
紳 ゴ辷金属で耐熱を目的とした光ファイバケーブル
の外被構成材料としては、耐熱性を有した耐熱樹脂4と
して、たとえば耐熱性の弗素樹脂が用いられている。耐
熱性の弗素樹脂としては、たとえば光ファイバケーブル
のシース材として弗素化エチレン/弗素化ポリプロピレ
ン共重合体(以下FEPという。)やポリテトラフルオ
ロエチレン・パーフルオロアルキルビニルエーテル共重
合体(以下PFAという。)などがある。これらの弗素
樹脂の融点はFEPで275°C,PFAで310°C
であシ、耐熱温度は信頼性の面から考えるとFEPでは
1506C〜200’C。j? As a general theory or a general theory or a parable of the term 1. As a material for forming the jacket of an optical fiber cable made of metal and intended for heat resistance, for example, a heat-resistant resin 4 with heat resistance is used. Heat-resistant fluororesin is used. Examples of heat-resistant fluororesins include fluorinated ethylene/fluorinated polypropylene copolymers (hereinafter referred to as FEP) and polytetrafluoroethylene/perfluoroalkyl vinyl ether copolymers (hereinafter referred to as PFA) as sheath materials for optical fiber cables. )and so on. The melting point of these fluororesins is 275°C for FEP and 310°C for PFA.
In terms of reliability, FEP has a heat resistance temperature of 1506C to 200'C.
PFAでは2008C〜260°Cとなる。For PFA, the temperature is 2008C to 260°C.
FEP、PFAなどの弗素樹脂をシース材として用いる
光ファイバケーブルでは、弗素樹脂の押出成形がむずか
しく、また、成形温度が高い几め、押出時の残留歪が残
りやすい。従って、長期的にヒートサイクルを行ったり
、連続的に高温下にさらした場合には、残留歪が開放さ
れ、弗素樹脂が収縮をおこす。たとえば、FEPでは長
時間の加熱によυ約2%の収縮、 PFAでは約3チの
収縮を起すという結果が得られている。この収縮による
光ファイバケーブルへの影響は、ヒートサイクルを行う
ことによって顕著にあられれる。In optical fiber cables that use fluororesin such as FEP or PFA as a sheath material, extrusion molding of the fluororesin is difficult, and the molding temperature is high and residual strain tends to remain during extrusion. Therefore, when heat cycles are performed over a long period of time or when exposed to high temperatures continuously, the residual strain is released and the fluororesin contracts. For example, results have been obtained that FEP shrinks by about 2% when heated for a long time, and PFA shrinks by about 3cm. The influence of this shrinkage on the optical fiber cable becomes more noticeable by performing a heat cycle.
第6図は、シース材としての弗素樹脂の収縮による光フ
ァイバケーブルへの影響を示す光ファイバケーブルの温
度特性である。すなわち、第5図に断面構造を示した従
来の光ファイバケーブルの構造で、シース部分としてF
EPを使用した光ファイバケーブルについて、(−65
°C→+150°C)の温度範囲でヒートサイクルを行
うと、サイクル数を増すごとに低温側で伝送損失の増加
が見られる。FIG. 6 shows the temperature characteristics of an optical fiber cable showing the influence on the optical fiber cable due to contraction of the fluororesin as a sheath material. That is, in the structure of the conventional optical fiber cable whose cross-sectional structure is shown in Fig. 5, F is used as the sheath part.
Regarding optical fiber cable using EP, (-65
When heat cycles are performed in the temperature range (°C→+150°C), transmission loss increases on the low temperature side as the number of cycles increases.
この現象は、高温側では、シース部分の樹脂の収縮歪が
開放され収縮を行うが、樹脂自身の熱膨張と打ち消し合
い、全体として樹脂の収縮は押えられ、伝送特性への影
響は小さい。しかし、高温側を経た樹脂は残留歪の開放
による収縮を起しておシ、低温側において、その収縮が
樹脂自身の熱収縮と加算された形となり、収縮量が増大
する。そOため、光ファイバにマイクロベンド損失を与
え、伝送損失が増加することになる。この伝送損失の増
加は、残留歪が開放されるにしたがって飽和に達する。This phenomenon occurs on the high temperature side when the shrinkage strain of the resin in the sheath part is released and it contracts, but this cancels out the thermal expansion of the resin itself, suppressing the shrinkage of the resin as a whole, and having little effect on the transmission characteristics. However, the resin that has passed through the high temperature side contracts due to the release of residual strain, and on the low temperature side, this contraction is added to the thermal contraction of the resin itself, increasing the amount of shrinkage. Therefore, microbending loss is imparted to the optical fiber, resulting in an increase in transmission loss. This increase in transmission loss reaches saturation as residual distortion is released.
従ってこれらのシース材としての樹脂は、残留歪による
伝送特性への影響が大きく、温度に対して安定な伝送特
性を得ることができず、しかもこの収縮のため、光ファ
イバケーブルの端末部において、光ファイバの突出しな
どが起シ、悪影響を及ぼすという問題がある。Therefore, these resins used as sheath materials have a large influence on transmission characteristics due to residual strain, making it impossible to obtain stable transmission characteristics with respect to temperature. Moreover, due to this shrinkage, at the end of the optical fiber cable, There is a problem in that the protrusion of the optical fiber may cause adverse effects.
また、耐熱性は有するが、溶融粘度が高い樹脂について
は、粉末を常温で圧縮した後、これを融点以上に加熱し
、焼成するという成形加工を必要とするものもおる(ペ
ースト押出成形法として知られている。)。この遣の樹
脂としてたとえば、ポリテトラフルオロエチレン(以下
PTFEという。2などがある。これらは成形加工にお
いて、加圧、焼成という工程が含まれており、光ファイ
バの被覆材および元ファイバケーブルのシース材として
−プルの構成材料が過剰の圧力や温度にさらされるため
、上述したような樹脂を使用することは不可能である。In addition, some resins that have heat resistance but high melt viscosity require a molding process in which the powder is compressed at room temperature, then heated above the melting point and fired (paste extrusion method). Are known.). Examples of resins used in this process include polytetrafluoroethylene (hereinafter referred to as PTFE. It is not possible to use resins such as those mentioned above, since the material of which the pull is constructed is exposed to excessive pressure and temperature.
また、光ファイバケーブルのシース構造として、耐熱樹
脂テープの重ね巻きのみであると、摩耗性に弱く、耐熱
側腹テープが剥離し、切断することから、シース材とし
て有し得る機械特性を満足することができなりため、従
来はシース材としては使用し得ない。In addition, if the sheath structure of an optical fiber cable is only made of overlapping layers of heat-resistant resin tape, it will be susceptible to abrasion and the heat-resistant flank tape will peel off and break. Therefore, conventionally, it cannot be used as a sheath material.
本発明は従来の問題点を解決するため、光ファイバケー
ブルのシースを形成する外被は耐熱樹脂テープの重ね巻
きで構成し、耐熱樹脂テープの重ね巻きの電なシ部は接
着または加熱融着したチューブ状の構造からなることを
特徴としている。In order to solve the conventional problems, the outer sheath forming the sheath of the optical fiber cable is constructed by overlapping heat-resistant resin tapes, and the electrically conductive parts of the overlapping heat-resistant resin tapes are bonded or heat-fused. It is characterized by a tube-like structure.
本発明は、光ファイバケーブルのシースヲ形成し、重ね
巻きの重なり部を接着または加熱融着してチューブ状と
したことにより、本来、押出成形がむずかしい熱可塑性
の耐熱樹脂や、押出成形を光ファイバに対して行うこと
が不可能な耐熱樹脂などの樹脂でも、テープ状に成形加
工してシース材としての使用を可能とし、従来以上の耐
熱性を有する樹脂を用いることができる。また耐熱樹脂
テープに残っている残留歪は、加熱しても耐熱樹脂テー
プの重ね巻きの重な9部で、第5図に示すように互いに
収縮を打ち消し合うように作用するため、残留歪の影響
を低減する。The present invention forms a sheath of an optical fiber cable, and glues or heat-seals the overlapping portions of the overlapping windings to form a tube, thereby making it possible to use thermoplastic heat-resistant resin, which is originally difficult to extrude, and extrusion molding into an optical fiber. Even resins such as heat-resistant resins that cannot be processed into a tape can be molded into a tape shape and used as a sheath material, making it possible to use resins that have higher heat resistance than conventional ones. In addition, even when heated, the residual strain remaining in the heat-resistant resin tape is caused by the overlapping 9 parts of the heat-resistant resin tape that act to cancel each other's shrinkage, as shown in Figure 5. Reduce impact.
また耐熱樹脂テープは、重ね巻きの重な夛部を接着また
は加熱融°着したチェーブ状になっているため、摩耗な
どの機械特性についても優れた特性を有する光ファイバ
ケーブルでおる。以下図面にもとづき実施例につ−て説
明する。In addition, since the heat-resistant resin tape has a tube shape in which the overlapping layers are glued or heat-fused, the optical fiber cable has excellent mechanical properties such as wear resistance. Examples will be described below based on the drawings.
第1図は本発明の耐熱耐低温光ファイバケーブルの一実
施例の断面構造で、第2図は本発明の第1図の実施例の
耐熱耐低温光ファイバケーブルの構造説明図でらる。1
は光ファイバ、2は抗張力繊維、31.32は光ファイ
バケーブルのシースを形成する2層構成のそれぞれ1層
目、2層目の耐熱樹脂テープで、第2図には、1層目の
耐熱樹脂テープ31の重ね巻きの状1fAt−示してろ
る。FIG. 1 is a cross-sectional structure of an embodiment of the heat-resistant and low-temperature resistant optical fiber cable of the present invention, and FIG. 2 is an explanatory diagram of the structure of the heat-resistant and low-temperature resistant optical fiber cable of the embodiment of the present invention shown in FIG. 1
2 is the optical fiber, 2 is the tensile strength fiber, and 31.32 is the first and second layer heat-resistant resin tape of the two-layer structure that forms the sheath of the optical fiber cable. The overlapping state of the resin tape 31 1fAt- is shown.
本実施例では、抗張力繊維2としてアラミツド繊維を縦
添えまたは撚り合わせ、あるいは編組によって配列した
例であるが、高温においても強度を維持したい場合には
、ガラス繊維やセラミック繊維などを適用する。In this embodiment, aramid fibers are arranged as the tensile strength fibers 2 by longitudinally splicing, twisting, or braiding, but if it is desired to maintain strength even at high temperatures, glass fibers, ceramic fibers, etc. may be used.
また本実施例では、耐熱樹脂テープ51.52の2層構
造でシースを形成し、内層の1層目の耐熱樹脂テープ5
1はそのitで、外層の2層目の耐熱樹脂テープ32の
み、重ね巻きの重なり部を加熱融着した構造としている
。In addition, in this embodiment, the sheath is formed with a two-layer structure of heat-resistant resin tapes 51 and 52, and the first layer of heat-resistant resin tape 5 is the inner layer.
No. 1 is the IT, and only the second heat-resistant resin tape 32 of the outer layer has a structure in which the overlapping portions of the overlapping windings are heat-sealed.
本実施例の構造は一例でラシ、構造は使用目的により異
なシ、たとえば耐熱樹脂テープは1層のみでもよく、ま
た2層以上の多層でもよく、重ね巻きO重なり部の加熱
融着は、何層について行つてもよい。耐熱樹脂テープ多
層構造の場合、内側の層は、外側の層の耐熱樹脂テープ
を加熱融着する際の断熱作用や、加熱による残留歪の開
放を光ファイバまで及ぼすのを防止するのに効果がある
。The structure of this embodiment is just an example, and the structure may vary depending on the purpose of use.For example, the heat-resistant resin tape may have only one layer, or may have multiple layers of two or more layers. You can follow the layers. In the case of a multi-layered structure of heat-resistant resin tape, the inner layer is effective in providing insulation when the outer layer of heat-resistant resin tape is heat-fused and preventing the release of residual strain caused by heating from reaching the optical fiber. be.
この効果に対して、本実施例では耐熱樹脂テープ31.
32としてPTFII t″用い、2層構造の外側の2
1u目の耐熱樹脂テープ52のみ、重ねを喬の重なり部
を加熱融着した。その結果、内側の1層目の耐熱樹脂テ
ープ51の断熱効果により、抗張力繊維2は高温による
強度劣化の影響を受けずに、高強度の耐熱耐低温光ファ
イバケーブルが実現で龜た。In response to this effect, in this embodiment, the heat-resistant resin tape 31.
PTFII t″ is used as 32, and the outer 2 of the two-layer structure
Only the 1Uth heat-resistant resin tape 52 was heat-sealed at the overlapping portions. As a result, due to the heat insulating effect of the inner first layer heat-resistant resin tape 51, the tensile strength fibers 2 were not affected by strength deterioration due to high temperatures, making it possible to realize a high-strength heat-resistant and low-temperature optical fiber cable.
また耐熱性を有する接着剤で必れは、加熱融着の代わシ
に耐熱樹脂テープ相互を接着してもよい。Alternatively, heat-resistant resin tapes may be bonded together using a heat-resistant adhesive instead of heat-sealing.
接着剤とし−〔は、ポリイミド系接着剤などが適用でき
る。As the adhesive, a polyimide adhesive or the like can be used.
また耐熱樹脂テープの重ね巻きの友なシ部分に対して、
次のような効果が期待できる。すなわち第3図に、たと
えば耐熱樹脂チーブ31の重ね巻きの重なりi3におい
て、熱収縮が生じたときや、膳I辺ぶつ(Mfi知イ治
轟 L 務tハ腹塊〃)静餓ム壺1 イ1へるが、重
なり部5においては、収縮力の働く方向が、矢印で示す
ように相互に逆でおるため、お互いに打ち消し合う効果
がある。熱膨張に対しても同様に考えられるので、温度
変動に対して安定したシース構造となシ、光フフイバも
安定した伝送特性を確保できる。Also, for the part where the heat-resistant resin tape is overlapped,
The following effects can be expected. That is, in FIG. 3, for example, when heat shrinkage occurs in the overlapped layer i3 of the heat-resistant resin cheese 31, However, in the overlapping portion 5, the directions in which the contractile forces act are opposite to each other as shown by the arrows, so that they have the effect of canceling each other out. The same consideration can be given to thermal expansion, so that the sheath structure is stable against temperature fluctuations, and the optical fiber can also ensure stable transmission characteristics.
第4図に本実施例の耐熱耐低温光ファイバケーブルの温
度特性を示す。この実施例では、耐熱樹脂テープとして
PTFIBを用い、FTFBの2層構造で、外側のPT
FIBね巻き層の重なり部を加熱融着した。第4図では
、−65°CM + 260°CO温度サイクルを3サ
イクル行い、5サイクルとも再現性のおる温度特性が得
られた。さらに伝送損失増加量は10dB力i以下に抑
えられ、低損失で安定な伝送特性が確認された。FIG. 4 shows the temperature characteristics of the heat-resistant and low-temperature optical fiber cable of this example. In this example, PTFIB is used as the heat-resistant resin tape, and it has a two-layer structure of FTFB.
The overlapping portions of the FIB spirally wound layers were heat-fused. In FIG. 4, three cycles of -65°CM + 260°CO temperature cycles were performed, and reproducible temperature characteristics were obtained in all five cycles. Furthermore, the increase in transmission loss was suppressed to less than 10 dB, confirming low loss and stable transmission characteristics.
また耐熱樹脂テープの重ね巻きの重なり部を加熱融着ま
たは接着することにより、最外層の形状はチューブ状と
なシ、耐摩耗性などの機械特性について優れた特性を有
する。このとき、加熱融着または接着する耐熱樹脂テー
プの重ね巻きの霊なり部は、第5図に模型的に示したよ
うに耐熱樹脂テープ310@の乃とするのが最適であシ
、加熱融着または接着により耐熱樹脂テープの段差がな
くなり、機械特性が向上する。Furthermore, by heat-sealing or adhering the overlapping portions of the heat-resistant resin tapes, the outermost layer has a tubular shape and has excellent mechanical properties such as abrasion resistance. At this time, it is best to make the overlapped part of the heat-resistant resin tape 310@ to be heat-fused or bonded as shown schematically in FIG. By adhesion or adhesion, the step of the heat-resistant resin tape is eliminated and its mechanical properties are improved.
以上述べたように1本発明の耐熱耐低温光ファイバケー
ブルは、シース構造を耐熱樹脂テープを重ね巻きし、重
ね巻きの重なり部を加熱融着または接着し、チューブ状
の構造とすることにより、シース材としての耐熱樹脂の
適用種類を拡張したことから、従来の耐熱温度を上まわ
る特性を備えるとともに、低温・高温金繰り返す温度変
動に対しても、光ファイバとしての安定な伝送特性と、
さらに機械特性についても高い信頼性が確保され、その
効果顕著である。As described above, the heat-resistant and low-temperature resistant optical fiber cable of the present invention has a sheath structure in which a heat-resistant resin tape is wrapped in layers, and the overlapping portions of the layers are heat-fused or bonded to form a tube-like structure. By expanding the types of heat-resistant resin that can be used as a sheath material, it has characteristics that exceed the conventional heat-resistant temperature, and it also has stable transmission characteristics as an optical fiber, even against repeated temperature fluctuations at low and high temperatures.
Furthermore, high reliability in mechanical properties is ensured, and the effect is remarkable.
第1図は本発明の耐熱耐低温光ファイバケーブルの断面
構造、
第2図は本発明の耐熱耐低温光ファイバケーブルの構造
説明図、
第3図は耐熱樹脂テープの重ね巻きの断面構造とテープ
収縮説明図、
第4図は本発明の耐熱耐低温光ファイバケーブルの温度
特性、
第5図は従来の光ファイバケーブルの断面構造、第6図
は従来の光ファイバケーブルの温度特性でおる。
1・・・光ファイバ、
2・・・抗張力繊維、
3・・・耐熱樹脂テープ重ね巻きの1なり部、31.5
2・・・耐熱樹脂テープ、
4・・・耐熱樹脂
特許出願人 住友電気工業株式会社
代理人 弁理士 玉 蟲 久 五 部
本発明の耐熱耐低温光ファイバケーブルの断面構造第
1 図
本発明の耐熱耐低温光ファイバケーブルの構造説明口笛
2 図
jt熱樹脂テープの重ね巻きの断面構造とテープ収縮説
明同第 3 図
温度(°C)
本発明の耐熱耐低温光ファイバケーブルの温度特性第
4 図
従来の光2アイバケーブルの断面構造
第 5 図
従来の光ファイバケーブルの温度特性
第 6 図Fig. 1 is a cross-sectional structure of a heat-resistant and low-temperature resistant optical fiber cable of the present invention, Fig. 2 is an explanatory diagram of the structure of a heat-resistant and low-temperature resistant optical fiber cable of the present invention, and Fig. 3 is a cross-sectional structure of a heat-resistant resin tape wrapped in layers and the tape. 4 shows the temperature characteristics of the heat-resistant and low-temperature resistant optical fiber cable of the present invention, FIG. 5 shows the cross-sectional structure of a conventional optical fiber cable, and FIG. 6 shows the temperature characteristics of the conventional optical fiber cable. DESCRIPTION OF SYMBOLS 1... Optical fiber, 2... Tensile fiber, 3... 1st fold of heat-resistant resin tape overlapping, 31.5
2...Heat-resistant resin tape, 4...Heat-resistant resin patent applicant Sumitomo Electric Industries Co., Ltd. agent Patent attorney Hisashi Tamamushi Part 5 Cross-sectional structure of heat-resistant and low-temperature resistant optical fiber cable of the present invention
1 Fig. Structure explanation of the heat-resistant and low-temperature resistant optical fiber cable of the present invention Whistle 2 Fig. jt Cross-sectional structure of overlapping thermal resin tape and explanation of tape shrinkage Fig. 3 Temperature (°C) of the heat-resistant and low-temperature resistant optical fiber cable of the present invention Temperature characteristics
Figure 4 Cross-sectional structure of conventional optical fiber cable Figure 5 Temperature characteristics of conventional optical fiber cable Figure 6
Claims (2)
の外周に抗張力繊維を縦添えまたは撚り合せ、あるいは
編組により配列した外周に外被を施してなる光ファイバ
ケーブルにおいて、 前記外被は耐熱樹脂テープの重ね巻きからなり、前記耐
熱樹脂テープの重ね巻きの重なり部は接着または加熱融
着した構造を備えてなる 耐熱耐低温光ファイバケーブル。(1) In an optical fiber cable in which a jacket is applied to the outer periphery of an assembly of single-core or multi-core optical fibers in which tensile strength fibers are vertically attached, twisted, or arranged by braiding, the jacket is A heat-resistant and low-temperature optical fiber cable comprising a heat-resistant and low-temperature-resistant optical fiber cable made of overlapping windings of heat-resistant resin tape, and having a structure in which the overlapping portions of the windings of the heat-resistant resin tape are bonded or heat-sealed.
重ね巻きからなり、 前記耐熱樹脂テープの最外層の耐熱樹脂テープの重ね巻
きの重なり部は接着または加熱融着した構造を備えてな
る 特許請求の範囲第1項記載の耐熱耐低温光ファイバケー
ブル。(2) The outer sheath is made of one or more layers of heat-resistant resin tape, and the overlapping portion of the outermost layer of the heat-resistant resin tape has an adhesive or heat-sealed structure. A heat-resistant and low-temperature resistant optical fiber cable according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60205544A JPS6265005A (en) | 1985-09-18 | 1985-09-18 | Heat resistant and low temperature resistant optical fiber cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60205544A JPS6265005A (en) | 1985-09-18 | 1985-09-18 | Heat resistant and low temperature resistant optical fiber cable |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6265005A true JPS6265005A (en) | 1987-03-24 |
Family
ID=16508649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60205544A Pending JPS6265005A (en) | 1985-09-18 | 1985-09-18 | Heat resistant and low temperature resistant optical fiber cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6265005A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013174678A (en) * | 2012-02-24 | 2013-09-05 | Fujikura Ltd | Optical fiber cable and method of manufacturing optical fiber cable |
-
1985
- 1985-09-18 JP JP60205544A patent/JPS6265005A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013174678A (en) * | 2012-02-24 | 2013-09-05 | Fujikura Ltd | Optical fiber cable and method of manufacturing optical fiber cable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6898354B2 (en) | Fiber optic cable demonstrating improved dimensional stability | |
JP5492773B2 (en) | Optical fiber cable and manufacturing method | |
US3191005A (en) | Electric circuit arrangement | |
JPH07117633B2 (en) | Fiber optic cable | |
JPH06500183A (en) | Insulated waveguide optical fiber cable with buffer | |
US4045611A (en) | Hermetic lead wire | |
JP6068760B2 (en) | Cable fixing structure and cable | |
EP0110507B1 (en) | Optical fibre cables | |
US4840453A (en) | Composite overhead stranded conductor | |
JPH0473493A (en) | Joint sleeve and tube fitting | |
JPS638348B2 (en) | ||
IT9019720A1 (en) | JOINT FOR CABLES AND CORES OF FIBER OPTIC CABLES AND METHOD FOR ITS REALIZATION | |
JPS6265005A (en) | Heat resistant and low temperature resistant optical fiber cable | |
US4538881A (en) | Optical fiber cable including a strain equalizing adhesive which constrains optical loss | |
JP6774462B2 (en) | Multi-core communication cable | |
US3539409A (en) | Method of making long lengths of epoxy resin insulated wire | |
JPS61179408A (en) | Spacer for carrying optical fiber and its production | |
JPS582813A (en) | Reinforcing method for sealed connection part of optical fiber core | |
JP2002095125A (en) | Cable joint and fabrication method therefor | |
US6680439B2 (en) | Composite electrical insulator having an outer coating and at least one optical fiber compatible therewith | |
JPS62194208A (en) | Heat-resisting and low-temperature-resisting optical fiber cable and its manufacture | |
JPH0412484Y2 (en) | ||
JP7530219B2 (en) | Cable fixing structure and multi-core cable | |
JPS6028773B2 (en) | Method of manufacturing optical fiber cable | |
JPS58100114A (en) | Manufacture of optical fiber connection part |