JPS5938702A - Pipe covered optical fiber - Google Patents
Pipe covered optical fiberInfo
- Publication number
- JPS5938702A JPS5938702A JP57148970A JP14897082A JPS5938702A JP S5938702 A JPS5938702 A JP S5938702A JP 57148970 A JP57148970 A JP 57148970A JP 14897082 A JP14897082 A JP 14897082A JP S5938702 A JPS5938702 A JP S5938702A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- optical fiber
- layer
- inner layer
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims abstract description 11
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 10
- 239000000057 synthetic resin Substances 0.000 claims abstract description 10
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 7
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 7
- 239000011345 viscous material Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000001125 extrusion Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 75
- 229920005989 resin Polymers 0.000 abstract description 16
- 239000011347 resin Substances 0.000 abstract description 16
- 239000011247 coating layer Substances 0.000 abstract description 8
- 229920005992 thermoplastic resin Polymers 0.000 abstract description 3
- 239000004677 Nylon Substances 0.000 abstract description 2
- 229930182556 Polyacetal Natural products 0.000 abstract description 2
- 239000004721 Polyphenylene oxide Substances 0.000 abstract description 2
- 239000003795 chemical substances by application Substances 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract description 2
- 229920001778 nylon Polymers 0.000 abstract description 2
- 239000012188 paraffin wax Substances 0.000 abstract description 2
- 239000003208 petroleum Substances 0.000 abstract description 2
- 229920000058 polyacrylate Polymers 0.000 abstract description 2
- 229920000515 polycarbonate Polymers 0.000 abstract description 2
- 229920000570 polyether Polymers 0.000 abstract description 2
- 229920006324 polyoxymethylene Polymers 0.000 abstract description 2
- 239000010453 quartz Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 abstract 1
- 239000004417 polycarbonate Substances 0.000 abstract 1
- 229920001296 polysiloxane Polymers 0.000 abstract 1
- -1 polytetrafluoroethylene Polymers 0.000 abstract 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 abstract 1
- 239000004810 polytetrafluoroethylene Substances 0.000 abstract 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 210000002445 nipple Anatomy 0.000 description 4
- 230000008602 contraction Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- WQNTXSXCXGWOBT-UHFFFAOYSA-N C=C.C=C.F.F.F.F Chemical group C=C.C=C.F.F.F.F WQNTXSXCXGWOBT-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4479—Manufacturing methods of optical cables
- G02B6/4486—Protective covering
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4402—Optical cables with one single optical waveguide
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はパイプ被覆光ファイバの改良に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in pipe coated optical fibers.
光フアイバ心線の1種であるパイプ被覆光ファイバは、
プライマリコート(1次被覆層)、バッファコート(緩
衝層)が形成された光ファイバが合成樹脂製のパイプ内
に収納されており、該光フアイバ外周とパイプ内周との
間に液状とかシェリー状の粘性材が介在されている。Pipe coated optical fiber, which is a type of optical fiber, is
An optical fiber on which a primary coat (primary coating layer) and a buffer coat (buffer layer) have been formed is housed in a synthetic resin pipe, and a liquid or sherry-like substance is formed between the outer circumference of the optical fiber and the inner circumference of the pipe. A viscous material is interposed.
このパイプ被覆型光ファイバは、パイプよりも光ファイ
バの方が長く、かつ、光ファイバが融通性をもって、し
かもマイクロペンドのない大きな曲がり状態で収納され
ているため、耐引張特性、耐側圧特性、緩衝性など、光
ファイバの防護効果を高めたり、低損失の伝送特性を得
べき諸物件がそなわっている。This pipe coated optical fiber has longer optical fiber than the pipe, and the optical fiber is flexible and is housed in a large bend without micropends, so it has excellent tensile resistance and lateral pressure resistance. There are various properties that should improve the protection effect of optical fibers, such as buffering properties, and obtain low-loss transmission characteristics.
パイプ被覆光ファイバにおける重要事項の1つに余長率
があり、これはパイプの長さくtp)と光ファイバの長
さくtf)との相対関係により(lf’−tp ) /
tp X 100 (%itで定まり、通常、この余
長率は0〜03%の範囲内で設定されている。One of the important matters regarding pipe-coated optical fibers is the remaining length ratio, which is determined by the relative relationship between the pipe length tp) and the optical fiber length tf), which is (lf'-tp)/
t p
これとともに重要なことはパイプの外径とその肉厚であ
り、パイプはその外径および肉厚が可能なかぎり小さく
設定されている。What is also important is the outer diameter and wall thickness of the pipe, and the outer diameter and wall thickness of the pipe are set as small as possible.
つ1す、許容伸びを大きくする観点からは光フアイバ外
周とパイプ内周との間隙が大きいほどよく、一方、ケー
ブル化(心線の撚合集合)する際の占積率の観点からは
パイプ外径が小さいほどよく、したがってパイプ被覆型
光ファイバでは、これらの点を満足させるべくパイプの
外径および肉厚が小さく設定されている。First, from the perspective of increasing the allowable elongation, the larger the gap between the outer periphery of the optical fiber and the inner periphery of the pipe, the better; The smaller the outer diameter, the better. Therefore, in pipe-covered optical fibers, the outer diameter and wall thickness of the pipe are set small to satisfy these points.
ところで、上記パイプを構成するための樹脂としては、
各種のものが採用されているが、パイプ成形性、破断時
の伸びが80%以上の高ヤング率、低コストなどを満足
させる樹脂は少なく、さらにパイプ内に充填される油性
の粘性材、光フアイバ接続時の皮剥ぎに用いられる薬品
などとの関連から耐油性、耐薬品性をも条件に加えた場
合、こうした諸特性をすべて備えた樹脂はないのであり
、したがって従来のパイプ被覆型光ファイバでは、上記
にかかげた諸特性の少なくとも1つ以上が欠如しており
、これが問題となっている。By the way, the resin for constructing the above pipe is as follows:
Various resins have been adopted, but there are few resins that satisfy pipe formability, high Young's modulus with elongation at break of 80% or more, and low cost. When considering oil resistance and chemical resistance in relation to chemicals used for stripping fibers when connecting them, there is no resin that has all of these properties, and therefore conventional pipe-coated optical fibers cannot be used. However, at least one or more of the above-mentioned characteristics are lacking, which poses a problem.
本発明はパイプ被覆型光ファイバにおける上記の問題点
に鑑み、そのパイプを異質の材料による2層構成とする
ことにより各種の特性が得られるようにしたもので、以
下その構成を図示の実施例により説明する。In view of the above-mentioned problems with pipe-coated optical fibers, the present invention provides a pipe with a two-layer structure made of different materials so that various characteristics can be obtained. This is explained by:
第1図において、(11はその外周に1次被覆層(2)
と緩衝層(3)とが形成されている石英系の光ファイバ
であり、これら両層(2+ +3)は1例としてシリコ
ーン系の樹脂からなるとともに緩衝層(3)は1次被覆
層(2)よりも硬くなっている。In Figure 1, (11 has a primary coating layer (2) on its outer periphery.
This is a quartz-based optical fiber in which a buffer layer (3) and a buffer layer (3) are formed, and both of these layers (2+ +3) are made of silicone resin, for example, and the buffer layer (3) is made of a primary coating layer (2+). ) is harder.
この場合、緩衝層(3)が1次被覆層(2)をも兼ねる
ものであると、同層(2)は省略される。In this case, if the buffer layer (3) also serves as the primary coating layer (2), the layer (2) is omitted.
(4)は上記被覆状態の光ファイバ(1)を収納しでい
るパイプであり、内lit (5)および外層(6)か
らなる当該パイプ(4)は後述する各種材料により構成
されている。(4) is a pipe that houses the coated optical fiber (1), and the pipe (4), which consists of an inner lit (5) and an outer layer (6), is made of various materials described below.
(7)は光ファイバ(1)外周とパイプ(4)内周との
間に介在された粘性材であり、この粘性材(7)は石油
系シュリー、シリコーンオイル、パラフィンなどの液状
物からなる。(7) is a viscous material interposed between the outer periphery of the optical fiber (1) and the inner periphery of the pipe (4), and this viscous material (7) is made of a liquid material such as petroleum-based shuri, silicone oil, paraffin, etc. .
つぎにパイプ(4)の内層(5)および外層(6)を構
成している材料につき説明すると、これら内層(5)お
よび外層(6)はいずれも熱可塑性合成樹脂製であるが
、その栃質は互いに異質であり、さらに両層(51+6
1は互いに密接しているが、化学的には接着しでいない
。Next, to explain the materials constituting the inner layer (5) and outer layer (6) of the pipe (4), both the inner layer (5) and the outer layer (6) are made of thermoplastic synthetic resin. The quality is different from each other, and furthermore, both layers (51 + 6
1 are in close contact with each other, but are not chemically bonded.
内層(5)を構成する熱可塑性合成樹脂を具体的に例示
すると、ポリカーボネート、メタクリル樹脂などがあり
、当該内層(5)はこれらから選択された任意の樹脂よ
りなる。Specific examples of the thermoplastic synthetic resin constituting the inner layer (5) include polycarbonate and methacrylic resin, and the inner layer (5) is made of any resin selected from these.
上記内層(5)を構成している樹脂の長所は、高ヤング
率であって引張りなどに対する機械的特性が優れている
こと、成形性がよいこと、111i1油性を有している
こと、低コストであること等々であり、一方、短所とし
ては光フアイバ接続時の皮剥ぎ処理に用いられるアセト
ン、トルエン等の薬品に対し、白濁、失透、亀裂、膨潤
などの劣化を来すこと、すなわち耐薬品性のないことが
あげられる。The advantages of the resin constituting the inner layer (5) are that it has a high Young's modulus and excellent mechanical properties against tension, good moldability, 111i1 oiliness, and low cost. On the other hand, the disadvantage is that it can cause deterioration such as clouding, devitrification, cracking, and swelling against chemicals such as acetone and toluene used for stripping when connecting optical fibers; It has no chemical properties.
外層(6)を構成する熱可塑性合成樹脂の具体例として
は、弗素系樹脂(エチレン4弗化エチレンノいに合体=
ET F F )、ポリアセタール、塩素化ポリエー
テル、ポリアクリレート、ナイロン(ナイロン12)な
どがあり、当該外層(6)はこれらから選択された任意
の樹脂からなる。A specific example of the thermoplastic synthetic resin constituting the outer layer (6) is a fluorine-based resin (ethylene tetrafluoride ethylene polymer).
ET F F ), polyacetal, chlorinated polyether, polyacrylate, nylon (nylon 12), etc., and the outer layer (6) is made of any resin selected from these.
外層(6)用とした樹脂は前記内II (51用の樹脂
と比べ、機械的特性が低いとか、成形性が悪いとか、耐
油性がないとか、コストが高いなどの難点を有している
が、前述したアセトン、トルエンなどに対する耐薬品性
の高いことが特長となっている。The resin used for the outer layer (6) has disadvantages such as lower mechanical properties, poor moldability, lack of oil resistance, and high cost compared to the resin for the inner layer (51). However, it is characterized by high chemical resistance against acetone, toluene, etc. mentioned above.
さらに上記両+m +5+ +6+の相対関係では内層
(5)の熱膨張係数が小さいのに対し、外層(6)の熱
膨張係数はかなり大きく、したかって後述する押出成形
手段によりこれら内層(5)および外層(6)を形成し
たとき、外層(6)は大きな収縮率で収縮することにな
り、この際の収縮力が内層(5)の径方向だけでなくそ
の長手方向にも作用するので内層(5)は自身の収縮率
を上回る状態で長手方向に収縮する〇
上記内層(5)および外層(6)からなるパイプ(4)
の肉厚は400μm程度であり、この9ち外層(6)は
数十μmから数百μm程度の厚さに設定されるO
ただし、外層(6)は内層(5)よりも薄く形成されて
いるのがよい。Furthermore, in the relative relationship between both +m +5+ +6+, the coefficient of thermal expansion of the inner layer (5) is small, whereas the coefficient of thermal expansion of the outer layer (6) is quite large. When the outer layer (6) is formed, the outer layer (6) will shrink at a large shrinkage rate, and the shrinkage force at this time acts not only in the radial direction of the inner layer (5) but also in its longitudinal direction, so that the inner layer ( 5) shrinks in the longitudinal direction in a state that exceeds its own shrinkage rate〇 Pipe (4) consisting of the above inner layer (5) and outer layer (6)
The thickness of the outer layer (6) is about 400 μm, and the thickness of the outer layer (6) is set to be from several tens of μm to several hundred μm. However, the outer layer (6) is formed thinner than the inner layer (5). It's good to be there.
つぎに本発明に係るパイプ被覆型光ファイバの製造例を
第2図面の簡単な説明する。Next, a manufacturing example of the pipe-coated optical fiber according to the present invention will be briefly explained with reference to the second drawing.
第2図において、供給ボビン(8)からは1次被覆層(
2)および緩衝層(3)ヲ有する光ファイバ(1)が巻
きもどされ、該光ファイバ[11は押出機(9)のクロ
スヘッドOQ内に内装されている中空ニップルODの内
部へ進入する。In Figure 2, the primary coating layer (
2) and the buffer layer (3) is unwound and the optical fiber [11] enters the interior of a hollow nipple OD housed in the crosshead OQ of the extruder (9).
光フアイバ進入用の入口にシール手段が構しられている
上記中空ニップル(11)には、粘性材(7)の供給装
置0zが連結されており、当該ニップルミD内番こはそ
の供給装置(I3を介して粘性材(7)が供給される。A supply device 0z for the viscous material (7) is connected to the hollow nipple (11), which is provided with a sealing means at the entrance for entering the optical fiber, and the number inside the nipple D is the supply device ( A viscous material (7) is supplied via I3.
一方、押出機(9)のクロスヘッド00)内にある樹脂
通流路には内層(5)を構成する熱可塑性樹脂が供給さ
れ、該樹脂はクロスヘッド00)内においてニップル先
端外周とダイス内周との間を通り、内層(5)としてパ
イプ状に押し出される。On the other hand, the thermoplastic resin constituting the inner layer (5) is supplied to the resin flow path in the crosshead 00) of the extruder (9), and the resin is distributed between the outer periphery of the nipple tip and the inside of the die in the crosshead 00). The inner layer (5) is extruded into a pipe shape.
したがって光ファイバ(11が押出機(9)を通過した
とき、その外周にはバイブ状の内層(5)が形成され、
該内層(5)の内周と光ファイバ(1)外周との間には
粘性相(7)が介在される。Therefore, when the optical fiber (11) passes through the extruder (9), a vibrator-shaped inner layer (5) is formed on its outer periphery.
A viscous phase (7) is interposed between the inner circumference of the inner layer (5) and the outer circumference of the optical fiber (1).
押出機(9)を通過した後、外周に内層(5)を備えた
光ファイバ(1)は冷却槽(131に通り、ここで内層
(5)が所定温度に冷却され、その後、内層(5)付の
光ファイバtl+はキャプスタンu41を経由してっぎ
の押出機u51へと進入する。After passing through the extruder (9), the optical fiber (1) with the inner layer (5) on the outer periphery passes through the cooling tank (131), where the inner layer (5) is cooled to a predetermined temperature, and then the inner layer (5) The optical fiber tl+ with ) enters the extruder U51 via the capstan U41.
上記内層(5)付の光ファイバ+1+が次段の押出機(
151へ進入し、そのクロスヘッドa句ヲ通過するとき
、当該押出機α5には外層(6)を構成する熱可塑性樹
脂が供給されるのであり、したがってこの押出機(Iω
を通過する内層aω付の光ファイノ<(1)には、その
内層(5)の外周に外層(6)が形成される0つまり、
2回目の押出被覆手段によりパイプ(4)の残部が形成
され、これにより所定の/<イブ被覆光ファイバが得ら
れる0
以下、パイプ(41(”lの光ファイ−< +11は冷
却槽Oηを通り、ここでその外層(6)が所定温度に冷
却された後、キャプスタンα8)を経由して巻取機−に
巻きとられる。The optical fiber +1+ with the inner layer (5) is transferred to the next extruder (
151 and passes through its crosshead a, the extruder α5 is supplied with the thermoplastic resin constituting the outer layer (6), and therefore this extruder (Iω
In the optical fiber with an inner layer aω passing through (1), an outer layer (6) is formed around the outer periphery of the inner layer (5) 0, that is,
The remainder of the pipe (4) is formed by the second extrusion coating means, thereby obtaining a predetermined /< Eve coated optical fiber. After the outer layer (6) is cooled to a predetermined temperature, it is wound onto a winder via a capstan α8).
なお、外層(6)を構成している樹脂は収縮率が大きく
、したがってこれを冷却槽q7〕内で冷却したとき、外
層(6)は径方向、長手方向へかなり収縮するが、この
際の外層(6)は内層(5)と密接しながらその長手方
向の収縮力を同層(5)に加えるので、当該内層(5)
は外層(6)ヲ介して強制的(こ収縮させられる。Note that the resin constituting the outer layer (6) has a high shrinkage rate, so when it is cooled in the cooling tank q7, the outer layer (6) shrinks considerably in the radial and longitudinal directions. The outer layer (6) is in close contact with the inner layer (5) and applies its longitudinal contraction force to the same layer (5), so that the inner layer (5)
is forcibly contracted through the outer layer (6).
線膨張係数が小さく、殆ど伸縮しない光ファイバ(1)
に対し、上記内層(5)および外層(6)からなるパイ
プ(4)が収縮するということは、結果的に光ファイバ
(1)に余長をもたらせたことになり、また、収縮率の
大きい外層(6)と収縮率の小さい内層(5)との肉厚
比を適宜に設定することにより余長率がコントロールで
きる。Optical fiber with a small coefficient of linear expansion and almost no expansion or contraction (1)
On the other hand, the contraction of the pipe (4) consisting of the inner layer (5) and the outer layer (6) results in an extra length of the optical fiber (1), and the shrinkage rate The surplus length ratio can be controlled by appropriately setting the wall thickness ratio of the outer layer (6) with a large shrinkage rate and the inner layer (5) with a small shrinkage rate.
以上説明した通り、本発明は外周に緩衝層を有する光フ
ァイバが合成樹脂製のパイプ内に収納されており、該光
フアイバ外周とパイプ内周との間に粘性材が介在されて
いるパイプ被覆型光ファイバにおいて、上記パイプは内
層と外層とからなり、内層は耐油性、機械的特性が優性
であって耐薬品性が劣性の材料により構成されており、
外層は耐薬品性が優性の411こより構成されているこ
とを特徴としている。As explained above, the present invention provides a pipe covering in which an optical fiber having a buffer layer on the outer periphery is housed in a synthetic resin pipe, and a viscous material is interposed between the outer periphery of the optical fiber and the inner periphery of the pipe. In the type optical fiber, the pipe is composed of an inner layer and an outer layer, and the inner layer is made of a material that is superior in oil resistance and mechanical properties and inferior in chemical resistance,
The outer layer is characterized by being composed of 411 carbon fibers which have superior chemical resistance.
したがって本発明の場合、パイプを単−材料で構成する
ものとは異なり、各材料を適材適所使いわけて内層およ
び外層を構成しているから、耐油性、機械的特性、耐薬
品性など、必要な緒特性がすべて確保できることとなり
、しかも高価な材料のみで構成するのでなく、内層など
は安価な材料でよいから、コストアップ要因も緩和され
る。Therefore, in the case of the present invention, unlike pipes made of a single material, each material is used in the right place to form the inner and outer layers. All the same characteristics can be ensured, and since the inner layer can be made of inexpensive materials instead of only being made of expensive materials, the cost increase factor can be alleviated.
第1図は本発明に係るパイプ被覆型光ファイバの1実施
例を示した断面図、第2図はそのパイプ被覆型光ファイ
バの製造例を略示した説明図である。
(1)・・・・・光ファイバ
(2)・・・・・1次被覆層
(3)・・・・・緩衝層
(4)・・・・・パイプ
(5)・・・・・内層
(6)・・・・・外層
(力・・・・・粘性材
特許出願人
代理人 弁理士 井 藤 誠FIG. 1 is a sectional view showing one embodiment of a pipe-covered optical fiber according to the present invention, and FIG. 2 is an explanatory diagram schematically showing an example of manufacturing the pipe-covered optical fiber. (1)...Optical fiber (2)...Primary coating layer (3)...Buffer layer (4)...Pipe (5)...Inner layer (6)... Outer layer (force... Viscous material patent applicant agent Patent attorney Makoto Ito
Claims (1)
パイプ内に収納されており、該光フアイバ外周とパイプ
内周との間に粘性材が介在されているパイプ被覆型光フ
ァイバにおいて、上記パイプは内層と外層とからなり、
内層は耐油性、機械的特性が優性であって耐薬品性が劣
性の材料により構成されており、外層は耐薬品性が優性
の材料により構成されているパイプ被覆型光ファイバ。 (2) パイプの内層および外層は熱可塑性合成樹脂
の押出成蛾物よりなる特許請求の範囲第1項記載のパイ
プ被覆型光ファイバ。 (3) パイプの内層を構成している熱可塑性合成樹
脂の押出成形収縮率はパイプの外層を構成している熱可
塑性合成樹脂のそれよりも小さい特許請求の範囲第2項
記載のパイプ被覆型光ファイバ。 (4) パイプの内層および外層は化学的に接着して
いない特許請求の範囲第1項ないし第3項いずれかに記
載のパイプ被覆型光ファイ・バ。[Claims] (11) A pipe coating in which an optical fiber having a buffer layer on its outer periphery is housed in a synthetic resin pipe, and a viscous material is interposed between the outer periphery of the optical fiber and the inner periphery of the pipe. type optical fiber, the pipe consists of an inner layer and an outer layer,
A pipe-coated optical fiber in which the inner layer is made of a material that has superior oil resistance and mechanical properties, but recessive chemical resistance, and the outer layer is made of a material that has dominant chemical resistance. (2) The pipe-covered optical fiber according to claim 1, wherein the inner and outer layers of the pipe are made of extruded thermoplastic synthetic resin. (3) The pipe covering type according to claim 2, wherein the extrusion shrinkage rate of the thermoplastic synthetic resin constituting the inner layer of the pipe is smaller than that of the thermoplastic synthetic resin constituting the outer layer of the pipe. optical fiber. (4) The pipe-covered optical fiber according to any one of claims 1 to 3, wherein the inner layer and outer layer of the pipe are not chemically bonded.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57148970A JPS5938702A (en) | 1982-08-27 | 1982-08-27 | Pipe covered optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57148970A JPS5938702A (en) | 1982-08-27 | 1982-08-27 | Pipe covered optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5938702A true JPS5938702A (en) | 1984-03-02 |
Family
ID=15464738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57148970A Pending JPS5938702A (en) | 1982-08-27 | 1982-08-27 | Pipe covered optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5938702A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04226408A (en) * | 1990-04-27 | 1992-08-17 | American Teleph & Telegr Co <Att> | Optical fiber cable |
WO2010086355A1 (en) * | 2009-01-30 | 2010-08-05 | Areva T&D Sas | Optical fibre protection for electrical insulators |
US9625667B2 (en) * | 2014-11-20 | 2017-04-18 | Sterlite Technologies Limited | Multitube seismic cable |
GB2555499A (en) * | 2016-10-26 | 2018-05-02 | Sterlite Tech Ltd | Air blown optical fiber cable |
-
1982
- 1982-08-27 JP JP57148970A patent/JPS5938702A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04226408A (en) * | 1990-04-27 | 1992-08-17 | American Teleph & Telegr Co <Att> | Optical fiber cable |
WO2010086355A1 (en) * | 2009-01-30 | 2010-08-05 | Areva T&D Sas | Optical fibre protection for electrical insulators |
FR2941813A1 (en) * | 2009-01-30 | 2010-08-06 | Areva T & D Sa | OPTICAL FIBER PROTECTION FOR ELECTRIC ISOLATORS |
US9625667B2 (en) * | 2014-11-20 | 2017-04-18 | Sterlite Technologies Limited | Multitube seismic cable |
GB2555499A (en) * | 2016-10-26 | 2018-05-02 | Sterlite Tech Ltd | Air blown optical fiber cable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103777291B (en) | Optical fiber cable | |
US5675686A (en) | Buffer material for optical signal transmission media | |
US4037922A (en) | Optical waveguide cable | |
JP3029855B2 (en) | Optical fiber communication medium and method of manufacturing the same | |
EP1420279B1 (en) | Optimized fiber optic cable with a textured outer surface suitable for microduct blown installation | |
AU2015275016B2 (en) | Fiber optic cable structured to facilitate accessing an end thereof | |
US6654527B2 (en) | Optical fiber cable | |
US6101305A (en) | Fiber optic cable | |
US5201020A (en) | Reinforced protective tube for optical waveguide fibers | |
KR940006651B1 (en) | Reinforcing member made of resin with high orientation property and manufactruing method thereof | |
US9547147B2 (en) | Fiber optic cable with extruded tape | |
US8842956B2 (en) | Non-kink, non-hockling optical cable | |
GB2262996A (en) | Optical waveguide cable having reinforced covering formed by coextrusion | |
GB2402231A (en) | Fibre optic cables for harsh environments | |
AU2016100973A4 (en) | Fibre optic cable with thin composite film | |
WO2004109355A1 (en) | Dry tube fiber optic assemblies, cables, and manufacturing methods therefor | |
US20160313529A1 (en) | Filler tubes for optical communication cable construction | |
JP2000310729A (en) | Optical fiber cable with outlining optical fiber group | |
US6768853B2 (en) | Buffered optical fibers and methods of making same | |
US20230213716A1 (en) | Ribbed and grooved sheath for optical fiber cable | |
JPS5938702A (en) | Pipe covered optical fiber | |
US7200306B2 (en) | Optical fiber cable with a central reinforcing element mechanically coupled directly to the optical fibers | |
KR20160039885A (en) | Ribbon-Tube Type Optical Cable | |
JP2000193856A (en) | Cable covering and optical fiber cable using it | |
JPH11337781A (en) | Coated plastic optical fiber and its manufacture |