JPS61153611A - Flexible tensile wire - Google Patents

Flexible tensile wire

Info

Publication number
JPS61153611A
JPS61153611A JP60139957A JP13995785A JPS61153611A JP S61153611 A JPS61153611 A JP S61153611A JP 60139957 A JP60139957 A JP 60139957A JP 13995785 A JP13995785 A JP 13995785A JP S61153611 A JPS61153611 A JP S61153611A
Authority
JP
Japan
Prior art keywords
denier
tensile strength
modulus
bending
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60139957A
Other languages
Japanese (ja)
Inventor
Giichi Shirasaki
白崎 義一
Hiroshi Yasuda
浩 安田
Ichiro Yoshida
一郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP84116304A external-priority patent/EP0147844B1/en
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JPS61153611A publication Critical patent/JPS61153611A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a titled wire which has adequate flexibility, is reduced in weight and is improved in tensile strength by forming the wire of a wire- shaped composite structure which consists of PE fibers having specific tensile strength and tensile modulus as a reinforcing material and a thermosetting resin as a matrix material and has specific bending modulus. CONSTITUTION:The PE fibers (A) has the tensile strength of at least 20g/denier, more preferably >=30g/denier and more particularly preferably >=40g/denier and the tensile modulus of at least 500g/denier, more preferably >=800g/denier and more particularly preferably >=1,000g/denier. The thermosetting resin (B) is an unsatd. polyester resin, vinyl ester resin, epoxy resin, phenolic resin, etc. which are used alone or the compd. of >=2 kinds. The bending modulus of the wire-shaped composite body constituted of (A) and (B) is 300-1,500kg/mm<2>, more preferably 500-1,000kg/mm<2>, the tensile break strength thereof is at least 40kg/mm<2>, more preferably >=60kg/mm<2> and the fiber content (Vf) thereof is 15-60%, more preferably 20-50%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強力、高弾性で軽く、且つ*度な可(4性を
有する抗張力線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a tensile strength wire that is highly strong, highly elastic, lightweight, and has four properties.

更に詳しくは光フアイバー用抗張力!!a(以下抗張力
線をテンションメンバーとも言う)、その他工業用分野
に用いられる抗張力材、およびロープ、ケーブルに適し
た゛軽くて適度な可撓性を有する抗張力線に関するもの
である。
More details on tensile strength for optical fibers! ! The present invention relates to a tensile strength wire that is light and has appropriate flexibility and is suitable for a (hereinafter, the tensile strength wire is also referred to as a tension member), other tensile strength materials used in the industrial field, ropes, and cables.

(従来の技術) 光フアイバー用テンションメンバーは、その特性として
特に高い引張強度と高い引張弾性率が要求され、その多
くは従来、鋼鉄線等の金属線が使用されているが、金R
F;Iの場合は密度が大きいために重<、軽量性に欠点
を仔しており、且つ落雷や電磁誘導障害といった問題を
有していた。このような欠点を改善する目的で金属線に
代るものとして最近ガラス繊維又は芳容族ポリアミド繊
維(商品名 ケブラー)等の高輪力、高弾性、繊維を補
強材とし熱硬化性樹脂をマトリックスとした線条複合体
、所謂、FRP製のテアジョンメンバーを光フアイバー
ケーブル用テンションメンバーに使用する方法が提案さ
れ既に一部工業的に実用化されている。
(Prior art) Tension members for optical fibers are required to have particularly high tensile strength and high tensile modulus, and most of them have conventionally been made of metal wires such as steel wires.
In the case of F;I, because of its high density, it has disadvantages in terms of weight and lightness, and also has problems such as lightning strikes and electromagnetic induction interference. In order to overcome these drawbacks, metal wires have recently been replaced with high-strength, high-elastic fibers such as glass fiber or aromatic polyamide fiber (trade name: Kevlar), with fibers as reinforcement and thermosetting resin as matrix. A method of using a tear John member made of a filament composite, so-called FRP, as a tension member for an optical fiber cable has been proposed, and has already been put into practical use in some industries.

(発明か解決しようとする問題点) 光フアイバー用テンションメンバーに要求される一般特
性としては高強力、高弾性率が必須条件であるが、光フ
ァイバーコード用或いは、小容量光フアイバーケーブル
用のテンションメンバーとしてはその上に適度な可撓性
と軽さが要求される。
(Problem to be solved by the invention) High strength and high modulus of elasticity are the general characteristics required for tension members for optical fibers, but tension members for optical fiber cords or small capacity optical fiber cables In addition, appropriate flexibility and lightness are required.

ところが従来、この分野で使用されているテンションメ
ンバー、即ち、ガラス繊維や芳香族ポリアミド繊維を補
強材とし熱硬化性樹脂、例えば不飽和ポリエステル樹脂
をマトリックスとしたFRP製テンションメンバーは、
金属線に比べると軽くはなっているが未だ充分とは言え
ず、更に曲げ弾性率が高く、曲げ破断歪みが小さい、所
謂、適度な可撓性を仔していないところに問題がある。
However, the tension members conventionally used in this field, namely FRP tension members made of glass fiber or aromatic polyamide fiber as reinforcement and thermosetting resin, such as unsaturated polyester resin, as a matrix,
Although it is lighter than metal wire, it is still not sufficient, and there is a problem in that it does not have the so-called appropriate flexibility, which is high bending elastic modulus and small bending strain at break.

光フアイバー基幹ケーブル用のテアジョンメンバーの場
合は要求性能からみて本質的に曲げ歪み)よが小さいの
で特に問題はないが、光ファイ/<−コード用或いは小
容量光フアイバーケーブル用のテンシ三l 7メンバー
の場合は大きな曲げ歪みが加わりやすく、曲げ歪みに抗
し切れず曲げ破断を生じ、光ファイバーに決定的な損傷
を与えやすい欠点をイrしている。
In the case of tear-jong members for optical fiber backbone cables, the bending distortion is essentially small considering the required performance, so there is no particular problem. In the case of 7 members, a large bending strain is easily applied, and the optical fiber cannot resist the bending strain, resulting in bending breakage, which tends to cause decisive damage to the optical fiber.

−・方、曲げ破断歪み量を大きくするにはテアジョンメ
ンバーを細くする手段が考えられるか、抗張力性が低下
しテアジョンメンバーとしての基本的特性を滴定し難く
なるので細径化には限度がある。
- On the other hand, in order to increase the amount of bending fracture strain, it is possible to consider making the tear John member thinner, but there is a limit to making the diameter smaller as the tensile strength will decrease and it will be difficult to titrate the basic properties of a tear John member. There is.

他方曲げ弾性率の極端に低い場合はたとえ抗張力的には
滴定しても小さな曲げ外力でも曲げ歪みが大きくなり光
フアイバー自身の曲げ破断を招きやすい。従って例えば
光ファイバーコード用或いは小容量 光ファイバーケー
ブル用テアジョンメンバーとしては高抗張力性を有する
ことは勿論であるが同時に適度な曲げ弾性率ををするこ
とが要求されている。
On the other hand, if the bending modulus is extremely low, even if the tensile strength is titrated, even a small external bending force will cause a large bending strain, easily causing bending breakage of the optical fiber itself. Therefore, for example, tear-jon members for optical fiber cords or small-capacity optical fiber cables are required not only to have high tensile strength, but also to have an appropriate bending modulus.

(問題点を解決するための手段) 上記問題点を解決するための手段、即ち、本発明は、少
なくとも20g/デニールの引張強度と少な(とも50
0g/デニールの引張弾性率を有するポリエチレン繊維
(A)を補強材とし、熱硬化性樹脂(B)をマトリック
ス材とした線状複合体構造物であって、曲げ弾性率が3
00〜1,500kg /am ”であることを特徴と
する可撓制抗張力線である。
(Means for Solving the Problems) Means for solving the above problems, that is, the present invention provides a tensile strength of at least 20 g/denier and a tensile strength of at least 50 g/denier.
A linear composite structure using polyethylene fiber (A) having a tensile modulus of 0 g/denier as a reinforcing material and a thermosetting resin (B) as a matrix material, and having a flexural modulus of 3
00 to 1,500 kg/am''.

本発明に用いるポリエチレン繊維(A)は少なくとも2
0g/デニール、好ましくは30g/デニール以上、特
に40g/デニール以上の引張強度と少くとも500g
/デニール、好ましくは゛’800g/デニール以上、
特に1,000g/デニール以上の引張弾性率を有する
ものであり、ここで引張強度が20g/デニール未満、
または引張弾性率が500g/デニール未清の場合にあ
っては線状複合体とした場合に引張強度、引張弾性率が
劣るものとなり本発明で目的とする高強力、高弾性率且
つ可撓性を有する線状複合体が達成出来なくなる。
The polyethylene fiber (A) used in the present invention has at least 2
Tensile strength of 0 g/denier, preferably 30 g/denier or more, especially 40 g/denier or more and at least 500 g/denier
/denier, preferably 800g/denier or more,
In particular, it has a tensile modulus of 1,000 g/denier or more, where the tensile strength is less than 20 g/denier,
Alternatively, if the tensile modulus is 500 g/denier, the tensile strength and tensile modulus will be poor when made into a linear composite, resulting in the high strength, high modulus, and flexibility that are the objectives of the present invention. It becomes impossible to achieve a linear composite with .

本発明に用いるポリエチレン繊維は前記する構成要件を
溝足するものであればいずれでもよいが、特に粘度平均
分子ff15 X 10’以上の高分子量ポリエチレン
であると価格面および製糸の容易さの面で有利である。
The polyethylene fiber used in the present invention may be any fiber as long as it satisfies the above-mentioned structural requirements, but in particular, high molecular weight polyethylene with a viscosity average molecular weight of ff15 x 10' or more is preferable in terms of price and ease of spinning. It's advantageous.

本発明に用いるポリエチレン繊維の単糸デニールは特に
限定はないが好ましくは0.2〜20d1更に好ましく
は0.5〜10dとするのが良い。
The single yarn denier of the polyethylene fiber used in the present invention is not particularly limited, but is preferably 0.2 to 20 d, more preferably 0.5 to 10 d.

熱硬化性樹脂(I3)との接着性を向上させる手段とし
てtdAK表面に無数の縦長の多条溝を付与することに
よって接着性の向上が顕著となることが判明している。
It has been found that, as a means of improving the adhesiveness with the thermosetting resin (I3), the adhesiveness is significantly improved by providing countless vertically long grooves on the tdAK surface.

この多条溝は溶剤を適当量含むポリエチレンゲル糸を延
伸する際、溶剤蒸発量を制御すること、により付与する
ことができる。さらに、接骨性向上の手段として、高分
子化合物と接着する以前に繊維表面をフッ素ガスで処理
、またはエポキシ基台をポリオレフィン、カルボ/酸基
台打ポリオレフィン、塩素化ポリオレフィン等で表面処
理を行なうことにより、極めて接着性が向上するので特
に好ましい。
These multi-row grooves can be provided by controlling the amount of solvent evaporated when drawing a polyethylene gel thread containing an appropriate amount of solvent. Furthermore, as a means of improving bone attachment properties, the fiber surface may be treated with fluorine gas or the epoxy base may be surface-treated with polyolefin, carbo/acid base-plated polyolefin, chlorinated polyolefin, etc. before bonding with a polymer compound. This is particularly preferred since the adhesiveness is greatly improved.

ここに言う多条溝とは繊維軸方向に配列された無数の多
条溝であって、該多条溝としては、繊維の横断面の外周
方向の平均距FJIIOμ当り2個以上、特に5〜50
個配列していることにより、前記する効果が顕著となる
The multi-row grooves referred to herein are innumerable multi-row grooves arranged in the fiber axis direction, and the multi-row grooves include 2 or more, especially 5 to 5 per average distance FJIIOμ in the outer circumferential direction of the cross section of the fiber. 50
By arranging them, the above-mentioned effect becomes remarkable.

本発明に用いる熱硬化性樹脂(I3)は不飽和ポリエス
テル樹脂、ビニールエステル樹脂、エポキシ樹脂、フェ
ノール樹脂等の単独もしくは2種以上の配合で使用され
る。
The thermosetting resin (I3) used in the present invention may be an unsaturated polyester resin, a vinyl ester resin, an epoxy resin, a phenol resin, etc., used alone or in combination of two or more.

(A)と(B)から構成される線状複合体は、曲げ弾性
率が300〜1,500kg/曹■2、好ましくは50
0〜1,000kg/■、!であり、引張破断強度が少
くとも40kg/ms”、好ましくは60 kg / 
ova”以上であり、好ましくは繊維含有率(Vf)が
15〜60%、好ましくは20〜50%であることを特
徴とする。
The linear composite composed of (A) and (B) has a flexural modulus of 300 to 1,500 kg/kg, preferably 50
0~1,000kg/■,! and has a tensile strength at break of at least 40 kg/ms”, preferably 60 kg/ms”.
ova" or more, and preferably has a fiber content (Vf) of 15 to 60%, preferably 20 to 50%.

ここで(A)とCB)から構成される線状複合体の曲げ
弾性率が1.500kg / ms ”を越える場合に
あっては、大きな曲げ外力が加わった際に、曲げ破断を
生じるので好ましくない。一方300kg/−■3未満
の場合にあっては本発明で目的とする抗張力線としての
要求性能を充分に溝たすことが出来なくなるので好まし
くない。
Here, if the bending elastic modulus of the linear composite composed of (A) and CB) exceeds 1.500 kg/ms, bending breakage will occur when a large external bending force is applied, so it is preferable. On the other hand, if it is less than 300 kg/-3, it is not preferable because the required performance as a tensile strength wire, which is the object of the present invention, cannot be fully met.

本発明の可撓制抗張力線は例えば以下のようにして製造
することができる。
The flexible tensile strength wire of the present invention can be manufactured, for example, as follows.

高分子量のポリエチレン(例えば粘度平均分子b1.が
lXl0’以上、好ましくはi X 10”以上の超高
分子量ポリエチレン)をデカリ/、キシレンあるいはパ
ラフィン等の溶媒に溶媒の沸点以下で完全に溶解後、紡
糸装置内でポリエチレン18液が固化しない温度で、室
温の大気中、または水中あるいは冷却装置付の中空管中
に押出す。
After completely dissolving high molecular weight polyethylene (for example, ultra-high molecular weight polyethylene with a viscosity average molecule b1. of lXl0' or more, preferably iX10'' or more) in a solvent such as decal/xylene or paraffin at a temperature below the boiling point of the solvent, The polyethylene 18 liquid is extruded in the spinning device at a temperature at which it does not solidify, either in the air at room temperature, in water, or into a hollow tube equipped with a cooling device.

押出して得られた糸は、内部に溶媒を含有しているが、
含有した溶媒を抽出するかまたは抽出することなく糸が
溶けない程度に加熱し、全延伸倍率が10倍以上、好ま
しくは20倍以上になるよう1段または多段で延伸する
The thread obtained by extrusion contains a solvent inside, but
The yarn is heated to such an extent that the contained solvent is extracted or not dissolved without being extracted, and the yarn is stretched in one stage or in multiple stages so that the total stretching ratio is 10 times or more, preferably 20 times or more.

かくして得られた延伸繊維を複数本引揃えて、熱硬化性
樹脂液槽を通して、含浸処理し、次に任意の断面形状を
有する賦形ダイを通して断面形状を形成する。次いで加
熱炉を通して硬化させることによって、本発明の可撓制
抗張力線を得ることができる。もちろんこの方法に限定
するものでitない。
A plurality of the thus obtained drawn fibers are aligned, passed through a thermosetting resin liquid bath, impregnated, and then passed through a shaping die having an arbitrary cross-sectional shape to form a cross-sectional shape. The flexible tensile strength wire of the present invention can then be obtained by curing it in a heating oven. Of course, it is not limited to this method.

(実施例) 本発明の評価に用いた物性の測定法は以下による。(Example) The method of measuring physical properties used for evaluation of the present invention is as follows.

く強伸度特性の測定法>  JIS L−1013(1
981)に準じた。
Measuring method of strength and elongation properties> JIS L-1013 (1
981).

東洋ボールドウィン社製テンシロンを用い試料長(ゲー
ジ長)200−■/分、引張速度100■■/分の条件
で5−sIflItaを測定し、引張破断強度、引張弾
性率、を算出した。引張弾性率はS−3曲線の原点付近
の最大勾配より算出した。
5-sIflIta was measured using a Tensilon manufactured by Toyo Baldwin Co., Ltd. under the conditions of a sample length (gauge length) of 200-■/min and a tensile rate of 100-■/min, and the tensile strength at break and tensile modulus were calculated. The tensile modulus was calculated from the maximum slope near the origin of the S-3 curve.

く曲げ弾性率の測定法>  JISに−6911(19
79)に準じた。
Measuring method of flexural modulus> JIS-6911 (19
79).

東洋ボールドウィン社製テンシロンを用I、)三点支P
t法により1工/分の変形速度で曲げS−8曲線を測定
し、次式により初期曲げ弾性率を算出し手盛 ここで t:支点間距1i11(50■−)P:曲げ応
力(kg) δ:曲げ変形ff1(−一) D:試料直径(−箇) く曲げ破断時変形量〉 曲げ弾性率の測定において曲げ破断時の変形量δ(關)
で表示した。
Uses Tensilon made by Toyo Baldwin I,) Three-point support P
The bending S-8 curve was measured using the t method at a deformation rate of 1 k/min, and the initial bending modulus was calculated using the following formula. ) δ: Bending deformation ff1 (-1) D: Sample diameter (-) Amount of deformation at bending break> Amount of deformation at bending break δ (關) in measuring bending elastic modulus
It was displayed in

実験陽1〜4 粘度平均分子量がI X 10@乃至1.8X10@の
可撓性高分子鎖を有する超高分子量ポリエチレンをデカ
リ/に溶解して紡糸原液となした後、該紡糸原液を紡糸
装置内でポリエチレン溶液が固化しない温度で紡糸口金
から室温の大気中に押し出して冷却しゲル状繊維を形成
する。このデカリンを含有するゲル状繊維を含有したデ
カリ/を抽出して乾燥することな(、該ゲル状繊維が溶
断しない温度で温度と延伸倍率を種々変えて延伸し、第
1表の実験Nal〜4に示す特性を有するマルチフイラ
メ/トを得た。それぞれのマルチフィラメントを用いて
、第1表に示す引揃え本数で無撚下引揃えてストランド
となしたものを、第1表に示す樹脂液の調合割合で調整
した樹脂液槽に含浸処理し、2酊φの賦形ダイを通過さ
せた後、第1表に示すそれぞれの硬化条件で熱硬化し、
種々の特性を仔する線状複合体を得た。
Experiments positive 1 to 4 Ultra-high molecular weight polyethylene having a flexible polymer chain with a viscosity average molecular weight of I x 10 @ to 1.8 x 10 @ is dissolved in Decali/ to prepare a spinning stock solution, and then the spinning stock solution is spun. Inside the device, the polyethylene solution is extruded from a spinneret into the atmosphere at room temperature at a temperature at which it does not solidify, and is cooled to form a gel-like fiber. Without extracting and drying the gelatinous fibers containing decalin, the gelatinous fibers were stretched at various temperatures and stretching ratios at a temperature at which the gelatinous fibers did not melt. A multifilament having the properties shown in Table 4 was obtained.Using each multifilament, the number of strands shown in Table 1 was drawn without twisting to form a strand, and the resin solution shown in Table 1 was prepared. After impregnating into a resin liquid bath adjusted at the mixing ratio, passing through a 2mm diameter shaping die, and heat curing under the respective curing conditions shown in Table 1,
Linear composites with various properties were obtained.

それぞれの線状複合体の特性を第1表に示す。Table 1 shows the properties of each linear composite.

実験Na5 実験点3で用いたマルチフィラメントを20本引揃えて
、合計20 、000デニールのストランドとなし、第
1表に示す条件で2■讃φの賦形ダイを通過させて線状
複合体を成形した。得られた線状複合体の特性を第1表
に示す。
Experiment Na5 20 multifilaments used in Experimental Point 3 were arranged to form a strand with a total of 20,000 denier, and passed through a shaping die of 2 mm diameter under the conditions shown in Table 1 to form a linear composite. was molded. Table 1 shows the properties of the obtained linear composite.

実験点6 市販の芳香族ポリアミド繊維(商品名ケブラー49 )
 1,400デニール/1,000フイラメントを、1
2本無撚で引揃えて合計17 、040デニールのスト
ランドとなし、第1表に示ず条件で2.llφの賦形ダ
イ′を通過させて線状複合体を成形した。得られた線状
複合体の特性を第1表に示す。
Experimental point 6 Commercially available aromatic polyamide fiber (trade name Kevlar 49)
1,400 denier/1,000 filament, 1
Two untwisted strands were pulled together to form a total of 17.040 denier strands under conditions not shown in Table 1. A linear composite was formed by passing through a shaping die of 11φ. Table 1 shows the properties of the obtained linear composite.

実験N11L7 市販のガラス繊維(890デニール相当)を14本引揃
えて合計12,460デニールのストランドとなし第1
表に示す条件で、1.6s+■φの賦形ダイを通過させ
て線状複合体を成形した。得られた線状複合体の特性を
第1表に示す。
Experiment N11L7 14 commercially available glass fibers (equivalent to 890 denier) were arranged to form a strand with a total of 12,460 denier.
Under the conditions shown in the table, a linear composite was molded by passing through a shaping die of 1.6 s + ■φ. Table 1 shows the properties of the obtained linear composite.

以下余白 第1表から明らかなように本発明で規定するボリエヂレ
ン繊維を用いた線状複合体(実験NcL1〜3)はいず
れも40 kg / w++”以上の引張強度と好まし
い曲げ弾性率500〜1,000kg/工′を有し、曲
げ弾性率の測定においていずれも曲げ破断を生じなかっ
た。
As is clear from Table 1 below, the linear composites (experiments NcL1 to 3) using polyethylene fibers specified in the present invention all have a tensile strength of 40 kg/w++" or more and a preferable flexural modulus of 500 to 1. ,000 kg/work', and no bending breakage occurred in any of the bending modulus measurements.

繊維の引張強度、引張弾性率が本発明で規定する値を溝
していないもの(実装置4)は繊維含有率のほぼ等しい
本発明(実装置1)に比べて線状複合体の引張弾性率及
び曲げ弾性率が著しく劣る。即ち、引張強度は40 k
g /■lI2以下、曲げ弾性率は300kg / s
m ”以下となりいずれも本発明で規定する値より外れ
テンションメンバーの特性上好ましくない。線状複合体
の曲げ弾性率が本発明で規定する上限値(1,500g
 /■■2)を越える比較例(実装置5〜7)において
はいずれも曲げ弾性率測定時、曲げ破断を生じた。
The tensile strength and tensile modulus of the fibers are less than the values specified by the present invention (actual device 4), and the tensile elasticity of the linear composite is lower than that of the present invention (actual device 1), which has almost the same fiber content. The elastic modulus and flexural modulus are significantly inferior. That is, the tensile strength is 40k
g/■lI2 or less, flexural modulus is 300kg/s
m'' or less, both of which are outside the values specified by the present invention and are unfavorable in terms of the properties of the tension member.
/■■2) In all comparative examples (actual devices 5 to 7), bending fracture occurred when measuring the bending elastic modulus.

比較例(実装置5)において線状複合体の引張強度は本
発明(実験康1〜3)に比べて高いが、曲げ弾性率が高
(曲げ破断を起しゃすいために可撓性の点で好ましくな
い。
In the comparative example (actual device 5), the tensile strength of the linear composite is higher than that of the present invention (experiments 1 to 3), but the bending modulus is high (bending breakage occurs easily, so the flexibility is low). So it's not desirable.

又、比較例(実験Na6.7)はいずれも本発明(実験
Na2,3)に比べて線状複合体の引張強度かほぼ等し
いにもかかわらず、曲げ弾性率が高く、曲げ弾性率測定
時曲げ破断を生じた。特に比較例(実装置7)は線状複
合体の直径を本発明(実験Na 1〜3)より細くした
にもかかわらず曲げ破断を生じた。
In addition, in both comparative examples (experiment Na 6.7), even though the tensile strength of the linear composites is almost the same as in the present invention (experiments Na 2, 3), the bending elastic modulus is higher, and when measuring the bending elastic modulus, Bending fracture occurred. In particular, in the comparative example (actual device 7), bending fracture occurred even though the diameter of the linear composite was made smaller than that of the present invention (experiments Na 1 to 3).

又、線状複合体の比強度を比較すると本発明(実験Na
2,3)は比較例(実装置4,6.7)に比べて著しく
高いことがわかる。このことは細径化が比較例より極め
てを利に行なえることを示している。
Also, when comparing the specific strength of the linear composite, it is found that the present invention (experimental Na
2, 3) are significantly higher than those of the comparative example (actual device 4, 6.7). This shows that diameter reduction can be carried out much more advantageously than in the comparative example.

以上の結果より本発明の線状複合体は比較例に比べて′
i!i度な可撓性を有すると共に、軽くてかつ高い抗張
力を有しているために光フアイバーコード用、或いは小
容量光フアイバーケーブル用のテンションメンバーとし
て、特に優れた特性ををしていることがわかる。
From the above results, the linear composite of the present invention has a
i! It has extremely high flexibility, is lightweight, and has high tensile strength, so it has particularly excellent properties as a tension member for optical fiber bar codes or small capacity optical fiber cables. Recognize.

(発明の効果) 前記実施例で見られるように、本発明の可撓制抗張力線
は、従来知られているFRI’製テ/タテ/ジョンメン
バーして、優れた可撓性を有するので、大きな曲げ外力
が加わってもテンションメンバーに曲げ破断を生じると
七がない点で従来のテンションメンバーに曲げ破断を生
じることがない点で従来のテンションメンバーに比べて
m h 6゜本発明の可撓制抗張力線は、光フアイバー
コードや小容量光フアイバーケーブル用のテンションメ
ンバーとして用いた場合、光フアイバー心線に損傷を与
えることがないので、高品質の光フアイバーコードや小
容量光フアイバーケーブルが得られる。
(Effects of the Invention) As seen in the above examples, the flexible tensile strength wire of the present invention has excellent flexibility compared to the conventionally known FRI' length/length/john members. The flexibility of the present invention is superior to conventional tension members in that it does not cause bending fractures in the tension members even when a large external bending force is applied. When tension control wires are used as tension members for optical fiber barcodes and small-capacity optical fiber cables, they do not damage the optical fiber cores, so high-quality optical fiber barcodes and small-capacity optical fiber cables can be obtained. It will be done.

ここに言う小容量光フアイバーケーブルとは、例えば、
加入者系、オフィス、プラント内および移動体内光通信
システム等に使用する小容量光フアイバーケーブルを言
う。
The small capacity optical fiber cable mentioned here is, for example,
A low-capacity optical fiber cable used for subscriber systems, offices, in-plant and mobile optical communication systems, etc.

また、本発明の可撓制抗張力線は、高強力・高弾性率で
軽量且つ、可fU性に優れるといったすべての性能を必
要とするあらゆる工業分野の抗張力材として広く使用が
可能な抗張カ腺として提供される。
In addition, the flexible tensile strength wire of the present invention is a tensile strength wire that can be widely used as a tensile strength material in all industrial fields that require all performances such as high strength, high elastic modulus, light weight, and excellent fuability. Comes as a gland.

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも20g/デニールの引張強度と少なく
とも500g/デニールの引張弾性率を有するポリエチ
レン繊維(A)を補強材とし、熱硬化性樹脂(B)をマ
トリックス材とした線状複合体構造物であつて、曲げ弾
性率が300〜1,500kg/mm^2であることを
特徴とする可撓性抗張力線。
(1) A linear composite structure in which polyethylene fiber (A) having a tensile strength of at least 20 g/denier and a tensile modulus of at least 500 g/denier is used as a reinforcing material, and a thermosetting resin (B) is used as a matrix material. A flexible tensile strength wire having a bending modulus of 300 to 1,500 kg/mm^2.
(2)線状複合体構造物の引張強度が少なくとも40k
g/mm^2である特許請求の範囲第1項記載の可撓制
抗張力線。
(2) The tensile strength of the linear composite structure is at least 40k
The flexible tensile strength wire according to claim 1, which is g/mm^2.
(3)ポリエチレン繊維(A)が粘度平均分子量50万
以上の超高分子量ポリエチレンよりなる特許請求の範囲
第1項乃至第2項のいずれかに記載の可撓制抗張力線。
(3) The flexible tensile strength wire according to any one of claims 1 to 2, wherein the polyethylene fiber (A) is made of ultra-high molecular weight polyethylene having a viscosity average molecular weight of 500,000 or more.
(4)ポリエチレン繊維(A)が表面に無数の縦長の多
条溝を有する特許請求の範囲第1項乃至第3項記載の可
撓性抗張力線。
(4) The flexible tensile strength wire according to any one of claims 1 to 3, wherein the polyethylene fiber (A) has numerous vertically elongated grooves on its surface.
JP60139957A 1984-12-26 1985-06-25 Flexible tensile wire Pending JPS61153611A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP84116304.1 1984-12-26
EP84116304A EP0147844B1 (en) 1983-12-27 1984-12-26 A process for preparing a polyethylene filament

Publications (1)

Publication Number Publication Date
JPS61153611A true JPS61153611A (en) 1986-07-12

Family

ID=8192392

Family Applications (4)

Application Number Title Priority Date Filing Date
JP60139957A Pending JPS61153611A (en) 1984-12-26 1985-06-25 Flexible tensile wire
JP60139954A Pending JPS61153610A (en) 1984-12-26 1985-06-25 Fiber-reinforced optical fiber cord
JP60139504A Pending JPS61153608A (en) 1984-12-26 1985-06-26 Optical fiber cord
JP60139505A Pending JPS61153609A (en) 1984-12-26 1985-06-26 Flexible tensile wire for optical fiber cord and small-capacity optical fiber cable

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP60139954A Pending JPS61153610A (en) 1984-12-26 1985-06-25 Fiber-reinforced optical fiber cord
JP60139504A Pending JPS61153608A (en) 1984-12-26 1985-06-26 Optical fiber cord
JP60139505A Pending JPS61153609A (en) 1984-12-26 1985-06-26 Flexible tensile wire for optical fiber cord and small-capacity optical fiber cable

Country Status (1)

Country Link
JP (4) JPS61153611A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749449Y2 (en) * 1987-06-22 1995-11-13 古河電気工業株式会社 Tensile body for optical cable
JPH01114812A (en) * 1987-10-28 1989-05-08 Furukawa Electric Co Ltd:The Optical fiber cable
JPH0220663U (en) * 1988-07-18 1990-02-09
JP2830143B2 (en) * 1989-08-29 1998-12-02 住友電気工業株式会社 Optical cable
JP2010139631A (en) * 2008-12-10 2010-06-24 Furukawa Electric Co Ltd:The Optical fiber cable
KR101048486B1 (en) * 2009-12-01 2011-07-12 엘에스전선 주식회사 Flat drop cable
JP2018180361A (en) * 2017-04-17 2018-11-15 住友電気工業株式会社 Optical fiber cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141605A (en) * 1981-02-18 1982-09-02 Furukawa Electric Co Ltd:The Frp-covered optical communication line and optical communication cable using it
JPS57147603A (en) * 1981-03-09 1982-09-11 Nippon Telegr & Teleph Corp <Ntt> Tensile wire made of plastics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782149A (en) * 1980-11-12 1982-05-22 Furukawa Electric Co Ltd:The Reinforced optical fiber
JPS57208502A (en) * 1981-06-18 1982-12-21 Nippon Telegr & Teleph Corp <Ntt> Optical fiber core

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141605A (en) * 1981-02-18 1982-09-02 Furukawa Electric Co Ltd:The Frp-covered optical communication line and optical communication cable using it
JPS57147603A (en) * 1981-03-09 1982-09-11 Nippon Telegr & Teleph Corp <Ntt> Tensile wire made of plastics

Also Published As

Publication number Publication date
JPS61153610A (en) 1986-07-12
JPS61153609A (en) 1986-07-12
JPS61153608A (en) 1986-07-12

Similar Documents

Publication Publication Date Title
US4677818A (en) Composite rope and manufacture thereof
CN101688359B (en) Cable, combined cable made of plastic fibers and steel wire strands, and combined strands made of plastic fibers and steel wires
JPH0718206B2 (en) Method of manufacturing structural rod
JPH10504074A (en) Abrasion resistant pseudo-monofilament and exterior composition
CA2595543A1 (en) Fiber reinforced plastic wire for strength member of overhead transmission cable, method for manufacturing the same, and overhead transmission cable using the same
JPH0764035B2 (en) Solid or hollow fiber reinforced plastic
JPH10504073A (en) Method for producing a wear-resistant pseudo-monofilament
JPS61153611A (en) Flexible tensile wire
US4929503A (en) Composite fibrous material
JPH05148780A (en) Production of rope composed of fiber-reinforced composite material
JP5561446B1 (en) Carbon fiber bundle manufacturing method and carbon fiber bundle
JP6020202B2 (en) Carbon fiber bundle and method for producing the same
EP2067893A3 (en) Metal rope with fibres of liquid-crystal polymer
WO2003033784A8 (en) Expanded ptfe filament with round cross section
JP3476422B2 (en) High strength fiber fusion yarn
JP3105225B2 (en) Manufacturing method of stretched rope
JPS63196726A (en) Composite fiber material
JPH04263680A (en) Rope of cross-sectional material of combined fibers
JP6706872B2 (en) Multifilament reinforced curable resin linear material
WO2023042597A1 (en) Carbon fiber bundle and production method therefor
KR20120065058A (en) Rope
JP4104260B2 (en) Optical fiber tension member
JPH01266232A (en) Yarn for forming high-tensile strength body and high-tensile strength body
JPS61245314A (en) Coated superdrawn polyoxymethylene filament
JPH01104890A (en) Non-metallic end stopping method of polyoxymethylene rope