JPH0295115A - Pipe cable and manufacture thereof - Google Patents

Pipe cable and manufacture thereof

Info

Publication number
JPH0295115A
JPH0295115A JP63241598A JP24159888A JPH0295115A JP H0295115 A JPH0295115 A JP H0295115A JP 63241598 A JP63241598 A JP 63241598A JP 24159888 A JP24159888 A JP 24159888A JP H0295115 A JPH0295115 A JP H0295115A
Authority
JP
Japan
Prior art keywords
tube
pipe
optical fiber
cable
pipe cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63241598A
Other languages
Japanese (ja)
Other versions
JP2780283B2 (en
Inventor
Tetsuharu Aoki
徹治 青木
Yoshiaki Terasawa
寺沢 良明
Ho Hayashi
林 邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24159888A priority Critical patent/JP2780283B2/en
Publication of JPH0295115A publication Critical patent/JPH0295115A/en
Application granted granted Critical
Publication of JP2780283B2 publication Critical patent/JP2780283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4459Ducts; Conduits; Hollow tubes for air blown fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electric Cable Installation (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

PURPOSE:To reduce the shrinkage amount of a PE tube to be used in real circumstances for a long period of time and to obtain high reliability by the application to a pneumatically feeding and mounting optical cable by determining the molding time remaining distortion of the tube to be used to a specific value or less. CONSTITUTION:In a pipe cable in which several pipes 2 each made of a PE tube to be used for a pneumatically feeding optical cable laying system are associated and a sheath 1 is provided thereon, the molding time remaining distortion of the tube 2 to be used is set to 1% or less. Thus, when the long term use is considered in normal temperature circumstances, i.e., in a temperature range of -40 to 80 deg.C, the shrinkage amount of the tube is small. Accordingly, the retraction of the tube 2 in the vicinity of the end of the cable is reduced. Therefore, an increase in the slack generated in the tube 2 of the contained optical fiber unit, i.e., a large increase in the excessive length is suppressed, and the optical fiber having high reliability after laying is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単心または複数心の光ファイバに被覆層を施
した光ファイバユニットを空気圧送により布設する空気
圧送光ファイバケーブル布設システムに使用するポリエ
チレン製チューブからなるパイプを複数本集合し、外被
を施したパイプケーブルおよびその製造方法に関するも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is used for a pneumatic optical fiber cable installation system in which an optical fiber unit in which a single-core or multi-core optical fiber is coated with a coating layer is laid by pneumatic feeding. The present invention relates to a pipe cable in which a plurality of pipes made of polyethylene tubes are assembled and covered with a jacket, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

光フアイバケーブルを布設する方法として、単心または
複数心の光ファイバに、たとえ゛ば発泡被覆層などの被
覆層を施して形成した光ファイバユニットを、単数また
は複数のポリエチレン製のチューブ(以下PEチューブ
という。)からなる、所謂パイプケーブル内に空気など
の加圧ガスで圧送収納し、布設する方法がある(たとえ
ば特開昭59−104607号公@)。この加圧ガス圧
送方式によに光フアイバケーブルの布設方法は、布設に
際し、光ファイバに張力などの外力がかからず損傷する
ことがなく、また既設のPEチューブ内への加圧ガス圧
送方式であることから、複雑なルートへの布設も可能と
なり、さらに布設後の光ファイバの交換や追加布設など
も可能で、保守の容易性、布設経費の低廉化において有
効である。
As a method of laying an optical fiber cable, an optical fiber unit formed by applying a coating layer such as a foam coating layer to a single-core or multi-core optical fiber is connected to a single or multiple polyethylene tube (hereinafter referred to as PE tube). There is a method in which a pressurized gas such as air is fed and housed in a so-called pipe cable consisting of a tube (for example, JP-A-59-104607@). This pressurized gas pumping method is used to install optical fiber cables, and during installation, no external force such as tension is applied to the optical fibers, so there is no damage to the optical fibers. This makes it possible to install optical fibers along complicated routes, as well as to replace optical fibers after installation and to install additional optical fibers, which is effective in facilitating maintenance and reducing installation costs.

第2図aおよびbに、この種の従来のパイプケーブルの
断面構造を例示する。第2図aはPEチューブ4を2本
集合し、その外周にLAVシース(ラミネートアルミニ
ウムPVCシース)3を施し、2チユーブパイプケーブ
ルを形成した例であり、第2図すはPEチューブ4を7
本集合し、その外周にり、APシース(ラミネートアル
ミニウムポリエチレンシース)1を施し、7チユーブパ
イプケーブルを形成した例である。
FIGS. 2a and 2b illustrate the cross-sectional structure of a conventional pipe cable of this type. Figure 2a shows an example in which two PE tubes 4 are assembled and a LAV sheath (laminated aluminum PVC sheath) 3 is applied to the outer periphery to form a 2-tube pipe cable.
This is an example in which a 7-tube pipe cable is assembled by applying an AP sheath (laminated aluminum polyethylene sheath) 1 to its outer periphery.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の第2図aおよびbに例示したようなパイプケーブ
ルの構造では、長期間の使用環境下で、PEチューブの
押出し成形時の残留歪の緩和挙動により、たとえば第3
図に模式的に示したように、パイプケーブル端末部にお
いてPEチューブ4の収縮により、たとえばLAPシー
ス1の端部から引込量lだけPEチューブ4が引込む、
所謂引込現象が発生し、パイプケーブルの端末処理や、
収納された光ファイバユニットの余長増大に伴う伝送特
性への影響が懸念されるという問題がある。
In the conventional pipe cable structure as illustrated in FIGS. 2a and 2b, under long-term usage environment, due to the relaxation behavior of residual strain during extrusion molding of the PE tube, for example, the third
As schematically shown in the figure, due to the contraction of the PE tube 4 at the end of the pipe cable, the PE tube 4 is retracted by a retraction amount l from the end of the LAP sheath 1, for example.
The so-called pull-in phenomenon occurs, and the end treatment of pipe cables,
There is a problem in that there is concern that an increase in the extra length of the housed optical fiber unit will affect the transmission characteristics.

本発明は従来の問題を解決し、長期間の実環境下での使
用に対して、端末処理部の安定性を向上し、収納した光
ユニットへの影響を低減した、空気圧送光ファイバケー
ブル布設システムに使用する信顧性の高いパイプケーブ
ルおよびその製造方法を提供することを目的とするもの
である。
The present invention solves the conventional problems, improves the stability of the terminal processing part, and reduces the influence on the housed optical unit for long-term use in actual environments. The purpose of this invention is to provide a highly reliable pipe cable for use in a system and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するため、本発明のパイプケー
ブルは、空気圧送により、単心または複数心の光ファイ
バに被覆層を施した光ファイバユニットを布設する空気
圧送光ファイバケーブル布設システムに使用するPEチ
ューブからなるパイプを複数本集合し、外被を施したパ
イプケーブルにおいて、前記パイプを形成するP’Eチ
ューブは、1%以下の成形時残留歪を有して構成された
ことを特徴としている。
In order to achieve the above-mentioned object, the pipe cable of the present invention is used in a pneumatic optical fiber cable installation system that installs an optical fiber unit in which a single-core or multi-core optical fiber is coated with a coating layer by pneumatic feeding. A pipe cable in which a plurality of pipes made of PE tubes are assembled and coated, characterized in that the P'E tubes forming the pipes have a residual strain of 1% or less during molding. It is said that

また本発明のパイプケーブルを製造する方法“は、押出
成形によりPEチューブを形式し、前記押出成形により
形成したPEチューブに熱処理を施して残留歪を1%以
下とし、前記成形時の残留歪を有するPEチューブを複
数本集合した外周にLAPシースを施す工程からなるこ
とを特徴としている。
Further, the method for manufacturing a pipe cable of the present invention involves forming a PE tube by extrusion molding, heat-treating the PE tube formed by extrusion molding to reduce the residual strain to 1% or less, and reducing the residual strain during the molding. This method is characterized by a step of applying a LAP sheath to the outer periphery of a plurality of PE tubes.

なお前記押出成形により形成したPEチューブに熱処理
を施して残留歪を1%以下とする工程は、成形時残留歪
を抑制する手段として、PEチューブ成形後、電子線照
射により架橋し、押出成形歪を可能な限り凍結し、その
後、加熱処理を施して残留歪を解放する方法によること
は有効である。
Note that the step of heat-treating the PE tube formed by extrusion molding to reduce the residual strain to 1% or less is a means of suppressing residual strain during molding. It is effective to freeze the material as much as possible and then heat it to release residual strain.

〔作 用〕[For production]

本発明によるパイプケーブルは、使用するPEチューブ
の成形時残留歪が1%以下であることから、通常の温度
環境下、すなわち−40℃乃至80℃程度の温度範囲に
おいて長期間使用することを考慮した場合、PEチュー
ブの収縮量が少いので、特に第3図の模式図で説明した
パイプケーブルの端末近傍でのPEチューブの引込現象
は低減し、したがって収納された光ファイバユニットの
PEチューブ内に生じるたるみ、すなわち余長の増大の
大幅に増加するのが抑制され、実用上、布設後において
信頼性の高い光ケーブルとなる。以下図面にもとづき実
施例について説明する。
Since the pipe cable according to the present invention has a residual strain of 1% or less during molding of the PE tube used, it is suitable for long-term use under normal temperature environments, that is, in the temperature range of -40°C to 80°C. In this case, since the amount of contraction of the PE tube is small, the pulling phenomenon of the PE tube near the end of the pipe cable explained in the schematic diagram of Fig. 3 is reduced, and therefore the inside of the PE tube of the stored optical fiber unit is reduced. This suppresses the drastic increase in slack that occurs in the cable, that is, the increase in excess length, resulting in an optical cable that is highly reliable in practice after installation. Examples will be described below based on the drawings.

〔実施例〕〔Example〕

第1図は本発明のパイプケーブルの一実方鶏例の断面構
造図である。成形時残留歪を1%以下に低減、抑制した
架橋PEチューブ2を7本集合し、その外周にLAPシ
ース1を施した構成のパイプケーブルである。
FIG. 1 is a cross-sectional structural diagram of an example of a pipe cable of the present invention. This is a pipe cable constructed by assembling seven cross-linked PE tubes 2 whose residual strain during molding is reduced or suppressed to 1% or less, and a LAP sheath 1 is applied to the outer periphery of the tubes.

PEチューブ材料としては、密度0.92(g/cc)
MI(メルトインデックス)0.25  (8710分
)の低密度ポリエチレンを基材にして添加剤を僅かに含
む材料を用いた。
PE tube material has a density of 0.92 (g/cc)
A material based on low density polyethylene with an MI (melt index) of 0.25 (8710 minutes) and containing a small amount of additives was used.

上記材質のPEチューブ材料を押出成形により、内径6
mmφ、外径8mmφの寸法のチューブに押出線速10
m/分で押出した。この押出成形により製造したPEチ
ューブを比較例1とする。
By extrusion molding the PE tube material of the above material, the inner diameter is 6.
mmφ, extrusion linear speed 10 to tube with outer diameter 8mmφ
It was extruded at m/min. A PE tube manufactured by this extrusion molding is referred to as Comparative Example 1.

比較例1のPEチューブを、断面形状を維持できる程度
に温度80°Cの温水中に十分な時間通過させることに
より熱処理を施した。この熱処理を施したPEチューブ
を比較例2とする。
The PE tube of Comparative Example 1 was heat-treated by passing it through hot water at a temperature of 80° C. for a sufficient time to maintain its cross-sectional shape. The PE tube subjected to this heat treatment is referred to as Comparative Example 2.

さらに比較例1のPEチューブを電子線照射機により1
8Mrad相当照射して架橋した後、温度8C1cの温
水中を通過させて熱処理を施した。
Furthermore, the PE tube of Comparative Example 1 was
After crosslinking by irradiation equivalent to 8 Mrad, heat treatment was performed by passing through hot water at a temperature of 8C1c.

このPEチューブは本発明に係る実施例1である。This PE tube is Example 1 according to the present invention.

同様に、比較例1のPEチューブを電子線照射機により
36Mrad相当照射して架橋した後、温度80°Cの
温水中を通過させて熱処理を施した。
Similarly, the PE tube of Comparative Example 1 was crosslinked by irradiating it with an electron beam irradiator equivalent to 36 Mrad, and then passed through hot water at a temperature of 80°C to perform heat treatment.

このPEチューブは本発明に係る実施例2である。This PE tube is Example 2 according to the present invention.

比較例1.2および実施例1,2のそれぞれのP、Eチ
ューブを7本づつ集合し、さらにその集合したそれぞれ
の外周に、通常の黒色のシース用ポリエチレンをA、β
1200μmのり、APテープとともに施して、シース
厚2mmの所謂LAPシースとした。なおこの比較例1
,2および実施例1゜2のPEチューブをそれぞれ用い
た四種のパイプケーブルにおいて、LAPシースと各P
EチューブからなるPEパイプコア間の所謂コア引抜力
は、引張長50cmについて約10Kgとなるように成
形した。
Seven P and E tubes of each of Comparative Example 1.2 and Examples 1 and 2 were assembled, and ordinary black polyethylene for sheathing was coated around the outer periphery of each of the assembled tubes A and β.
A so-called LAP sheath with a sheath thickness of 2 mm was obtained by applying 1200 μm glue and AP tape. Furthermore, this comparative example 1
In four types of pipe cables using the PE tubes of , 2 and Example 1゜2, the LAP sheath and each P
The so-called core pulling force between the PE pipe cores made of E-tubes was approximately 10 kg for a tensile length of 50 cm.

上記それぞれの試作、製造した四種のパイプケーブルお
よびPEチューブについて第1表に示す項目について評
価を行い、各PEチューブの加熱収縮率、およびパイプ
ケーブルの第3図に示したβに相当する引込量を評価し
た。
The above-mentioned prototypes, four types of manufactured pipe cables, and PE tubes were evaluated on the items shown in Table 1, and the heat shrinkage rate of each PE tube and the retraction rate corresponding to β shown in Figure 3 of the pipe cables were evaluated. Assessed quantity.

第1表の評価結果から、比較例2のPEチューブの熱処
理だけでも、温度100℃における加熱収縮率を大きく
低減できるが、望ましくは実施例1および実施例2のP
Eチューブのように、架橋処理を施した後、熱処理を併
用することにより成形時残留歪を1%以下のレベルに達
成できる。しかも架橋度を高める、すなわちゲル分率を
高めることにより更に加熱収縮率を低減することができ
た。 さらに、これらPEチューブを用いて作製したパ
イプケーブルの端末部におけるPEチューブの引込量は
、使用したPEチューブの加熱収縮率と大きく相関があ
り、PEチューブの加熱収縮率を1%以下に抑えたPE
チューブを使用したパイプケーブルの引込量は50mm
以下のレベルであり、実用上長期使用に対して安定であ
り、信軌性の高いパイプケーブルが得られる。
From the evaluation results in Table 1, it is clear that heat treatment of the PE tube of Comparative Example 2 alone can greatly reduce the heat shrinkage rate at a temperature of 100°C.
As with the E-tube, by applying heat treatment after crosslinking treatment, residual strain during molding can be achieved at a level of 1% or less. Moreover, by increasing the degree of crosslinking, that is, by increasing the gel fraction, it was possible to further reduce the heat shrinkage rate. Furthermore, the amount of retraction of the PE tube at the end of the pipe cable made using these PE tubes has a strong correlation with the heat shrinkage rate of the PE tube used, and the heat shrinkage rate of the PE tube was suppressed to 1% or less. P.E.
The length of the pipe cable using a tube is 50mm.
It is possible to obtain a pipe cable that is stable for long-term use and has high reliability.

なお架橋P、Eチューブを使用した場合、高温下でのケ
ーブルの側圧による熱変形に対して、未架橋のPEチュ
ーブを使用したものより変形は小さいことを確認した。
It was confirmed that when cross-linked P and E tubes were used, thermal deformation due to lateral pressure of the cable at high temperatures was smaller than when uncross-linked PE tubes were used.

本発明に用いられるPEチューブとしては、実施例で述
べた低密度ポリエチレン以外に、中密度、高密度および
直鎖状低密度ポリエチレンも含むもので、いずれの材質
であってもパイプケーブルとして用いられる場合は本発
明による構成が適用できる。
In addition to the low-density polyethylene mentioned in the examples, the PE tube used in the present invention includes medium-density, high-density, and linear low-density polyethylene, and any material can be used as a pipe cable. In this case, the configuration according to the present invention can be applied.

また本発明のパイプケーブルは、実施例ではPEチュー
ブ集合コアの近傍、たとえばPEチューブ集合コアの内
部または外部に抗張力体を含まない構造の例について説
明したが、本発明は上記実施例に限られるものではなく
、PEチューブ集合コアの近傍に抗張力体を配置した構
造のパイプケーブルの製造方法にも適用できることは明
らかである。
Further, in the embodiments, the pipe cable of the present invention has a structure that does not include a tensile strength member in the vicinity of the PE tube aggregate core, for example, inside or outside the PE tube aggregate core, but the present invention is limited to the above embodiments. It is clear that the present invention can also be applied to a method of manufacturing a pipe cable having a structure in which a tensile strength member is arranged in the vicinity of a PE tube assembly core.

第  1 表 ℃〜+80℃/8時間)のヒートサイクルを100回与
えた後のサンプルパイプケーブル両端でのPEチューブ
の引込量(集合した7本のPEチューブの最大、最小引
込量のPEチューブを除いた5本のPEチューブの引込
量平均値)を測定し、一方の端部当りの引込量として表
示。
Table 1: The amount of PE tube retraction at both ends of the sample pipe cable (maximum and minimum amount of retraction of the 7 PE tubes collected) after 100 heat cycles of ℃ to +80℃/8 hours) Measure the average value of the amount of retraction of the five PE tubes (excluded) and display it as the amount of retraction per one end.

*1: 温度120°Cのキシレン中に16時間浸漬、
濾過後100℃×2時間真空乾燥後秤量した残率(%)
表示。
*1: Immersed in xylene at a temperature of 120°C for 16 hours,
Residue rate (%) after filtration and vacuum drying at 100°C for 2 hours.
display.

*2:  PE チューブ30cm(標線20’cm)
をタルクベット上で温度100℃で加熱し、飽和値に達
するのに十分な時間(96時間)経過後の収縮率(%)
を測定。
*2: PE tube 30cm (marked line 20'cm)
is heated on a talc bed at a temperature of 100℃, and the shrinkage rate (%) after sufficient time (96 hours) to reach the saturation value
Measure.

*3: パイプケーブルを直径1.2mφで束取りし、
20m長のサンプルとし、(−40〔発明の効果〕 以上説明したように、本発明によるパイプケーブルは、
使用するPEチューブの成形時残留歪が1%以下である
ことから、通常−40°C乃至80°C程度の温度範囲
における長期間の実環境下での使用に対して、PEチュ
ーブの収縮量が少なく、端末部でのPEチューブの引込
現象が低減し、パイプケーブル端末処理部の安定性が向
上することにより、収納した光ファイバユニットへの影
響、すなわち余長の増大による伝送特性の劣化も低減し
、本発明を空気圧送布設光フアイバケーブルに適用して
高信頬性を確保するうえで有効である。
*3: Bundle the pipe cable with a diameter of 1.2 mφ,
As explained above, the pipe cable according to the present invention has a sample length of 20 m.
Since the residual strain of the PE tube used during molding is 1% or less, the amount of shrinkage of the PE tube can be reduced for long-term use under actual conditions in the temperature range of -40°C to 80°C. This reduces the pull-in phenomenon of the PE tube at the terminal end, and improves the stability of the pipe cable terminal processing section, which reduces the impact on the stored optical fiber unit, that is, the deterioration of transmission characteristics due to increased excess length. It is effective to reduce the noise level and ensure high reliability by applying the present invention to pneumatically installed optical fiber cables.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のパイプケーブル実施例の断面構造図、
第2図a、bは従来のパイプケーブル例の断面構造図、
第3図はパイプケーブル端末部におけるPEチューブの
引込現象の模式図である。 特許出願人  住友電気工業株式会社 代理人 弁理士 玉 蟲 久五部 本発明のパイプケーブル実施例の@面構造同第 図 従来のパイプケーブル例の断面構造図 系 図 パイプグープル端末部におけるPEチューフの引込現象
の模式図画 図
FIG. 1 is a cross-sectional structural diagram of a pipe cable embodiment of the present invention.
Figures 2a and 2b are cross-sectional structural diagrams of conventional pipe cable examples,
FIG. 3 is a schematic diagram of the phenomenon of the PE tube being drawn in at the end of the pipe cable. Patent Applicant Sumitomo Electric Industries Co., Ltd. Agent Patent Attorney Tama Mushi Kugobe@plane structure of the pipe cable embodiment of the present invention Figure 1 Cross-sectional structure diagram of a conventional pipe cable example Genealogy Phenomenon of the PE tube at the end of the pipe group schematic diagram of

Claims (3)

【特許請求の範囲】[Claims] (1)空気圧送により、単心または複数心の光ファイバ
に被覆層を施した光ファイバユニットを布設する空気圧
送光ファイバケーブル布設システムに使用するポリエチ
レンチューブからなるパイプを複数本集合し、外被を施
したパイプケーブルにおいて、 前記パイプを形成するポリエチレンチューブは1%以下
の成形時残留歪を有してなる ことを特徴とするパイプケーブル。
(1) A plurality of pipes made of polyethylene tubes used in a pneumatic fiber optic cable installation system in which an optical fiber unit with a coating layer applied to a single or multi-core optical fiber is installed using pneumatic feeding, and A pipe cable characterized in that the polyethylene tube forming the pipe has a residual strain of 1% or less during molding.
(2)空気圧送により、単心または複数心の光ファイバ
に被覆層を施した光ファイバユニットを布設する空気圧
送光ファイバケーブル布設システムに使用するポリエチ
レンチューブからなるパイプを複数本集合し、外被を施
したパイプケーブルの製造方法において、 押出成形によりポリエチレンチューブを形成し、 前記押出成形により形成したポリエチレンチューブに熱
処理を施して残留歪を1%以下とし、前記成形時の残留
歪を有するポリエチレンチューブを複数本集合した外周
にLAPシースを施す工程からなる ことを特徴とするパイプケーブルの製造方法。
(2) A plurality of pipes made of polyethylene tubes used in a pneumatic fiber optic cable installation system in which an optical fiber unit with a coating layer applied to a single or multi-core optical fiber is installed using pneumatic feeding, and In the method for manufacturing a pipe cable, a polyethylene tube is formed by extrusion molding, the polyethylene tube formed by extrusion molding is heat-treated to have a residual strain of 1% or less, and the polyethylene tube has the residual strain at the time of molding. A method for manufacturing a pipe cable, comprising the step of applying a LAP sheath to the outer periphery of a plurality of pipe cables.
(3)前記押出成形により形成したポリエチレンチュー
ブに熱処理を施して残留歪を1%以下とする工程は、 電子線照射機により照射、架橋した後、熱処理を行うこ
とを特徴とする請求項2記載のパイプケーブルの製造方
法。
(3) The step of subjecting the polyethylene tube formed by extrusion molding to heat treatment to reduce the residual strain to 1% or less is characterized in that the heat treatment is performed after irradiation and crosslinking with an electron beam irradiation machine. method of manufacturing pipe cables.
JP24159888A 1988-09-27 1988-09-27 Pipe cable Expired - Fee Related JP2780283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24159888A JP2780283B2 (en) 1988-09-27 1988-09-27 Pipe cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24159888A JP2780283B2 (en) 1988-09-27 1988-09-27 Pipe cable

Publications (2)

Publication Number Publication Date
JPH0295115A true JPH0295115A (en) 1990-04-05
JP2780283B2 JP2780283B2 (en) 1998-07-30

Family

ID=17076697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24159888A Expired - Fee Related JP2780283B2 (en) 1988-09-27 1988-09-27 Pipe cable

Country Status (1)

Country Link
JP (1) JP2780283B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233504A (en) * 1990-02-09 1991-10-17 Hitachi Cable Ltd Pipe for laying optical fiber and method for laying optical fiber by using this pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109906A (en) * 1980-12-26 1982-07-08 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber cable
JPS6343112U (en) * 1986-09-08 1988-03-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109906A (en) * 1980-12-26 1982-07-08 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber cable
JPS6343112U (en) * 1986-09-08 1988-03-23

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233504A (en) * 1990-02-09 1991-10-17 Hitachi Cable Ltd Pipe for laying optical fiber and method for laying optical fiber by using this pipe
JP2663664B2 (en) * 1990-02-09 1997-10-15 日立電線株式会社 Optical fiber laying pipe and method of laying optical fiber using the same

Also Published As

Publication number Publication date
JP2780283B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
US4645298A (en) Optical fiber cable
US6654527B2 (en) Optical fiber cable
CN100520468C (en) Drop optical fiber cable and FRP tension member used for the cable
US4093342A (en) Optical fiber cable
JPS59111602A (en) Casing for light guide tube
CN105929503B (en) Loose-sleeve lapping reinforced buffer type flexible irradiation-resistant optical cable and manufacturing method thereof
EP3447557A1 (en) Full dry type bending-resistant pipeline output cable and method for manufacturing same
JPH0295115A (en) Pipe cable and manufacture thereof
CA1252659A (en) Optical fiber joint with reinforcing filament and method of making such joint
KR100271880B1 (en) Heat treatment of cable
JP4205523B2 (en) Drop optical fiber cable
CN115188535A (en) Embedded optical fiber temperature measurement integrated cable
CN111708134A (en) Communication optical cable
JPS5999403A (en) Communication cable and manufacture thereof
CN111880272A (en) Anti-radiation optical cable and manufacturing method thereof
CN208672856U (en) A kind of interior external application rounded groove optical cable
JPH10170778A (en) Optical cable
JPS596268B2 (en) Method of reinforcing glass fiber for optical transmission
JPH09259659A (en) Optical fiber compound submarine long unit and manufacture thereof
US6625365B2 (en) Overcoated fiber for use in optical fiber cable
JPH0253765B2 (en)
CN212379627U (en) Anti-irradiation optical cable
GB2164469A (en) Optical fibre cables
JP2004069828A (en) Optical fiber cable
JPS58100103A (en) Optical fiber composite aerial wire

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees