JPH0118525B2 - - Google Patents

Info

Publication number
JPH0118525B2
JPH0118525B2 JP19799181A JP19799181A JPH0118525B2 JP H0118525 B2 JPH0118525 B2 JP H0118525B2 JP 19799181 A JP19799181 A JP 19799181A JP 19799181 A JP19799181 A JP 19799181A JP H0118525 B2 JPH0118525 B2 JP H0118525B2
Authority
JP
Japan
Prior art keywords
optical fiber
modulus
core material
conductor
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19799181A
Other languages
Japanese (ja)
Other versions
JPS58100103A (en
Inventor
Shigeo Fukuda
Takashi Suzumura
Hiromichi Yoshida
Masahiko Toyoshima
Makoto Kawasaki
Hiroshi Kajioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP19799181A priority Critical patent/JPS58100103A/en
Publication of JPS58100103A publication Critical patent/JPS58100103A/en
Publication of JPH0118525B2 publication Critical patent/JPH0118525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • G02B6/4422Heterogeneous cables of the overhead type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Communication Cables (AREA)

Description

【発明の詳細な説明】 本発明はその構造内に光フアイバを収納した光
フアイバ複合架空線の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a composite optical fiber overhead line containing optical fibers within the structure.

光フアイバ複合架空線は、その構成部材である
導電体に電流が流れた場合、特に短絡事故等によ
り大電流が流れた場合には、大きく温度上昇し、
ヒートサイクルを受ける。光フアイバ複合架空線
の熱膨張、熱収縮は、断面積の大きな、また強度
も強い導電体の材質(銅、アルミニウム、鉄な
ど)によりほとんど決まつてしまうが、導電体の
熱膨張率は光フアイバのそれよりほとんど1桁大
きい。したがつて、光フアイバと導電体の間に長
手方向の相対的な動き(ずれ)を生じ、光フアイ
バには不均一、局部的な応力が加わる。また熱膨
張率の差によつて、光フアイバは引張り、あるい
は圧縮応力を繰り返し受ける。
When a current flows through the conductor that constitutes the optical fiber composite overhead line, especially when a large current flows due to a short circuit, etc., the temperature rises significantly.
undergo heat cycling. Thermal expansion and contraction of optical fiber composite overhead lines are mostly determined by the material of the conductor (copper, aluminum, iron, etc.), which has a large cross-sectional area and strong strength, but the coefficient of thermal expansion of the conductor depends on the light almost an order of magnitude larger than that of fiber. Therefore, a relative movement (displacement) in the longitudinal direction occurs between the optical fiber and the conductor, and uneven and local stress is applied to the optical fiber. Furthermore, due to the difference in coefficient of thermal expansion, the optical fiber is repeatedly subjected to tensile or compressive stress.

これらの応力は光フアイバの伝送特性を損うば
かりでなく、破断の原因にもなる。これを避ける
ために、しばしばクツシヨン層を介して光フアイ
バを収納する構造がとられる。
These stresses not only impair the transmission characteristics of the optical fiber, but also cause it to break. To avoid this, a structure is often adopted in which the optical fiber is housed through a cushion layer.

クツシヨン層として、ガラス、ナイロン等の繊
維を束ねたものを用いた場合、半径方向の見かけ
上のヤング率は小さいが、長手方向のヤング率は
高く、ヒートサイクル試験において、これが独自
の挙動をし、光フアイバの局部的な曲げや、引張
りの原因となつた。
When a bundle of fibers such as glass or nylon is used as a cushion layer, the apparent Young's modulus in the radial direction is small, but the Young's modulus in the longitudinal direction is high, and this exhibits unique behavior in heat cycle tests. , causing local bending and tensioning of the optical fiber.

一方、クツシヨン層にポリエチレン等の充実ひ
もを用いると、半径方向の熱膨張により、高温で
光フアイバが押し拡げられ、引張り応力が増して
しまう。
On the other hand, if a solid string made of polyethylene or the like is used for the cushion layer, thermal expansion in the radial direction causes the optical fiber to be expanded at high temperatures, increasing tensile stress.

本発明の目的は、前記した従来構造の欠点を解
消し、伝送特性の安定した、しかも長期信頼性の
高い光フアイバ複合架空線を提供することにあ
る。
An object of the present invention is to eliminate the drawbacks of the conventional structure described above and to provide an optical fiber composite overhead line with stable transmission characteristics and high long-term reliability.

本発明の要旨は、光フアイバ複合架空線におけ
る内側の芯材と外側の導電体の熱膨張率を実質的
にほとんど等しくなるようにしたものであり、芯
材としてヤング率の大きなテンシヨンメンバーに
極めてヤング率の小さな物質を被覆したものを用
い、その上に光フアイバを巻きつけた光フアイバ
収納構造を用いた点にある。
The gist of the present invention is to make the coefficients of thermal expansion of the inner core material and the outer conductor substantially equal in an optical fiber composite overhead line, and to use a tension member with a large Young's modulus as the core material. The key point is that an optical fiber housing structure is used in which an optical fiber is wrapped around a material coated with a material having an extremely small Young's modulus.

芯材を構成するテンシヨンメンバの材質は、光
フアイバまでを含めた複合した熱膨張率(主にテ
ンシヨンメンバにより決定される)を導電体のそ
れと等しくするのであるが、一般には金属となろ
うが、場合によつては樹脂材料、ガラス繊維、芳
香族ポリアミド繊維等となることもあろう。
The material of the tension member that makes up the core material is made to have a composite coefficient of thermal expansion (mainly determined by the tension member) including that of the optical fiber, and is generally made of metal. The wax may be a resin material, glass fiber, aromatic polyamide fiber, etc. depending on the case.

要は、外側の導電体側の熱膨張率とほとんど等
しくするように、内側の芯材の材料、構造を決定
することである。
The key is to determine the material and structure of the inner core material so that the coefficient of thermal expansion is almost equal to that of the outer conductor.

テンシヨンメンバに被覆する低ヤング率物質
は、発泡シリコーンゴムのような、できるだけヤ
ング率の小さなものが良い。
The low Young's modulus material coated on the tension member is preferably one with a Young's modulus as small as possible, such as foamed silicone rubber.

本発明を図面を引用した実施例により、以下具
体的に説明する。
The present invention will be specifically described below with reference to the drawings.

この実施例は、光フアイバ複合架空地線の場合
である。
This example is for a fiber optic composite overhead ground wire.

テンシヨンメンバ1は外径0.3mmのステンレス
スチール線であり、その周上に低ヤング率物質層
2として耐熱性も考慮して、発泡シリコーンゴム
を外径2mmに被覆し、これらが芯材7を構成して
いる。
The tension member 1 is a stainless steel wire with an outer diameter of 0.3 mm, and a low Young's modulus material layer 2 on its circumference is coated with foamed silicone rubber with an outer diameter of 2 mm, taking heat resistance into consideration. It consists of

発泡シリコーンゴムのヤング率はほぼ2Kg/cm2
であり、これは例えばナイロンの約1/9000であり
極めて小さい。
The Young's modulus of foamed silicone rubber is approximately 2Kg/cm 2
This is, for example, about 1/9000 of nylon, which is extremely small.

芯材7の周上に光フアイバ3が長いピツチで巻
きつけてある。
The optical fiber 3 is wound around the core material 7 in a long pitch.

光フアイバ保護層4として、0.1mm厚さにガラ
ス繊維層が設けられており、その上に保護パイプ
5としてのアルミニウムパイプを介して、導電体
6としてのアルミニウム被覆鋼線が撚合されてい
る。このアルミニウム被覆鋼線は、外径3mmの鋼
線の周上に最終外径17.3mmとなるようにアルミニ
ウムを被覆した構造である。
A glass fiber layer with a thickness of 0.1 mm is provided as the optical fiber protective layer 4, and an aluminum-coated steel wire as the conductor 6 is twisted onto it via an aluminum pipe as the protective pipe 5. . This aluminum coated steel wire has a structure in which aluminum is coated on the circumference of a steel wire having an outer diameter of 3 mm so as to have a final outer diameter of 17.3 mm.

この実施例の複合架空地線の全体の熱膨張率
は、導電体6(アルミニウム被覆鋼線)のそれと
ほとんど等しく15×10-61/℃程度である。
The overall coefficient of thermal expansion of the composite overhead ground wire of this embodiment is approximately equal to that of the conductor 6 (aluminum coated steel wire), about 15×10 -6 1/°C.

そして、テンシヨンメンバ1としては、これと
ほとんど熱膨張率の等しい外径0.3mmのステンレ
ススチール線を用いたものである。
As the tension member 1, a stainless steel wire having an outer diameter of 0.3 mm and having almost the same coefficient of thermal expansion as the tension member 1 is used.

この実施例の複合架空地線においては、光フア
イバの長手方向ずれは起らず、また光フアイバに
加わる引張応力は従来のこの種複合架空地線に比
べて1/4〜1/10に減少した。ヒートサイクル試験
においても伝送特性は安定していた。
In the composite overhead ground wire of this example, no displacement occurs in the longitudinal direction of the optical fiber, and the tensile stress applied to the optical fiber is reduced to 1/4 to 1/10 compared to conventional composite overhead ground wires of this type. did. The transmission characteristics were also stable in heat cycle tests.

以上のような一実施例により説明した本発明の
光フアイバ複合架空地線は、次のような効果を発
揮する。
The optical fiber composite overhead ground wire of the present invention, which has been explained in accordance with the above-mentioned embodiment, exhibits the following effects.

(1) 芯材側と導電体側とが、ヒートサイクル時に
同じように伸縮をすることは、両者が相互に長
手方向のずれを生じないために重要であり、こ
れにより両者間に存在する光フアイバが局部的
に大きな張力を受けたりすることがなくなり、
ケーブル化したときの光フアイバの伝送特性及
び機械特性が非常に向上する。
(1) It is important for the core material side and the conductor side to expand and contract in the same way during a heat cycle, in order to prevent mutual displacement in the longitudinal direction. is no longer subject to large local tension,
The transmission characteristics and mechanical properties of the optical fiber when made into a cable are greatly improved.

すなわち、光フアイバを巻き付ける芯材と導
電体側との熱膨張率を実質的にほとんど同じに
するために、両者は同じように伸縮し、長手方
向のずれは生じない。
That is, in order to make the coefficient of thermal expansion of the core material around which the optical fiber is wound and the conductor side substantially the same, both expand and contract in the same way, and no deviation occurs in the longitudinal direction.

また、芯材を構成するテンシヨンメンバのヤ
ング率も大きいので、長手方向にわたり均一に
伸縮し、局部的に伸縮量が集中する恐れがな
い。
Furthermore, since the Young's modulus of the tension member constituting the core material is large, it expands and contracts uniformly over the longitudinal direction, and there is no fear that the amount of expansion and contraction will be locally concentrated.

(2) テンシヨンメンバと光フアイバの間に低ヤン
グ率の物質を介在させることによる効果は次の
2点である。
(2) Interposing a material with a low Young's modulus between the tension member and the optical fiber has the following two effects.

(i) この物質自体の熱膨張による悪影響が無視
できる。
(i) The adverse effects of thermal expansion of the material itself can be ignored.

即ち温度が高くなつても、膨張により光フ
アイバを押し拡げることがない。また、独自
で挙動することがなく、光フアイバの巻きつ
け形状を変化させない。
That is, even if the temperature becomes high, the optical fiber will not be forced to expand due to expansion. Furthermore, it does not behave independently and does not change the shape of the optical fiber wrapped around it.

(ii) 高温時、線路が熱膨張したときの、光フア
イバに加わる引張り応力を著しく低減させ
る。
(ii) Significantly reduces the tensile stress applied to the optical fiber when the line thermally expands at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す横断面図である。 1:テンシヨンメンバ、2:低ヤング率物質
層、3:光フアイバ、4:光フアイバ保護層、
5:保護パイプ、6:導電体、7:芯材。
The figure is a cross-sectional view showing one embodiment of the present invention. 1: Tension member, 2: Low Young's modulus material layer, 3: Optical fiber, 4: Optical fiber protective layer,
5: Protective pipe, 6: Conductor, 7: Core material.

Claims (1)

【特許請求の範囲】 1 芯材と、その周上に配置した光フアイバと、
その周上に配置した導電体とから成り、芯材側と
導電体側の熱膨張率をほとんど等しくなるように
したことを特徴とする光フアイバ複合架空線。 2 芯材が、ヤング率の大きいテンシヨンメンバ
ーにヤング率の極めて小さい物質を被覆して構成
したものであることを特徴とする特許請求の範囲
第1項記載の光フアイバ複合架空線。 3 ヤング率の極めて小さい物質が発泡有機重合
体であることを特徴とする特許請求の範囲第2項
記載の光フアイバ複合架空線。
[Claims] 1. A core material, an optical fiber disposed around the core material,
What is claimed is: 1. An optical fiber composite overhead wire comprising a conductor disposed on the periphery thereof, the core material side and the conductor side having almost the same coefficient of thermal expansion. 2. The optical fiber composite overhead wire according to claim 1, wherein the core material is constructed by coating a tension member with a large Young's modulus with a material having an extremely small Young's modulus. 3. The optical fiber composite overhead wire according to claim 2, wherein the material having an extremely small Young's modulus is a foamed organic polymer.
JP19799181A 1981-12-09 1981-12-09 Optical fiber composite aerial wire Granted JPS58100103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19799181A JPS58100103A (en) 1981-12-09 1981-12-09 Optical fiber composite aerial wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19799181A JPS58100103A (en) 1981-12-09 1981-12-09 Optical fiber composite aerial wire

Publications (2)

Publication Number Publication Date
JPS58100103A JPS58100103A (en) 1983-06-14
JPH0118525B2 true JPH0118525B2 (en) 1989-04-06

Family

ID=16383687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19799181A Granted JPS58100103A (en) 1981-12-09 1981-12-09 Optical fiber composite aerial wire

Country Status (1)

Country Link
JP (1) JPS58100103A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048620U (en) * 1983-09-09 1985-04-05 昭和電線電纜株式会社 Flexible fiber optic composite cable
US5115485A (en) * 1987-05-04 1992-05-19 Rochester Corporation Cable for housing parallelly oriented optical fibers and method and apparatus for producing the same
CN106952686B (en) * 2017-03-23 2019-06-14 中山市恒辉自动化科技有限公司 A kind of composite overhead ground wire

Also Published As

Publication number Publication date
JPS58100103A (en) 1983-06-14

Similar Documents

Publication Publication Date Title
JPS6329722B2 (en)
JPS6057305A (en) Optical fiber cable
GB2111238A (en) Joining and protecting optic fibre joins
US20040258373A1 (en) Monitoring cable
JPH0216485B2 (en)
JPS58123504A (en) Optical cable element
EP0200104A2 (en) Composite overhead stranded conductor
JPH0118525B2 (en)
JPS596268B2 (en) Method of reinforcing glass fiber for optical transmission
JPS58197606A (en) Improved flexible stretchable body
JPS6310806B2 (en)
JPH0343603B2 (en)
JPS6086508A (en) Fitting part of terminal plug of optical fiber covered with sheath
JP2687650B2 (en) Optical fiber cable stabilized at low temperature
JPS5816406A (en) Composite twisted wire for aerial transmission line with light communication wire
JP4593027B2 (en) Self-supporting aerial optical cable and its terminal retaining structure
JPS6323690Y2 (en)
JPH0438427Y2 (en)
JPH0412484Y2 (en)
JPS62194208A (en) Heat-resisting and low-temperature-resisting optical fiber cable and its manufacture
JPH02114218A (en) Heat resistant coated optical fiber
JPS635308A (en) Optical cable connected section
JPH01191109A (en) Optical fiber cable for composite overhead earth wire
JPH0295115A (en) Pipe cable and manufacture thereof
JPH0410563Y2 (en)