JPH01114812A - Optical fiber cable - Google Patents

Optical fiber cable

Info

Publication number
JPH01114812A
JPH01114812A JP62272735A JP27273587A JPH01114812A JP H01114812 A JPH01114812 A JP H01114812A JP 62272735 A JP62272735 A JP 62272735A JP 27273587 A JP27273587 A JP 27273587A JP H01114812 A JPH01114812 A JP H01114812A
Authority
JP
Japan
Prior art keywords
tensile strength
optical fiber
tensile body
fiber cable
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62272735A
Other languages
Japanese (ja)
Inventor
Naoyuki Wada
和田 直行
Shinichi Irie
伸一 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62272735A priority Critical patent/JPH01114812A/en
Publication of JPH01114812A publication Critical patent/JPH01114812A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress an increase in long-period transmission loss by subjecting a tensile body to an antioxidation treatment and providing the oxidation induction period in the state of contact with copper at a specific temp. for the specified time or above in the case of orienting a polyethylene (PE) resin and using the same as the tensile body. CONSTITUTION:The PE having >=100,000mol.wt. is subjected to heating, melting and extruding, then to stretching to increases the Young's modulus thereof to >=10,000kgf/mm<2>, by which the bar-, fiber-, or film-shaped tensile body is formed. This tensile body is immersed in a liquid age resistor of an amine system, phenol system, etc., and the oxidation induction period in the state of contact with the copper at 200 deg.C is maintained for >=30min. The generation of hydrogen is thereby suppressed and the increase in the long-period transmission loss of the optical fiber is suppressed.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はポリエチレン製抗張力体を有する光ファイバケ
ーブルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an optical fiber cable having a polyethylene tensile strength member.

〔従来技術〕[Prior art]

光ファイバケーブルにおいては一般に、該ケーブルの引
張り方向の機械的強度を向上せしめる等の目的で抗張力
体がその中心や周辺に配置される。
In an optical fiber cable, a tensile strength member is generally arranged at the center or around the cable for the purpose of improving the mechanical strength of the cable in the tensile direction.

この抗張力体としてはピアノ線等の鋼線が一般的である
が、最近プラスチックを延伸加工して、そのヤング率や
抗張力を向上せしめ、これを抗張力体として使用するこ
とが検討されている。ところが前述したようなプラスチ
ック、具体的にはポリエチレン製の抗張力体の場合、該
ポリエチレンの酸化によりポリエチレンを構成している
水素の離脱反応が起こって、長期的に水素を発生し易く
、従ってこの水素により光ファイバの伝送特性が劣化す
るという問題がある。
Steel wires such as piano wire are commonly used as the tensile strength body, but recently it has been studied to stretch plastic to improve its Young's modulus and tensile strength, and to use this as the tensile strength body. However, in the case of tensile strength members made of plastic, specifically polyethylene, as mentioned above, the oxidation of the polyethylene causes a desorption reaction of the hydrogen that makes up the polyethylene, which tends to generate hydrogen over a long period of time. There is a problem in that the transmission characteristics of the optical fiber deteriorate due to this.

【発明の目的〕[Purpose of the invention]

前記問題に鑑み本発明の目的は、プラスチック製抗張力
体からの水素発生量を抑制せしめ、長期にわたって水素
による伝送特性の劣化の少ない光ファイバケーブルを提
供することにある。
In view of the above problems, an object of the present invention is to provide an optical fiber cable in which the amount of hydrogen generated from a plastic tensile strength member is suppressed and the transmission characteristics are less degraded by hydrogen over a long period of time.

〔発明の構成〕[Structure of the invention]

前記目的を達成すべく本発明は、ポリエチレン樹脂を延
伸してそのヤング率及び抗張力を向上せしめたものを抗
張力体として使用してなる光ファイバケーブルにおいて
、前記抗張力体は200℃における銅接触状態での酸化
誘導期が30分以上であることを特徴とするものである
In order to achieve the above object, the present invention provides an optical fiber cable using a stretched polyethylene resin to improve its Young's modulus and tensile strength as a tensile strength member, wherein the tensile strength member is in contact with copper at 200°C. The oxidation induction period is 30 minutes or more.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を詳細に説明する0本発明者は種
々の実験を繰り返した結果、分子量10万以上の高分子
量ポリエチレンを加熱、溶融、押出後、これを延伸加工
してそのヤング率を10.OOOkgf/mIm”以上
に高めた棒状、繊維状あるいはフィルム状の抗張力体に
後述する酸化防止処理を施して、200℃における銅接
触状態での酸化誘導期を30分以上にせしめると、この
抗張力体からの水素の発生を大幅に抑制できることを見
出した。ここで酸化誘導期とは、試料をある温度の酸素
雰囲気に放置した場合、それが酸化による発熱挙動を示
すまでの時間のことであり、これが長ければ耐酸化劣化
性が優れていることを意味する。尚、この酸化誘導期の
測定は、銅パン上に試料を載せて熱分析装置にて行った
ものである。
Examples of the present invention will be described in detail below.As a result of repeated various experiments, the present inventors heated, melted, and extruded high molecular weight polyethylene with a molecular weight of 100,000 or more, and then stretched it to determine its Young's modulus. 10. When a rod-shaped, fibrous, or film-like tensile strength material that has been raised to a temperature higher than OOOkgf/mIm is subjected to the oxidation prevention treatment described below to extend the oxidation induction period in contact with copper at 200°C for 30 minutes or more, this tensile strength material The oxidation induction period is the time it takes for a sample to show exothermic behavior due to oxidation when it is left in an oxygen atmosphere at a certain temperature. If this is long, it means that the oxidative deterioration resistance is excellent.The oxidation induction period was measured using a thermal analyzer with the sample placed on a copper pan.

さて前述の如くポリエチレンを加熱、溶融、押出後、こ
れを延伸加工してそのヤング率を10,000kgf/
−■2以上に高めた棒状、繊維状あるいはフィルム状の
抗張力体には、従来はなんらの酸化防止処理も施してい
ないが、例えば分子量10万以上の高分子量ポリエチレ
ンを加熱、溶融、押出後、これを延伸加工してそのヤン
グ率を10.000kgf/mm”以上に高めた棒状、
繊維状あるいはフィルム状の抗張力体をアミン系、ある
いはフェノール系の液状老化防止剤や、適当な溶剤で溶
解処理したアミン系やフェノール系の老化防止剤溶液中
に浸漬せしめ、該処理によりその酸化誘導期を30分以
上にせしめると、この抗張力体からの水素の発生が著し
く減少することがわかった。
Now, as mentioned above, after heating, melting and extruding polyethylene, it is stretched to a Young's modulus of 10,000 kgf/
-■ Rod-shaped, fiber-shaped, or film-shaped tensile strength bodies with a tensile strength of 2 or more have not been subjected to any antioxidant treatment, but for example, after heating, melting, and extruding high molecular weight polyethylene with a molecular weight of 100,000 or more, A rod shape made by stretching this to increase its Young's modulus to 10.000 kgf/mm" or more,
A fibrous or film-like tensile strength material is immersed in an amine-based or phenol-based liquid anti-aging agent, or an amine-based or phenol-based anti-aging agent solution dissolved in an appropriate solvent, and the treatment induces oxidation. It has been found that when the period is increased to 30 minutes or more, hydrogen generation from this tensile strength member is significantly reduced.

以下に本発明の実施例を示す。分子110万以上の高分
子量ポリエチレンを加熱、溶融、押出後これを延伸加工
してそのヤング率を10.OOOkgf/sv+”以上
に高めた繊維状抗張力体をアミン系の液状老化防止剤に
浸漬せしめて、前述した酸化防止処理を施した。この抗
張力体を使用して光ファイバケーブルを作り、これを8
0℃×7日間加熱し、その後波長1.24μ−での伝送
損失増加量等を求めた。
Examples of the present invention are shown below. After heating, melting and extruding high molecular weight polyethylene with a molecular weight of 1.1 million or more, it is stretched to a Young's modulus of 10. The fibrous tensile strength material, which has been increased to more than OOO kgf/sv+", was immersed in an amine-based liquid anti-aging agent and subjected to the aforementioned oxidation prevention treatment. This tensile strength material was used to make an optical fiber cable, and this was
After heating at 0°C for 7 days, the increase in transmission loss at a wavelength of 1.24μ was determined.

この結果を表−“1に示す。The results are shown in Table 1.

ト          − へ  八 −Δ I                        
     へ  シ  1  へ尚、表−1中の水素発
生量は、サンプルを試験管に入れ、これを酸素雰囲気下
で200℃X4hr加熱して水素を発生させ、これをガ
スクロマトグラフにて測定した。
To - to 8-Δ I
The amount of hydrogen generated in Table 1 was determined by placing a sample in a test tube, heating it at 200° C. for 4 hours in an oxygen atmosphere to generate hydrogen, and measuring this using a gas chromatograph.

表−1が示すように、延伸加工を施してそのヤング率等
を向上せしめてなる高分子量のポリエチレン製抗張力体
に酸化防止処理を施し、該抗張力体の銅接触状態での酸
化誘導期を30分以上にせしめたものでは、水素発生量
を橿めて低く抑制でき、もって水素発生による光ファイ
バの長期的な伝送損失増加量を減少せしめることができ
る。
As shown in Table 1, a high-molecular weight polyethylene tensile strength member that has been subjected to stretching processing to improve its Young's modulus, etc. is subjected to oxidation prevention treatment, and the oxidation induction period of the tensile strength member in contact with copper is 30%. By increasing the amount of hydrogen to more than 1 minute, the amount of hydrogen generated can be increased and suppressed to a low level, thereby reducing the amount of increase in long-term transmission loss of the optical fiber due to hydrogen generation.

〔発明の効果〕〔Effect of the invention〕

前述の如く本発明によれば、延伸加工を施してなるポリ
エチレン製抗張力体からの水素発生量を大幅に抑制でき
、もって長期にわたって伝送損失増加の少ないポリエチ
レン製抗張力体入りの光ファイバケーブルを得ることが
できる。
As described above, according to the present invention, it is possible to significantly suppress the amount of hydrogen generated from a stretched polyethylene tensile member, thereby obtaining an optical fiber cable containing a polyethylene tensile member with little increase in transmission loss over a long period of time. Can be done.

Claims (1)

【特許請求の範囲】[Claims] ポリエチレン樹脂を延伸してそのヤング率及び抗張力を
向上せしめたものを抗張力体として使用してなる光ファ
イバケーブルにおいて、前記抗張力体は200℃におけ
る銅接触状態での酸化誘導期が30分以上であることを
特徴とする光ファイバケーブル。
In an optical fiber cable using a stretched polyethylene resin to improve its Young's modulus and tensile strength as a tensile strength member, the tensile strength member has an oxidation induction period of 30 minutes or more in contact with copper at 200°C. An optical fiber cable characterized by:
JP62272735A 1987-10-28 1987-10-28 Optical fiber cable Pending JPH01114812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62272735A JPH01114812A (en) 1987-10-28 1987-10-28 Optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62272735A JPH01114812A (en) 1987-10-28 1987-10-28 Optical fiber cable

Publications (1)

Publication Number Publication Date
JPH01114812A true JPH01114812A (en) 1989-05-08

Family

ID=17518047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62272735A Pending JPH01114812A (en) 1987-10-28 1987-10-28 Optical fiber cable

Country Status (1)

Country Link
JP (1) JPH01114812A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153609A (en) * 1984-12-26 1986-07-12 Toyobo Co Ltd Flexible tensile wire for optical fiber cord and small-capacity optical fiber cable
JPS62215663A (en) * 1986-03-17 1987-09-22 Sumitomo Chem Co Ltd Resin composition for coating optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153609A (en) * 1984-12-26 1986-07-12 Toyobo Co Ltd Flexible tensile wire for optical fiber cord and small-capacity optical fiber cable
JPS62215663A (en) * 1986-03-17 1987-09-22 Sumitomo Chem Co Ltd Resin composition for coating optical fiber

Similar Documents

Publication Publication Date Title
SU1713423A3 (en) Method of manufacturing electrode wire from copper of its alloy with zinc
US3392216A (en) Method for producing carbon structures from molten baked substances
JPH0562058B2 (en)
JPH0826487B2 (en) High strength polymer fiber
Zhao et al. Radiation effects of UHMW-PE fibre on gel fraction and mechanical properties
US4167620A (en) Method for heat treating shaped articles of amide-imide or amic acid polymers
JPH01114812A (en) Optical fiber cable
KR950013728B1 (en) Molecularly oriented, silane-cross linked ultra-high-molecular-weight polyethylene molded articla and process for preparation thereof
Schaefgen et al. Multilinked Polyamides1a
JPS6216813B2 (en)
US3647571A (en) Process for manufacturing alloy steel wires having low relaxation characteristics
Lam et al. The Tg of amorphous linear polyethylene: a torsion braid analysis
US3931392A (en) Enhancement of ultimate tensile strength of carbon fibers
SU614752A3 (en) Method of manufacturing contact concavo-convex lens
EP2218807B1 (en) Heat treatment for increasing compressive strentgh of PPTA filaments
JPS6192827A (en) Polyoxymethylene oriented molded shape
EP0761825A2 (en) High strength steel strand for prestressed concrete and method for manufacturing the same
US4250226A (en) Method for producing an adhesive-coated high-strength steel reinforcing member
US4029832A (en) Method for producing an adhesive-coated high-strength steel reinforcing member
US3718630A (en) Stabilization of polyoxymethylene
US5064581A (en) Method of making elastic carbon fibers
Dole et al. Aging of elastomers in nuclear power plants. Effect of temperature and irradiation
JPS63199308A (en) Wire material for reinforcing optical fiber
US4079122A (en) Preparation of carbon fibres
KR970015809A (en) Method for producing pitch-based activated carbon fiber