JPS6310806B2 - - Google Patents

Info

Publication number
JPS6310806B2
JPS6310806B2 JP56022815A JP2281581A JPS6310806B2 JP S6310806 B2 JPS6310806 B2 JP S6310806B2 JP 56022815 A JP56022815 A JP 56022815A JP 2281581 A JP2281581 A JP 2281581A JP S6310806 B2 JPS6310806 B2 JP S6310806B2
Authority
JP
Japan
Prior art keywords
frp
coating
optical communication
thermoplastic resin
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56022815A
Other languages
Japanese (ja)
Other versions
JPS57141605A (en
Inventor
Ario Shirasaka
Kenichi Fuse
Haruo Umetsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP56022815A priority Critical patent/JPS57141605A/en
Publication of JPS57141605A publication Critical patent/JPS57141605A/en
Publication of JPS6310806B2 publication Critical patent/JPS6310806B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering

Description

【発明の詳細な説明】 本発明は、機械的特性を向上させたFRP(ガラ
ス繊維強化プラスチツク)被覆光通信線及びそれ
を用いた光通信ケーブルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an FRP (glass fiber reinforced plastic) coated optical communication line with improved mechanical properties and an optical communication cable using the same.

光信号を伝送する光フアイバは、石英ガラスあ
るいは多成分ガラス等から構成されるが、それ自
体では機械的強度が充分でないため、その外周に
保護被覆が設けられている。この保護被覆の材料
としては、通常、ナイロンが用いられている。し
かし、ナイロン被覆を有する光通信線は、側圧、
引張り等の外力に弱く、且つ、光フアイバとナイ
ロン被覆の線膨張率の差から特に低温時において
光伝送損失が増加する欠点がある。
Optical fibers that transmit optical signals are made of quartz glass, multicomponent glass, or the like, but because they do not have sufficient mechanical strength by themselves, a protective coating is provided around the outer periphery of the optical fibers. Nylon is usually used as the material for this protective coating. However, optical communication lines with nylon coating have lateral pressure,
It is weak against external forces such as tension, and has the disadvantage that optical transmission loss increases especially at low temperatures due to the difference in coefficient of linear expansion between the optical fiber and the nylon coating.

ところで、最近、光フアイバの外周に、それと
同方向に多数のガラス繊維を沿わせてそれを樹脂
で固めてなるFRP被覆を設けたFRP被覆光通信
線が提案されている。FRP被覆はナイロン被覆
に比べ機械的強度が大であるため、この種の光通
信線は、側圧、引張り等に強く、しかもFRP被
覆は多数のガラス繊維を含んでいるためそれの線
膨張係数が光フアイバと同等となり、温度変化に
対する光伝送損失の変化も小さいという利点があ
る。
Incidentally, recently, an FRP-coated optical communication line has been proposed in which an FRP coating is provided on the outer periphery of an optical fiber, with a large number of glass fibers running along the same direction and hardened with resin. FRP coating has greater mechanical strength than nylon coating, so this type of optical communication line is resistant to lateral pressure, tension, etc. Furthermore, since FRP coating contains a large number of glass fibers, its coefficient of linear expansion is low. It has the advantage that it is equivalent to an optical fiber, and the change in optical transmission loss due to temperature changes is small.

しかし、このFRP被覆光通信線は、曲げ及び
衝撃に弱いという欠点がある。即ち、この種の光
通信線において、FRP被覆の線膨張係数を光フ
アイバのそれにできるだけ近づけるためには、樹
脂よりガラス繊維の占める割合を多くする必要が
あり、しかもガラス繊維は光フアイバと同方向に
そろえられているため、曲げ径をある程度以上小
さくすると、曲げの外側になる部分で、ガラス繊
維相互の接着が破れてFRP被覆に縦割れが生じ、
保護被覆としての機能が損われる欠点がある。例
えば、光フアイバ直径125μm、外径1mmのFRP
被覆光通信線は、直径約40mm以下の曲率に屈曲す
ると、FRP被覆に縦割れが生じ、使用不能とな
る。この程度の曲げ径で損傷を受けるということ
は、配線あるいは接続函体への余長収納等を考え
ると、取扱いに不便である。
However, this FRP-coated optical communication line has the drawback of being susceptible to bending and impact. In other words, in order to make the coefficient of linear expansion of the FRP coating as close as possible to that of the optical fiber in this type of optical communication line, it is necessary to increase the ratio of glass fiber to the resin, and moreover, the glass fiber must be oriented in the same direction as the optical fiber. Therefore, if the bending diameter is reduced beyond a certain point, the bond between the glass fibers will break on the outside of the bend, causing vertical cracks in the FRP coating.
It has the disadvantage that its function as a protective coating is impaired. For example, FRP with an optical fiber diameter of 125 μm and an outer diameter of 1 mm.
If a coated optical communication line is bent to a curvature of approximately 40 mm or less in diameter, vertical cracks will occur in the FRP coating, making it unusable. Damage caused by a bending diameter of this extent is inconvenient for handling when considering wiring or storage of extra length in a connection box.

また、この種の光通信線は、FRP被覆の中に
ガラス繊維の占める割合が多いため、衝撃力に弱
く、その上に手工具を落した程度の衝撃でFRP
被覆が損傷するという欠点がある。
In addition, this type of optical communication line has a large proportion of glass fiber in the FRP coating, so it is vulnerable to impact forces, and the FRP will be damaged by the impact of dropping a hand tool on top of it.
The disadvantage is that the coating is damaged.

ところで、FRP被覆光通信線を用いてケーブ
ルを構成すると、FRP被覆が引張力に強いため、
テンシヨンメンバーを省略できるという利点があ
る。しかし、FRP被覆光通信線は前述のように
衝撃力に弱いため、これを複数本撚り合わせたも
のは、その一部のFRP被覆光通信線に衝撃力が
作用すると、それに接触する他のFRP被覆光通
信線にも衝撃力が伝播し、衝撃を直接受けた
FRP被覆光通信線だけでなく他のFRP被覆光通
信線も損傷してしまうという問題がある。また、
FRP被覆光通信線を複数本撚り合わせてケーブ
ルを構成する場合、FRP被覆が硬質でもろいた
めに、撚り合わせの際あるいはケーブルにした後
にくり返し屈曲を受けた際等に、擦れのために損
傷を受け、機械的強度の欠陥部が発生し易いとい
う欠点がある。
By the way, when constructing a cable using FRP coated optical communication wire, the FRP coat is strong against tensile force, so
This has the advantage that the tension member can be omitted. However, as mentioned above, FRP-coated optical communication wires are susceptible to impact forces, so when multiple strands of FRP-coated optical communication wires are subjected to impact force, other FRPs that come into contact with them may The impact force also propagated to the coated optical communication line, which directly received the impact.
There is a problem in that not only the FRP-coated optical communication line but also other FRP-coated optical communication lines are damaged. Also,
When constructing a cable by twisting multiple FRP-coated optical communication cables, the FRP coating is hard and brittle, so it may be damaged due to rubbing during twisting or when it is repeatedly bent after being made into a cable. However, it has the disadvantage that defects in mechanical strength are likely to occur.

本発明の目的は、上記のような欠点を解消し、
屈曲及び耐衝撃特性を向上させたFRP被覆光通
信線を提供すると共に、そのFRP被覆光通信線
を用いて、耐衝撃性にすぐれた信頼性の高い光通
信ケーブルを提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks,
The object of the present invention is to provide an FRP-coated optical communication line with improved bending and impact resistance, and to provide a highly reliable optical communication cable with excellent impact resistance using the FRP-covered optical communication line.

本発明のFRP被覆光通信線は、光フアイバの
周囲にFRP被覆を設け、その外周にホツトメル
ト系接着剤層を設け、さらにその外周に熱可塑性
樹脂被覆を設けて、前記FRP被覆と熱可塑性樹
脂被覆とを前記ホツトメルト系接着剤層を介して
接着した点に特徴があり、また、本発明の光通信
ケーブルは、上記のようなFRP被覆光通信線を
複数本撚り合わせてその外周に保護シースを設け
た点に特徴がある。
The FRP-coated optical communication line of the present invention is provided by providing an FRP coating around an optical fiber, providing a hot melt adhesive layer on the outer periphery, and further providing a thermoplastic resin coating on the outer periphery, and combining the FRP coating with the thermoplastic resin. The optical communication cable of the present invention is characterized in that the cable is bonded to the coating via the hot melt adhesive layer, and the optical communication cable of the present invention is made by twisting a plurality of FRP-covered optical communication cables as described above and having a protective sheath around the outer periphery. It is distinctive in that it has been established.

以下、本発明の実施例を図面に参照して詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明のFRP被覆光通信線の一実施
例を示す。この図において、1は石英ガラス、多
成分ガラス等により構成された光フアイバで、ス
テツプインデツクス型光フアイバ、グレーデツド
インデツクス型光フアイバのいずれの形態でもよ
い。外径は通常125μm程度である。2は光フア
イバ1の外周に設けられた1次被覆で、これは光
フアイバ1の表面傷の発生を防止するものであ
る。3は1次被覆の外周に設けられたヤング率の
小さな材料からなるバツフア層である。4はバツ
フア層の外周に設けられたFRP被覆である。こ
のFRP被覆4は、光フアイバ1と同方向にそろ
えられた多数のガラス繊維4Aを樹脂4Bで固め
たものである。樹脂4Bとしては不飽和ポリエス
テル等の熱硬化性樹脂を使用することができる。
FRP被覆4内にガラス繊維4Aの占める割合は、
その線膨張係数を光フアイバ1のそれにできるだ
け近づけるため、60重量%以上、好ましくは80重
量%以上にするとよい。なお、ガラス繊維4Aは
光フアイバ1と実質的に同方向になるようにそろ
えられていればよく、例えば、ガラス繊維4Aが
バツフア層3の周りに長ピツチで巻き付けられて
いる場合も本発明の範囲内である。FRP被覆4
の外径は通常約1mm程度である。
FIG. 1 shows an embodiment of the FRP-coated optical communication line of the present invention. In this figure, reference numeral 1 denotes an optical fiber made of quartz glass, multi-component glass, etc., which may be either a step index type optical fiber or a graded index type optical fiber. The outer diameter is usually about 125 μm. Reference numeral 2 denotes a primary coating provided on the outer periphery of the optical fiber 1, which prevents surface scratches on the optical fiber 1 from occurring. Reference numeral 3 denotes a buffer layer made of a material having a small Young's modulus and provided around the outer periphery of the primary coating. 4 is an FRP coating provided on the outer periphery of the buffer layer. This FRP coating 4 is made by hardening a large number of glass fibers 4A aligned in the same direction as the optical fiber 1 with a resin 4B. As the resin 4B, a thermosetting resin such as unsaturated polyester can be used.
The proportion of glass fiber 4A in FRP coating 4 is
In order to make its linear expansion coefficient as close as possible to that of the optical fiber 1, it is preferably 60% by weight or more, preferably 80% by weight or more. Note that the glass fibers 4A only need to be aligned in substantially the same direction as the optical fibers 1. For example, the present invention also applies when the glass fibers 4A are wound around the buffer layer 3 in a long pitch. Within range. FRP coating 4
The outer diameter of is usually about 1 mm.

5はFRP被覆の外周に塗布あるいは押出によ
り薄く被覆されたホツトメルト系接着剤層で、こ
れは被覆時の熱でFRP被覆4に融着されている。
ホツトメルト系接着剤層5の材質としては、
FRP被覆4と後述の熱可塑性樹脂被覆6の双方
に接着するもの、例えば、エチレン−アクリル酸
共重合体、エチレン−アクリル酸エチル二元共重
合体、エチレン−酢酸ビニル−ビニルアルコール
三元共重合体、エチレン−酢酸ビニル共重合体、
エチレン−グリシジルメタクリレート−酢酸ビニ
ル三元共重合体、金属アイオノマ系樹脂等を使用
することができる。ホツトメルト系接着剤層5の
厚さは例えば10〜50μm程度である。
Reference numeral 5 denotes a hot melt adhesive layer thinly coated on the outer periphery of the FRP coating by coating or extrusion, and is fused to the FRP coating 4 by heat during coating.
The material of the hot melt adhesive layer 5 is as follows:
Something that adheres to both the FRP coating 4 and the thermoplastic resin coating 6 described below, such as ethylene-acrylic acid copolymer, ethylene-ethyl acrylate binary copolymer, ethylene-vinyl acetate-vinyl alcohol ternary copolymer combination, ethylene-vinyl acetate copolymer,
Ethylene-glycidyl methacrylate-vinyl acetate terpolymer, metal ionomer resin, etc. can be used. The thickness of the hot melt adhesive layer 5 is, for example, about 10 to 50 μm.

6はホツトメルト系接着剤層5の外周に押出液
覆された熱可塑性樹脂被覆で、これは押出被覆時
の熱でホツトメルト接着剤層5を溶融し、同接着
剤層5に融着されている。即ち、FRP被覆4と
熱可塑性樹脂被覆6とはホツトメルト系接着剤層
5を介して相互に接着されている。熱可塑性樹脂
被覆6の材質としては、ポリエチレン、ポリ塩化
ビニル等を使用することができる。熱可塑性樹脂
被覆6の外径は例えば2〜3.5mm程度である。
Reference numeral 6 denotes a thermoplastic resin coating coated with an extruded liquid around the outer periphery of the hot melt adhesive layer 5, which melts the hot melt adhesive layer 5 with the heat during extrusion coating and is fused to the same adhesive layer 5. . That is, the FRP coating 4 and the thermoplastic resin coating 6 are bonded to each other via the hot melt adhesive layer 5. As the material of the thermoplastic resin coating 6, polyethylene, polyvinyl chloride, etc. can be used. The outer diameter of the thermoplastic resin coating 6 is, for example, about 2 to 3.5 mm.

上記実施例のFRP被覆光通信線は、FRP被覆
4の外周に熱可塑性樹脂被覆6が接着されている
ため、これを小径に屈曲した場合でFRP被覆の
曲げの外側部分における縦割れの発生を阻止する
ことができる。試作結果によると、光フアイバ外
径125μm、FRP被覆外径1.0mm(ガラス繊維含有
率85%)、熱可塑性樹脂被覆外径3.0mmの本発明の
FRP被覆光通信線は、直径20mmのロツドに巻き
付けてもFRP被覆に縦割れの発生は認められな
かつた。一般に光伝送特性に影響のない光フアイ
バの曲げ径の限界は約30mmであるから、上記曲げ
特性は充分な値といえる。
In the FRP-coated optical communication line of the above embodiment, the thermoplastic resin coating 6 is bonded to the outer periphery of the FRP coating 4, so when this is bent to a small diameter, vertical cracks do not occur on the outside of the bend of the FRP coating. can be prevented. According to the prototype results, the optical fiber of the present invention has an outer diameter of 125 μm, an FRP coating outer diameter of 1.0 mm (glass fiber content 85%), and a thermoplastic resin coating outer diameter of 3.0 mm.
Even when the FRP coated optical communication line was wrapped around a rod with a diameter of 20 mm, no vertical cracks were observed in the FRP coat. Generally, the limit of the bending diameter of an optical fiber that does not affect the optical transmission characteristics is about 30 mm, so the above bending characteristics can be said to be a sufficient value.

これに対し、上記のFRP被覆光通信線と同サ
イズで、FRP被覆と熱可塑性樹脂被覆とが接着
されていないFRP被覆光通信線は、直径30mmの
ロツドに巻き付けるとFRP被覆に縦割れの発生
が認められた。なお、熱可塑性樹脂被覆のない
FRP被覆光通信線は、直径40mm以下の曲げ径で
縦割れが入ることは前述のとおりである。
On the other hand, when an FRP-coated optical communication line of the same size as the FRP-coated optical communication line mentioned above, in which the FRP coating and thermoplastic resin coating are not bonded, is wound around a rod with a diameter of 30 mm, vertical cracks occur in the FRP coating. was recognized. In addition, there is no thermoplastic resin coating.
As mentioned above, FRP-coated optical communication lines are prone to vertical cracks when bent with a diameter of 40 mm or less.

また、上記実施例のFRP被覆光通信線は、
FRP被覆4の外周に熱可塑性樹脂被覆6が設け
られているので、衝撃にも強い。上記曲げ試験と
同サイズの本発明FRP被覆光通信線を床面に設
置し、その上に、30.5cmの高さから、重さ450g、
底面直径25mmの金属製円柱状の重りを落下させて
衝撃を与える試験では、5回まではFRP被覆の
損傷は認められなかつた。これは、熱可塑性樹脂
被覆のないFRP被覆光通信線は1回でFRP被覆
の損傷が発生することに比較すると、耐衝撃特性
が大幅に改善されたといえる。
In addition, the FRP-coated optical communication line of the above example is
Since the thermoplastic resin coating 6 is provided around the outer periphery of the FRP coating 4, it is strong against impact. The FRP coated optical communication line of the present invention, which is the same size as in the above bending test, was placed on the floor, and a wire with a weight of 450 g was placed on top of it from a height of 30.5 cm.
In a test in which a metal cylindrical weight with a bottom diameter of 25 mm was dropped to give an impact, no damage to the FRP coating was observed up to 5 times. This can be said to be a significant improvement in impact resistance compared to the case of FRP-coated optical communication lines without thermoplastic resin coating, where damage to the FRP coating occurs after just one operation.

上記実施例では、光フアイバ1とFRP被覆4
との間にバツフア層3を設けているが、このバツ
フア層3は省略することもできる。
In the above embodiment, the optical fiber 1 and the FRP coating 4 are
Although a buffer layer 3 is provided between the two, this buffer layer 3 can be omitted.

第2図は本発明の光通信ケーブルの一実施例を
示す。この図において、7は第1図に示したよう
にFRP被覆光通信線で、最外層に熱可塑性樹脂
被覆6を有している。8はFRP被覆光通信線7
を複数本撚り合わせたケーブルコア、9はケーブ
ルコアの外周に巻き付けたテープによる押え巻
層、10は保護シースである。保護シース10は
熱可塑性樹脂シース10aの内面に金属テープ1
0bが内張りされたいわゆるラミネートシース構
造である。
FIG. 2 shows an embodiment of the optical communication cable of the present invention. In this figure, 7 is an FRP-coated optical communication line as shown in FIG. 1, and has a thermoplastic resin coating 6 on the outermost layer. 8 is FRP coated optical communication line 7
A cable core is made by twisting a plurality of cable cores together, 9 is a tape holding layer wound around the outer periphery of the cable core, and 10 is a protective sheath. The protective sheath 10 has a metal tape 1 on the inner surface of the thermoplastic resin sheath 10a.
It has a so-called laminate sheath structure in which 0b is lined.

この実施例の光通信ケーブルは、FRP被覆光
通信線7のFRP被覆が相互に直接接触すること
がなく、且つ、熱可塑性樹脂被覆6がある程度緩
衝層としての役割をはたすため、耐衝撃性が著し
く向上し、各FRP被覆光通信線7のFRP被覆が
衝撃により損傷を受けることがなくなり、また同
FRP被覆が擦れ等により損傷を受けることもな
くなる。また、保護シースは金属を内張りしたラ
ミネートシース構造であるから、熱可塑性樹脂シ
ースのみの場合より、温度が低下したときのシー
ス収縮が少なく、ケーブル端におけるケーブルコ
アの突出現象をほとんどなくすことができる。し
たがつて、この実施例によれば、信頼性の高い光
通信ケーブルが得られる。
The optical communication cable of this embodiment has good impact resistance because the FRP coatings of the FRP-coated optical communication lines 7 do not come into direct contact with each other, and the thermoplastic resin coating 6 serves as a buffer layer to some extent. This has significantly improved the FRP coating of each FRP-coated optical communication line 7 from being damaged by impact.
The FRP coating will no longer be damaged by rubbing or the like. In addition, since the protective sheath has a laminate structure with a metal lining, the sheath shrinks less when the temperature drops than when using only a thermoplastic resin sheath, and the protrusion of the cable core at the cable end can be almost eliminated. . Therefore, according to this embodiment, a highly reliable optical communication cable can be obtained.

第3図は本発明の光通信ケーブルの他の実施例
を示す。この実施例が第2図の実施例と異なると
ころは、FRP被覆光通信線7を複数本撚り合わ
せたケーブルコア8の外周に、ホツトメルト系接
着剤層11を設け、さらにその外周に熱可塑性樹
脂からなる保護シース12を設けて、ケーブルコ
ア8と保護シース12とをホツトメルト系接着剤
層11を介して接着したことである。
FIG. 3 shows another embodiment of the optical communication cable of the present invention. The difference between this embodiment and the embodiment shown in FIG. 2 is that a hot-melt adhesive layer 11 is provided on the outer periphery of a cable core 8 made by twisting a plurality of FRP-coated optical communication wires 7, and a thermoplastic resin is further applied on the outer periphery of the cable core 8. The cable core 8 and the protective sheath 12 are bonded together via a hot melt adhesive layer 11.

この実施例の光通信ケーブルは、第2図の実施
例と同等の効果が得られるだけでなく、金属を全
く使用していないため、高電圧個所への光信号伝
送、電磁誘導環境下での使用に好適である。
The optical communication cable of this embodiment not only provides the same effect as the embodiment shown in Figure 2, but also uses no metal at all, so it is easy to transmit optical signals to high-voltage locations and in electromagnetic induction environments. suitable for use.

以上説明したように、本発明によれば、FRP
被覆光通信線の屈曲性及び耐衝撃性を大幅に向上
させることができ、またFRP被覆光通信線を用
いた光通信ケーブルの耐衝撃性を向上させ、
FRP被覆光通信線の擦れ等による損傷の発生を
防止して信頼性を高めることができる。
As explained above, according to the present invention, FRP
The flexibility and impact resistance of coated optical communication lines can be significantly improved, and the impact resistance of optical communication cables using FRP coated optical communication lines can be improved.
It is possible to prevent damage to the FRP-coated optical communication line due to rubbing, etc., and improve reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明FRP被覆光通信線の一実施例
を示す断面図、第2図及び第3図はそれぞれ本発
明光通信ケーブルの実施例を示す断面図である。 1……光フアイバ、4……FRP被覆、5……
ホツトメルト系接着剤層、6……熱可塑性樹脂被
覆、7……FRP被覆光通信線、8……ケーブル
コア、10,12……保護シース。
FIG. 1 is a sectional view showing an embodiment of the FRP coated optical communication line of the present invention, and FIGS. 2 and 3 are sectional views showing embodiments of the optical communication cable of the invention. 1... Optical fiber, 4... FRP coating, 5...
Hot melt adhesive layer, 6... thermoplastic resin coating, 7... FRP coated optical communication line, 8... cable core, 10, 12... protection sheath.

Claims (1)

【特許請求の範囲】 1 光フアイバの周囲にFRP(ガラス繊維強化プ
ラスチツク)被覆を設け、その外周にホツトメル
ト系接着剤層を設け、さらにその外周に熱可塑性
樹脂被覆を設けて、前記FRP被覆と熱可塑性樹
脂被覆とを前記ホツトメルト系接着剤層を介して
接着したことを特徴とするFRP被覆光通信線。 2 光フアイバの周囲にFRP被覆を設け、その
外周にホツトメルト系接着剤層を設け、さらにそ
の外周に熱可塑性樹脂被覆を設けて、前記FRP
被覆と熱可塑性樹脂被覆とを前記ホツトメルト系
接着剤層を介して接着してなるFRP被覆光通信
線を、複数本撚り合わせ、その周囲に保護シース
を設けたことを特徴とする光通信ケーブル。
[Claims] 1. An FRP (glass fiber reinforced plastic) coating is provided around the optical fiber, a hot melt adhesive layer is provided on the outer periphery of the FRP coating, and a thermoplastic resin coating is further provided on the outer periphery of the FRP coating. 1. An FRP-coated optical communication line characterized in that a thermoplastic resin coating is bonded to the thermoplastic resin coating via the hot-melt adhesive layer. 2 An FRP coating is provided around the optical fiber, a hot melt adhesive layer is provided on the outer periphery of the FRP coating, and a thermoplastic resin coating is further provided on the outer periphery of the FRP coating.
An optical communication cable characterized in that a plurality of FRP coated optical communication wires, each of which is made by bonding a coating and a thermoplastic resin coating via the hot melt adhesive layer, are twisted together and a protective sheath is provided around the strands.
JP56022815A 1981-02-18 1981-02-18 Frp-covered optical communication line and optical communication cable using it Granted JPS57141605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56022815A JPS57141605A (en) 1981-02-18 1981-02-18 Frp-covered optical communication line and optical communication cable using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56022815A JPS57141605A (en) 1981-02-18 1981-02-18 Frp-covered optical communication line and optical communication cable using it

Publications (2)

Publication Number Publication Date
JPS57141605A JPS57141605A (en) 1982-09-02
JPS6310806B2 true JPS6310806B2 (en) 1988-03-09

Family

ID=12093180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56022815A Granted JPS57141605A (en) 1981-02-18 1981-02-18 Frp-covered optical communication line and optical communication cable using it

Country Status (1)

Country Link
JP (1) JPS57141605A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305234C2 (en) * 1983-02-16 1986-02-27 Felten & Guilleaume Energietechnik GmbH, 5000 Köln Tensile wire made from a fiber-reinforced resin structure with at least one optical waveguide enclosed therein
JPS60143410U (en) * 1984-03-02 1985-09-24 日立電線株式会社 FRP coated optical fiber
JPS60186412U (en) * 1984-05-23 1985-12-10 沖電線株式会社 Reinforced coated optical fiber
JPS61153611A (en) * 1984-12-26 1986-07-12 Toyobo Co Ltd Flexible tensile wire
DE19909159C1 (en) * 1999-03-02 2000-11-30 Siemens Ag Optical fiber arrangement
US7177148B2 (en) 2002-06-24 2007-02-13 Sharp Kabushiki Kaisha Outdoor-installed power conditioner device
DE102011114575A1 (en) 2011-09-30 2013-04-04 Schott Ag Jacketed optical fiber and method for its manufacture

Also Published As

Publication number Publication date
JPS57141605A (en) 1982-09-02

Similar Documents

Publication Publication Date Title
CN105980902B (en) It ties membranous system
US9690062B2 (en) Film for a flame-retardant fiber optic cable
US6256438B1 (en) Fiber optic drop cable
US6606436B2 (en) Strengthened fiber optic cable
US6654527B2 (en) Optical fiber cable
US20060104579A1 (en) Optical fiber cable with fiber receiving jacket ducts
CN105556367A (en) Armored optical fiber cable
WO2018174004A1 (en) Optical fiber cable
CA2005114C (en) All-dielectric optical fiber cable having enhanced fiber access
JPS622412A (en) Optical fiber compound aerial wire
JPS62144121A (en) Optical fiber communication cable
JP2005504997A (en) Fiber optic cable
US20160306128A1 (en) Composite film for a fiber optic cable
US6122427A (en) Spacer type optical fiber cable
JPS6310806B2 (en)
US6173101B1 (en) Fiber optic cable
JP2000193856A (en) Cable covering and optical fiber cable using it
JPH0271207A (en) Protective pipe for optical fiber and flat type optical fiber code formed by using this pipe
JPH0438427Y2 (en)
JPH0440178Y2 (en)
JPH0235131Y2 (en)
JPH0343603B2 (en)
JPH0112341Y2 (en)
JPH1010379A (en) High-strength optical fiber cord
JPH0660808U (en) Layered fiber optic cable