JPS6045210A - Optical fiber core wire - Google Patents

Optical fiber core wire

Info

Publication number
JPS6045210A
JPS6045210A JP58153424A JP15342483A JPS6045210A JP S6045210 A JPS6045210 A JP S6045210A JP 58153424 A JP58153424 A JP 58153424A JP 15342483 A JP15342483 A JP 15342483A JP S6045210 A JPS6045210 A JP S6045210A
Authority
JP
Japan
Prior art keywords
modulus
secondary coating
young
optical fiber
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58153424A
Other languages
Japanese (ja)
Inventor
Hiroaki Kuranashi
椋梨 浩明
Hiroshi Shinba
榛葉 弘
Yukinori Ishida
石田 之則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58153424A priority Critical patent/JPS6045210A/en
Publication of JPS6045210A publication Critical patent/JPS6045210A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4402Optical cables with one single optical waveguide

Abstract

PURPOSE:To soften clamping by contraction of the time of a low temperature, and to obtain a good optical fiber core wire by enlarging gradually toward the outside a Young's modulus of at least a secondary coating layer, in a buffer layer and the secondary coating layer. CONSTITUTION:A primary coating layer 2, a buffer layer 4-1, and secondary coating layers 3-1, 3-2 are provided on a glass fiber 1. Also, a material whose Young's modulus is high is placed on the outermost layer 3-2 of the secondary coating, a material whose Young's modulus is comparatively low is placed on its inside, and a double layer structure of the secondary coating is formed. The optical fiber is a multi-graded type fiber by a CVD method and has 50mum core diameter, 125mum outside diameter and 1.0% specific refractive index difference, and immediately after spinning, a silicone resin of 1.52 refractive index and 0.2kg/mm.<2> Young's modulus is applied and hardened to thickness of about 50mum.

Description

【発明の詳細な説明】 本発明は光伝送用ガラスファイバの被覆構造に関する。[Detailed description of the invention] The present invention relates to a coating structure for a glass fiber for optical transmission.

光ファイバの被覆に関して種々の方法が提案されている
が、これまでに実用化されているもの、あるいは実用化
の可能性が大きいものの多くは、基本的には特開昭51
−100734で提案されている方法に代表される。す
なわち、光ファイバの溶融紡糸直後に、かつ光ファイバ
が他の固形物に接触する前に、樹脂組成物の被膜を形成
せしめ、さらにその上に熱可塑性樹脂組成物を溶融押出
被覆する方法である。これは、光ファイバの溶融紡糸直
後に樹脂組成物の被膜(以下、−次被覆と称する)を形
成せしめることにより、ガラスの処女強度を保持し、そ
の上に熱可塑性樹脂を押出被覆(以下二次被覆と称する
)することにより、更に機械強度の増加を計るとともに
、その後に受ける機械的応力あるいは空気中の水分、紫
外線等から光ファイバを保護することを目的としたもの
である。
Various methods have been proposed for coating optical fibers, but most of the methods that have been put into practical use or have a high possibility of being put into practical use are basically those described in Japanese Patent Application Laid-Open No. 51
-100734 is a typical example. That is, it is a method in which a film of a resin composition is formed immediately after melt-spinning an optical fiber and before the optical fiber comes into contact with other solid materials, and then a thermoplastic resin composition is melt-extruded to coat the film. . This maintains the virgin strength of the glass by forming a coating of a resin composition (hereinafter referred to as secondary coating) immediately after melt-spinning the optical fiber, and extrusion coating (hereinafter referred to as secondary coating) a thermoplastic resin on top of the virgin strength of the glass. The purpose of this coating is to further increase mechanical strength and protect the optical fiber from subsequent mechanical stress, moisture in the air, ultraviolet rays, etc.

又、マイクロベンディング現象による伝送特性の変化を
防止するため、−次被覆と二次被覆層の間に外部応力を
吸収しえるヤング率の小さい物質による緩衝層を介在さ
せるものがある。しかしながら、この構造のものは、二
次被覆層に使用する4A料のヤング率の選択により一長
一短が出てくる。
In addition, in order to prevent changes in transmission characteristics due to microbending phenomena, there is a method in which a buffer layer made of a material with a small Young's modulus capable of absorbing external stress is interposed between the secondary coating layer and the secondary coating layer. However, this structure has advantages and disadvantages depending on the selection of the Young's modulus of the 4A material used in the secondary coating layer.

即ち、二次被覆に高ヤング率の材料を選択した場合に、
側圧によるマイクロベンドの防止には非常に効果がある
が逆に低温時に熱膨張係数による収縮により太きなしめ
つけ力が働きともすれば緩衝層の緩和能力をこえる力が
発生し、マイクロベンドによる伝送損失増が発生する。
That is, when a material with a high Young's modulus is selected for the secondary coating,
Although it is very effective in preventing microbends due to lateral pressure, on the other hand, if a large constriction force is applied due to contraction due to the coefficient of thermal expansion at low temperatures, a force exceeding the buffer layer's relaxation ability will be generated, and the transmission due to microbends. Increased losses will occur.

一方、二次被覆に低ヤング率の材料を選択した場合は低
温時のしめつけによるマイクロベンドを発生し伝送損失
が増加する現象はなくなるが、逆に側圧等の外部応力に
よりマイクロベンドがおこり損失増加をきたすことにな
る。
On the other hand, if a material with a low Young's modulus is selected for the secondary coating, the phenomenon that micro-bends occur due to compaction at low temperatures and increase transmission loss will disappear, but on the other hand, micro-bends will occur due to external stress such as lateral pressure, increasing loss. This will cause

二次被覆層は本来内部のガラスや一次被覆層、緩衝層を
保護する役割を持っており高ヤング率の材料が必要であ
る。即ち高ヤング率の材料は前述のように外圧による心
線内部への影響を防ぎ、機械的強度や摩耗強度も強く、
ケーブル化等の各工程での影響やケーブル布設後の外圧
から内部のファイバを保護することは出来るが、逆に低
温時には二次被覆材料自身の収縮eてより大きなしめっ
けカを発生し、伝送損失を悪化させる欠点を持っている
。この欠点を改良すべく種々の検討を進めた。
The secondary coating layer originally has the role of protecting the internal glass, primary coating layer, and buffer layer, and requires a material with a high Young's modulus. In other words, as mentioned above, materials with a high Young's modulus prevent the influence of external pressure on the inside of the core wire, and have strong mechanical strength and abrasion resistance.
Although it is possible to protect the internal fiber from the effects of various processes such as cable production and external pressure after cable installation, conversely, at low temperatures, the secondary coating material itself shrinks and generates a larger sealing force, which reduces transmission. It has drawbacks that worsen losses. Various studies were carried out to improve this drawback.

■緩衝層の応力吸収能力を更に大きくする。具体的には
、よりヤング率の小さい材料を用いる。あるいは緩衝層
をより厚くすること。■二次被覆層のしめつけ力を減少
させるという2つの方法が老えられる。
■Further increase the stress absorption capacity of the buffer layer. Specifically, a material with a smaller Young's modulus is used. Or make the buffer layer thicker. ■ Two methods of reducing the tightening force of the secondary coating layer are effective.

ここで緩衝層のヤング率をむやみに小さくすると押出工
程において機械的接触により緩衝層が剥離したり、又、
緩衝層は多く熱硬化性樹脂の塗布焼付方法によっている
ため、更に緩衝層を厚くすることは、製造線速の低下や
、大きな製造設(1iiiを必要とし、実用的ではない
If the Young's modulus of the buffer layer is unnecessarily reduced, the buffer layer may peel off due to mechanical contact during the extrusion process, or
Since many buffer layers are made by coating and baking thermosetting resins, making the buffer layer even thicker reduces the manufacturing line speed and requires large manufacturing equipment (1iii), which is not practical.

また、二次被覆層のヤング率(縦弾性係数)が2000
 K9/1yn2−8000 Ky/cm2の範囲にあ
るポリアミドを使用することにより、低温特性の良好な
光フアイバ心線が提供出来ることが提案されている。
In addition, the Young's modulus (longitudinal elastic modulus) of the secondary coating layer is 2000
It has been proposed that by using a polyamide in the range of K9/1yn2-8000 Ky/cm2, an optical fiber core with good low temperature properties can be provided.

しかし、この場合は比較的ヤング率が低いため低温特性
は良好であるが、外部からの不均一な外)Bs、−特に
通常ケーブルが使用される比較的温度が高い範囲(4・
0〜80°C)での外圧(ケーブル製造工程や布設後の
環境)に対しては、伝送損失の増加を防止する観点から
不十分であった。本発明はこれらの点に鑑みなされたも
のであり、その要旨は、ガラスファイバに一次被覆を設
けた光フアイバ素線の上に緩衝層を、その外側1・ζ二
次被覆層を施した光フアイバ心線において、緩衝層およ
び二次被覆層のうち少くとも二次被覆層のヤング率が外
側に向って段階的にまたは連続的に大きくなることを特
徴とする光フアイバ心線である。
However, in this case, the Young's modulus is relatively low, so the low-temperature characteristics are good;
It was insufficient to prevent an increase in transmission loss against external pressure (in the cable manufacturing process or the environment after installation) at a temperature of 0 to 80°C. The present invention has been made in view of these points, and its gist is to provide an optical fiber in which a buffer layer is provided on an optical fiber strand in which a glass fiber is provided with a primary coating, and a secondary coating layer is applied on the outer side of the buffer layer. The optical fiber core wire is characterized in that the Young's modulus of at least the secondary coating layer of the buffer layer and the secondary coating layer increases stepwise or continuously toward the outside.

以下、図面により詳細に説明する。A detailed explanation will be given below with reference to the drawings.

第1図、従来の光フアイバ心線の例であり、(a)は心
線の断面図、(b)は該断面のヤング率を表わし、第2
図、第3図は本発明の実施例を示す。ここでガラスファ
イバ(1)の上に一次被覆層(2)が設けられ緩衝層(
4)、(4−1)、(4−2)、二次被覆層(3)、(
3−1)、(3−2)が施こされている。
FIG. 1 shows an example of a conventional optical fiber core wire, where (a) is a cross-sectional view of the core wire, (b) is a Young's modulus of the cross section, and
FIG. 3 shows an embodiment of the present invention. Here, a primary coating layer (2) is provided on the glass fiber (1) and a buffer layer (
4), (4-1), (4-2), secondary coating layer (3), (
3-1) and (3-2) have been applied.

第2図は二次被覆の最外層にヤング率の高い拐料を配置
し、その内側に比較的ヤング率の低い材料を配置し二次
被覆の二層構造をとったものである。
FIG. 2 shows a two-layer structure of the secondary coating, in which a material having a high Young's modulus is placed in the outermost layer of the secondary coating, and a material having a relatively low Young's modulus is placed inside.

勿論二層に限らず二層以上の複数層にしても良い。Of course, the number of layers is not limited to two, but may be two or more layers.

又、第3図に示すように二次被覆層および緩衝層にヤン
グ率の勾配を持たせても良い。
Further, as shown in FIG. 3, the secondary coating layer and the buffer layer may have a gradient in Young's modulus.

、この構造をとることにより即ち最外層に高ヤング率材
料を配置することにより、そのすぐれた機械的強度や耐
摩耗性から外圧によるファイバへの影響やケーブル加工
時の影響を防ぎかつ内部に行くニ従ってヤング率の低い
材料を配置することにより、低温時の収縮によるしめつ
けを緩和し良好な光フアイバ心線を得ることが出来る。
By adopting this structure, that is, by arranging a high Young's modulus material in the outermost layer, its excellent mechanical strength and abrasion resistance prevent the influence of external pressure on the fiber and the influence during cable processing. (2) Therefore, by arranging a material with a low Young's modulus, tightness due to shrinkage at low temperatures can be alleviated, and a good optical fiber core can be obtained.

以下実施例、比較例により説明する。This will be explained below using Examples and Comparative Examples.

実施例に用いた光ファイバはCVD法によるマルチモー
ドグレーディッド型ファイバであす、コア径50μm、
外径125μm、比屈折率差It、、 0%のもので紡
糸直後に屈折率1,52、トング率Q、2Kg/[2の
シリコン樹脂を約50μmの厚さで塗布硬化せしめたも
のである。
The optical fiber used in the examples is a multi-mode graded fiber made by CVD, with a core diameter of 50 μm.
It has an outer diameter of 125 μm and a relative refractive index difference of 0%, and is made by applying and hardening silicone resin with a refractive index of 1.52 and a tongue modulus of Q of 2 Kg/[2 to a thickness of about 50 μm immediately after spinning. .

比較例1)上記素線にトング率約0.2 Kg/myr
t2のシリコン樹脂により緩衝層(外径400/、tm
)を形成し、その上にヤング率120 K17mm2の
ポリアミド樹脂(Nylon−12)を3oφ航の押出
機で押出被覆した外径900/jmの心線。
Comparative Example 1) The above wire had a tongue rate of about 0.2 Kg/myr.
Buffer layer made of silicone resin of t2 (outer diameter 400/, tm
) and coated with a polyamide resin (Nylon-12) having a Young's modulus of 120K17mm2 by extrusion using a 3oφ extruder, and having an outer diameter of 900/jm.

2)比較例υにおいてヤング率4・Q Kg/si2の
ポリアミド樹脂(Nylon−12)を使用した心線。
2) A core wire using a polyamide resin (Nylon-12) with a Young's modulus of 4·Q Kg/si2 in Comparative Example υ.

実施例1)上記素線にヤング率0.2Kg/m2のシリ
コン樹脂による緩衝層(外径400μm〕を形成しその
上第1の二次被覆層としてヤング率4oKy/B2のポ
リアミド(Nylon 12)を700μmの外径に被
覆し、さらにヤング率12QK5+/M2のポリアミド
(Nylon−12)を900μmの外径に被覆した心
線。
Example 1) A buffer layer (outer diameter 400 μm) of silicone resin with a Young's modulus of 0.2 Kg/m2 was formed on the above wire, and a first secondary coating layer was formed of polyamide (Nylon 12) with a Young's modulus of 4 oKy/B2. A core wire having an outer diameter of 700 μm coated with polyamide (Nylon-12) having a Young's modulus of 12QK5+/M2 and having an outer diameter of 900 μm.

2)上記素線にヤング率Q、 3 K97B2のシリコ
ン樹脂による緩衝層(外径400μm)を形成しその上
に第1の二次被覆層としてヤング率50i<g/B2 
+7)ポリエステルエラストマーヲ700μmの外径に
被覆し、さらにヤング率100 K5+/np2のポリ
アミド(Nylon−12)を900μmの外径に被覆
した心線。
2) A buffer layer (outer diameter 400 μm) of silicone resin with a Young's modulus Q of 3 K97B2 is formed on the above wire, and a first secondary coating layer is formed on the buffer layer with a Young's modulus 50i<g/B2
+7) A core wire coated with polyester elastomer to an outer diameter of 700 μm and further coated with polyamide (Nylon-12) having a Young's modulus of 100 K5+/np2 to an outer diameter of 900 μm.

前記各種心線的200mを一40°Cの低温に入れ伝送
損失の変化を調査した。また各種心線に80“Cの雰囲
気で側圧(10Kg/ 30 crn)を加えその伝送
損失変化を調査した。
200 m of each of the above-mentioned various core wires were placed in a low temperature of -40°C to investigate changes in transmission loss. In addition, lateral pressure (10 kg/30 crn) was applied to various core wires in an atmosphere of 80"C, and changes in transmission loss were investigated.

その結果を表−1に示す。The results are shown in Table-1.

※損失の測定はLED (波長−0,85μm)の光源
を使用した。
*An LED (wavelength -0.85 μm) light source was used to measure the loss.

表−1から明らかなように実施例1) 、 2)の構造
は比較例1) 、 2)に比較して、低温においても比
較的高温時の側圧に対しても優れた特性を有している。
As is clear from Table 1, the structures of Examples 1) and 2) have superior properties against lateral pressure both at low temperatures and at relatively high temperatures, compared to Comparative Examples 1) and 2). There is.

なお、本構造は単心心線について説明したが、多心の場
合も同じ構造をとることが出来る。
Although this structure has been described for a single-fiber wire, the same structure can be used for a multi-fiber wire.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)は従来の光フアイバ心線の断面図と
断面内のヤング率、第2図(a)Φへ第3図(a)(b
)は本発明による断面図とヤング率を示す。 ここで、l・・ガラスファイバ、2・・・−次被覆層、
3・・・二次被覆層、4・・・緩衝層である。 手 続 補 正 書 1 事件の表示 昭和58年特許願 第 1.53424・ 号2 発明
の名称 光フアイバ心線 3、補正をする者 事件との関係 特n’l−出願人 住所 大阪市東区北浜5丁目15番地 名称(213)住友電気工業株式会社 住所 大阪市此花区島屋1丁目1番3号住友電気工業林
9式会社内 6補正の対象 図 面 7、補正の内容 濃墨を用いて鮮明に描いた第1図〜・第3図を別紙の如
く補正します。
Figures 1 (a) and (b) are cross-sectional views of conventional optical fiber cores, Young's modulus within the cross section, Figures 2 (a) and Φ, and Figures 3 (a) and (b).
) shows the cross-sectional view and Young's modulus according to the present invention. Here, l...glass fiber, 2...-secondary coating layer,
3... Secondary coating layer, 4... Buffer layer. Procedures Amendment 1 Indication of the case 1982 Patent Application No. 1.53424 No. 2 Name of the invention Optical fiber core wire 3, person making the amendment Relationship to the case Special n'l - Applicant Address Kitahama, Higashi-ku, Osaka City 5-15 Name (213) Sumitomo Electric Industries Co., Ltd. Address 1-1-3 Shimaya, Konohana-ku, Osaka City Sumitomo Electric Industrial Forest Type 9 Company Internal drawing subject to 6 corrections Surface 7, contents of corrections Clear with dark ink Correct the figures 1 to 3 drawn in Figures 1 to 3 as shown in the attached sheet.

Claims (1)

【特許請求の範囲】[Claims] 光フアイバ素線の上に緩衝層を設け、その外側に二次被
覆層を施した光フアイバ心線において、緩衝層および二
次被覆層のうち、少なくとも二次被覆層のヤング率が外
側に向って段階的にまたは連続的に大きくなることを特
徴とする光フアイバ心線。
In an optical fiber core wire in which a buffer layer is provided on the optical fiber strand and a secondary coating layer is applied on the outside thereof, the Young's modulus of at least the secondary coating layer of the buffer layer and the secondary coating layer is such that the Young's modulus of the secondary coating layer is directed outward. An optical fiber core wire characterized by increasing its size stepwise or continuously.
JP58153424A 1983-08-22 1983-08-22 Optical fiber core wire Pending JPS6045210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58153424A JPS6045210A (en) 1983-08-22 1983-08-22 Optical fiber core wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58153424A JPS6045210A (en) 1983-08-22 1983-08-22 Optical fiber core wire

Publications (1)

Publication Number Publication Date
JPS6045210A true JPS6045210A (en) 1985-03-11

Family

ID=15562201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58153424A Pending JPS6045210A (en) 1983-08-22 1983-08-22 Optical fiber core wire

Country Status (1)

Country Link
JP (1) JPS6045210A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747636A (en) * 1985-10-26 1988-05-31 Mazda Motor Corporation Arrangement for forming vehicle bodies
CN111580230A (en) * 2020-03-02 2020-08-25 华中科技大学 Flexible optical fiber, preparation method and drivable laser scalpel based on optical fiber
EP3715924A4 (en) * 2018-05-22 2021-04-14 Fiberhome Telecommunication Technologies Co., Ltd Polarization maintaining optical fiber
CN113232386A (en) * 2015-11-05 2021-08-10 康宁股份有限公司 Laminated glass articles having defined modulus contrast and methods of forming the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525022A (en) * 1978-08-09 1980-02-22 Nippon Telegr & Teleph Corp <Ntt> Optical fiber core
JPS5643604A (en) * 1979-09-17 1981-04-22 Nippon Telegr & Teleph Corp <Ntt> Optical fiber
JPS5828802B2 (en) * 1977-09-22 1983-06-18 日本国有鉄道 Pantograph push-up force automatic adjustment method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828802B2 (en) * 1977-09-22 1983-06-18 日本国有鉄道 Pantograph push-up force automatic adjustment method and device
JPS5525022A (en) * 1978-08-09 1980-02-22 Nippon Telegr & Teleph Corp <Ntt> Optical fiber core
JPS5643604A (en) * 1979-09-17 1981-04-22 Nippon Telegr & Teleph Corp <Ntt> Optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747636A (en) * 1985-10-26 1988-05-31 Mazda Motor Corporation Arrangement for forming vehicle bodies
CN113232386A (en) * 2015-11-05 2021-08-10 康宁股份有限公司 Laminated glass articles having defined modulus contrast and methods of forming the same
CN113232386B (en) * 2015-11-05 2023-06-09 康宁股份有限公司 Laminated glass article with defined modulus contrast and method of forming the same
EP3715924A4 (en) * 2018-05-22 2021-04-14 Fiberhome Telecommunication Technologies Co., Ltd Polarization maintaining optical fiber
CN111580230A (en) * 2020-03-02 2020-08-25 华中科技大学 Flexible optical fiber, preparation method and drivable laser scalpel based on optical fiber

Similar Documents

Publication Publication Date Title
US6259844B1 (en) Strengthened fiber optic cable
US4515435A (en) Thermally stabilized fiber optic cable
US5621838A (en) Resins for coated optical fiber units
JP2585823B2 (en) Optical fiber unit
US6993227B2 (en) Fiber optic cable
US20030165310A1 (en) Compact optical cable
JPS6045210A (en) Optical fiber core wire
KR900006004B1 (en) Fiber for optical transmission
JPS6143682B2 (en)
TW201219873A (en) Plastic optical fiber unit and plastic optical fiber cable using same
KR100526518B1 (en) Premises optic cable
JPS59217653A (en) Preparation of coated optical fiber
JPH0668570B2 (en) Optical fiber core
JP3953564B2 (en) Pneumatic fiber optic unit
JPH0410564Y2 (en)
JPS646483Y2 (en)
JPH0343603B2 (en)
JPS6016891Y2 (en) optical fiber core
JPS5842962Y2 (en) optical communication cable
JPH02289804A (en) Optical fiber unit
JPS6016892Y2 (en) optical fiber core
JPS62220912A (en) Loose tube core wire
JP4205289B2 (en) Fiber optic cable
JPS6014208A (en) Coated optical fiber
JPS6235043Y2 (en)