JPH02289804A - Optical fiber unit - Google Patents

Optical fiber unit

Info

Publication number
JPH02289804A
JPH02289804A JP2015626A JP1562690A JPH02289804A JP H02289804 A JPH02289804 A JP H02289804A JP 2015626 A JP2015626 A JP 2015626A JP 1562690 A JP1562690 A JP 1562690A JP H02289804 A JPH02289804 A JP H02289804A
Authority
JP
Japan
Prior art keywords
optical fiber
coating
fiber unit
primary coating
optical fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015626A
Other languages
Japanese (ja)
Inventor
Hiroaki Sano
裕昭 佐野
Yoshiaki Terasawa
寺沢 良明
Ho Hayashi
林 邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015626A priority Critical patent/JPH02289804A/en
Publication of JPH02289804A publication Critical patent/JPH02289804A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4482Code or colour marking

Abstract

PURPOSE:To improve a low-temp. characteristic, productivity and color coding property and further terminating property by forming and integrating a primary coating consisting of a resin having small distortions at the time of coating and a secondary coating consisting of a foamed resin on the outer periphery of a laminate formed by superposing >=1 sheets of coated optical fiber ribbons. CONSTITUTION:This 12-fiber optical fiber unit is constructed by laminating three ribbons of the 4-fiber coated optical fibers 1 consisting of 4 optical fibers 5 and interposing two pieces of intervening cords 2, then forming the primary coating 3 and the secondary coating 4 of the foamed polyethylene thereon. The ribbon structure coated optical fibers 1 are formed by arranging 4 pieces of the optical fibers 5 in one row and integrally coating the fibers with a UV curing resin. The primary coating 3 is formed by extrusion molding of nylon and the secondary coating 4 of the foamed polyethylene of 50% foaming rate. The increase in low-temp. transmission loss is eliminated in this way and the temp. characteristics of the optical fiber unit are stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はパイプの中に通流する流体の流れにより布設す
る光ファイバユニットに関し、とくに光ファイバユニッ
トの構造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical fiber unit installed by a fluid flow flowing through a pipe, and particularly relates to an improvement in the structure of an optical fiber unit.

〔従来の技術〕[Conventional technology]

従来のこの種のバイブの中に通流する流体の流れによっ
て布設する光ファイバユニットの一例として、たとえば
第3図に断面構造を示す光ファイバユニットが知られて
いる(ヨーロッパ特許0157610号)。
As an example of a conventional optical fiber unit that is installed by a fluid flow flowing through a vibrator of this type, an optical fiber unit whose cross-sectional structure is shown in FIG. 3 is known (European Patent No. 0157610).

複数の光ファイバ素線35を集束し、外周に高ヤング率
のポリプロピレンからなる一次被覆33を施し、一次彼
覆33の外周に発泡ポリエチレンからなる二次被覆34
を施した構造を有している。
A plurality of optical fiber strands 35 are bundled, a primary coating 33 made of polypropylene with a high Young's modulus is applied to the outer periphery, and a secondary coating 34 made of foamed polyethylene is applied to the outer periphery of the primary coating 33.
It has a structure with

一次彼覆33を高ヤング率にするのは、二次被覆34の
発泡ポリエチレンの低温時における収縮応力が光ファイ
バ素線35に影響するのを防止するため、収縮応力に対
し抵抗する構造とすることを要するためである。
The reason why the primary sheathing 33 has a high Young's modulus is to prevent the shrinkage stress of the foamed polyethylene of the secondary sheath 34 from affecting the optical fiber strand 35 at low temperatures, so that it has a structure that resists shrinkage stress. This is because it is necessary.

またこの構造上の要件を備えるのに、一次被覆33に内
包される複数の光ファイバ素線35はタイトに収納され
ることが望ましい。
Furthermore, in order to meet this structural requirement, it is desirable that the plurality of optical fiber strands 35 included in the primary coating 33 be tightly housed.

なお二次被覆34に発泡ポリエチレンを用いたのは、パ
イプの中に通流する気体の気流によって布設する光ファ
イバユニットとしては、軽量かつ一定の表面積を有して
いることが要求されるため、発泡樹脂の使用が有効であ
るためである。
The reason why foamed polyethylene is used for the secondary coating 34 is that as an optical fiber unit that is installed by a gas flow flowing through a pipe, it is required to be lightweight and have a certain surface area. This is because the use of foamed resin is effective.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第3図に例示した従来の光ファイバユニットの構造は、
軽量化および製造性の面から中心抗張力体を使用せず、
また光ファイバ素線も撚りを与えずに直線状に収納する
構造を備えていることが一般的である。
The structure of the conventional optical fiber unit illustrated in Fig. 3 is as follows:
No central tensile strength member is used for weight reduction and manufacturability.
Further, it is common that the optical fiber strands have a structure in which they are stored in a straight line without being twisted.

従来例の構造では光ファイバの低温における伝送損失の
増加が観察された。
In the conventional structure, an increase in transmission loss was observed at low temperatures of the optical fiber.

この原因としては、低温状態において、二次被覆の発泡
ポリエチレンの低温収縮力による光ファイバ素線の配列
乱れや歪みが原因であることは容易に理解できる。
It is easy to understand that the cause of this is the disordered arrangement and distortion of the optical fiber strands due to the low-temperature shrinkage force of the foamed polyethylene as the secondary coating in a low-temperature state.

一方発明者らは、この伝送損失の増加の他の要因として
、ポリプロピレンは高温流動性が低く、押出し時にかな
り伸ばされた状態で被覆され、被覆後、被覆時の伸張に
よる歪みが解放することによって光ファイバが蛇行状態
となり、伝送損失が増加し易い状態となっていることを
予想した。
On the other hand, the inventors believe that another reason for this increase in transmission loss is that polypropylene has low high-temperature fluidity and is coated in a considerably stretched state during extrusion, and after coating, the strain caused by the stretching during coating is released. It was predicted that the optical fiber would be in a meandering state and the transmission loss would be likely to increase.

また従来の構造では、収納できる光ファイバの心線数も
限られており、さらに多心化するために中心に大径の介
在体を配置し、一層当りの心数を増やすか、或いはさら
に一層積層し、二層構造とした状態で光ファイバ素線を
配置する構造も実施されているが、いずれも製造上の製
造工程の複雑化や工程の制御性、また製造される光ファ
イバユニットの伝送特性、機械特性上に問題があり、好
ましくない。
In addition, in the conventional structure, the number of optical fibers that can be stored is limited, and in order to increase the number of fibers, it is necessary to place a large diameter intervening body in the center to increase the number of fibers per layer, or to increase the number of fibers per layer. Structures in which optical fibers are stacked and arranged in a two-layer structure have also been implemented, but these methods tend to complicate the manufacturing process, controllability of the process, and reduce transmission of the manufactured optical fiber unit. It is undesirable because it has problems with properties and mechanical properties.

さらにまた、従来の構造の光ファイバユニットは、心線
の色別、光ファイバの分岐、接続などの端末処理に際し
ての一次被覆の除去も困難であるという問題がある。
Furthermore, the optical fiber unit of the conventional structure has a problem in that it is difficult to remove the primary coating when performing terminal processing such as color separation of the core wires, branching of the optical fibers, and splicing.

本発明は上述の従来の問題点を解決し、低温特性、製造
性、色別性さらに端末処理性を顕著に改善した光ファイ
バユニットを提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and to provide an optical fiber unit that has significantly improved low-temperature characteristics, manufacturability, color separation properties, and terminal processing properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するため、パイプの中に通流す
る流体の流れにより布設する光ファイバユニットにおい
て、前記光ファイバユニットは、一枚以上のテープ状光
ファイバ心線を重ねて形成した積層体の外周に被覆時の
歪みの小さな樹脂からなる一次被覆と発泡樹脂からなる
二次被覆を施し、一体化した構造を備えてなることを特
徴としている。
To achieve the above object, the present invention provides an optical fiber unit that is installed by a fluid flow flowing through a pipe, and the optical fiber unit is a laminated layer formed by overlapping one or more tape-shaped optical fiber core wires. It is characterized by an integrated structure in which a primary coating made of a resin with little distortion during coating and a secondary coating made of a foamed resin are applied to the outer periphery of the body.

ここで一次被覆の樹脂にはナイロンなど高温流動性の良
い熱可塑性樹脂や紫外線や熱などで硬化する硬化型樹脂
を用いることができる。
Here, as the resin for the primary coating, a thermoplastic resin with good high-temperature fluidity such as nylon, or a curable resin that is cured by ultraviolet rays, heat, etc. can be used.

また前記テープ状光ファイバ心線を重ねて形成した積層
体と一次被覆との間の空間に介在紐を装入して一体化し
た構造は有効であり、さらに介在紐は、前記光ファイバ
ユニットからテープ状光ファイバ素線を取り出すときの
一次被覆および二次被覆を除去する引裂き紐の機能をも
たせておくと効果的である。
In addition, a structure in which an intervening string is inserted into the space between the laminate formed by stacking the tape-shaped optical fiber cores and the primary coating to integrate it is effective. It is effective to have the function of a tear string for removing the primary coating and secondary coating when taking out the tape-shaped optical fiber strand.

〔作用〕[Effect]

本発明の光ファイバユニットに適用するテープ状光ファ
イバ心線は、複数の光ファイバ素線を一列に配置し、外
周に紫外線硬化型樹脂を一括被覆した構造を備えている
ことから、個々の光ファイバ素線を集束した従来の構造
に比べて、本発明のテープ状の構造では光ファイバ素線
相互間の自由度が拘束され、完全に一体となっているの
で二次被覆の発泡ポリエチレンの低温収縮力に対する抵
抗も大となり、光ファイバの低温による伝送損失の増加
は顕著に低減される。
The tape-shaped optical fiber core applied to the optical fiber unit of the present invention has a structure in which a plurality of optical fibers are arranged in a row and the outer periphery is coated with ultraviolet curable resin. Compared to the conventional structure in which fiber strands are bundled together, the tape-like structure of the present invention restricts the degree of freedom between the optical fiber strands, and since they are completely integrated, it is possible to reduce the temperature of the foamed polyethylene used as the secondary coating. The resistance to contraction force is also increased, and the increase in transmission loss due to the low temperature of the optical fiber is significantly reduced.

また本発明に適用するテープ状光ファイバ心線は、個々
の光ファイバ素線が完全に一列に配列されているので、
光ファイバ素線相互間の位置の乱れの生ずることがなく
、従って製造工程において光ファイバ素線の位置乱れに
起因して生じる伝送損失増も全く見られず製造性に優れ
る。
In addition, in the tape-shaped optical fiber core wire applied to the present invention, the individual optical fiber strands are arranged completely in a line, so that
There is no positional disturbance between the optical fiber strands, and therefore no increase in transmission loss due to positional disturbance of the optical fiber strands is observed in the manufacturing process, resulting in excellent manufacturability.

またテープ状光ファイバ心線は、彩色識別の手段として
、光ファイバ素線の配列の組合せおよびテープ自体の着
色など目的により自由に選択でき、従来の個々の光ファ
イバ素線の集束体より識別がはるかに容易となる。
In addition, the tape-shaped optical fiber core can be used as a means of color identification, which can be freely selected depending on the purpose, such as the combination of the arrangement of the optical fibers and the coloring of the tape itself, making it easier to identify than the conventional bundle of individual optical fibers. much easier.

さらにテープ状光ファイバ素線を複数枚積層する構成に
より容易に多心化がはかれる。
Further, by stacking a plurality of tape-shaped optical fibers, it is easy to increase the number of fibers.

また本発明の光ファイバユニットは、介在紐を装入する
ことにより、通常テープ状光ファイバ心線の積層体の断
面が四角形のため一次被覆体が真円になり難い問題が緩
和され、したがって一次被覆体の真円度を向上すること
ができる。また真円度が向上されると流体の流れによる
布設特性も向上することができる。
Further, in the optical fiber unit of the present invention, by inserting the intervening string, the problem that the primary coating is difficult to form a perfect circle because the cross section of the laminate of tape-shaped optical fiber core wires is usually square is alleviated. The roundness of the covering can be improved. Furthermore, when the roundness is improved, the installation characteristics due to fluid flow can also be improved.

さらに介在紐には、ある一定の強度および可撓性を有す
る材質を選択、適用することによって、光ファイバの分
岐、接続などの端末処理に際して被覆除去するための引
裂紐として使用することもできる。
Furthermore, by selecting and applying a material having a certain level of strength and flexibility to the intervening string, it can also be used as a tearing string for removing the coating during terminal processing such as branching and splicing of optical fibers.

また、従来技術において問題であった低温での伝送損失
の増加への対応として光ファイバユニットの一次被覆を
高温流動性の一指標であるメルトインデックスが2, 
Odg/ minの従来のポリプロピレンに対し、この
値が5〜10dg/minであるナイロンを使用するこ
とによりさらに大きく改善することができた。
In addition, in order to address the problem of increased transmission loss at low temperatures, which was a problem in conventional technology, we have developed a primary coating for optical fiber units with a melt index of 2, an index of high-temperature fluidity.
Compared to conventional polypropylene, which has a value of Odg/min, an even greater improvement could be achieved by using nylon, which has this value of 5 to 10 dg/min.

さらに、この一次被覆をさらに流動性が高く、間隙に流
れこみ、一次被覆全体を一体化できる硬化型樹脂を使用
することによりテープ状光ファイバ心線間の滑りや移動
を抑えることができ、加えて製造性や、一次被覆の真円
度を高めることができた。
Furthermore, by using a curable resin that has higher fluidity for this primary coating and can flow into gaps and integrate the entire primary coating, it is possible to suppress slipping and movement between the tape-shaped optical fiber cores. This enabled us to improve manufacturability and roundness of the primary coating.

以下図面にもとづき実施例について説明する。Examples will be described below based on the drawings.

〔実施例〕〔Example〕

第1図は本発明の光ファイバユニットの第1の実施例の
断面構造図である。4本の光ファイバ素線5からなる4
心のテープ状光ファイバ心線1を3枚積層し、2本の介
在紐2を装入してから一次彼覆3と発泡ポリエチレンの
二次被覆4を施した構造の12心の光ファイバユニット
である。
FIG. 1 is a cross-sectional structural diagram of a first embodiment of the optical fiber unit of the present invention. 4 consisting of four optical fiber strands 5
This is a 12-fiber optical fiber unit having a structure in which three tape-shaped optical fiber cores 1 are laminated, two intervening strings 2 are inserted, and then a primary covering 3 and a secondary covering 4 of foamed polyethylene are applied. It is.

光ファイバ素線5は、外径0.125mmのガラスファ
イバに紫外線硬化型樹脂を外径0,25IIItlに二
層被覆したものである。
The optical fiber wire 5 is a glass fiber having an outer diameter of 0.125 mm and coated with two layers of ultraviolet curable resin to have an outer diameter of 0.25 IIItl.

テープ状光ファイバ心線1は、光ファイバ素線5を4本
一列に配列し、紫外線硬化型樹脂で幅l.25au++
,厚さ0.4a+mに一括被覆形成したものである。
The tape-shaped optical fiber coated wire 1 is made by arranging four optical fibers 5 in a row and forming a width l. 25au++
, which was formed by one-shot coating to a thickness of 0.4a+m.

介在紐は、外径0. 25mのポリエステル紐を適用し
た。
The intervening string has an outer diameter of 0. 25 m of polyester string was applied.

一次被覆はナイロン、二次被覆は発泡率50%の発泡ポ
リエチレンを押し出し成形したものである。
The primary coating is made of nylon, and the secondary coating is made of extruded polyethylene foam with an expansion rate of 50%.

第2図は本発明の光ファイバユニットの第2の実施例の
断面構造図である。本実施例は、2本の光ファイバ素線
25からなる2心のテープ状光ファイバ心線21を2枚
積層し、一次被覆23および発泡ポリエチレンの二次被
覆24を施した構造の4心の光ファイバユニットである
。22は介在紐を示す。
FIG. 2 is a cross-sectional structural diagram of a second embodiment of the optical fiber unit of the present invention. This embodiment has a four-core structure in which two tape-shaped optical fiber cores 21 each consisting of two optical fibers 25 are laminated, and a primary coating 23 and a secondary coating 24 of foamed polyethylene are applied. It is an optical fiber unit. 22 indicates an intervening string.

テープ状光ファイバ心線21は幅0.7mm、厚さ0.
4閣で、光ファイバ素線25は第1図に示した第1の実
施例と同じものを使用した。
The tape-shaped optical fiber core wire 21 has a width of 0.7 mm and a thickness of 0.7 mm.
In the four cases, the same optical fiber wire 25 as in the first embodiment shown in FIG. 1 was used.

なお第1および第2の実施例で使用した光ファイバ素線
5および25を形成するガラスファイバは、コア径50
μmのマルチモードファイバを使用した。
The glass fibers forming the optical fibers 5 and 25 used in the first and second embodiments have a core diameter of 50.
A μm multimode fiber was used.

本発明の第1および第2の実施例について低温伝送特性
および被覆の除去性を評価するため、第3図に例示した
従来構造の光ファイバユニットも試作した。試作した従
来構造の光ファイバユニットは、第1および第2の実施
例に使用したと同様の外径が0. 25unの紫外線硬
化型樹脂を被覆したマルチモードの光ファイバ素線7本
を集束し、外径IIIIfl+までポリプロピレンによ
り一次被覆を施し、さらに外径2IIII1まで発泡ポ
リエチレンを押し出し成形して二次被覆を施した構造で
ある。
In order to evaluate the low-temperature transmission characteristics and coating removability of the first and second embodiments of the present invention, an optical fiber unit having the conventional structure illustrated in FIG. 3 was also prototyped. The prototype optical fiber unit with a conventional structure had an outer diameter of 0.0 mm, which was the same as that used in the first and second embodiments. Seven multi-mode optical fibers coated with 25un of ultraviolet curable resin are bundled together, primary coated with polypropylene to an outer diameter of IIIfl+, and then secondary coated by extrusion molding of foamed polyethylene to an outer diameter of 2IIIfl+. It has a similar structure.

さらに本発明の硬化を明確にするため、第2の実施例の
一次被覆を従来の光ファイバユニットに用いられていた
ポリプロピレンに変えた第4図の構造の光ファイバユニ
ットを実施例3として製造した。
Furthermore, in order to clarify the curing of the present invention, an optical fiber unit having the structure shown in FIG. 4 was manufactured as Example 3, in which the primary coating of the second example was changed to polypropylene, which was used in conventional optical fiber units. .

第1図乃至第4図までに示した構造の、本発明の第1,
第2および第3の実施例と従来構造の試作例のそれぞれ
の光ファイバユニットについて、温度−20℃における
伝送損失の増加の測定結果および端末部lm長の被覆を
除去するために要した時間を第1表に示す。なお測定し
た光の波長はλ1,3μmである。
A first embodiment of the present invention having the structure shown in FIGS. 1 to 4,
The measurement results of the increase in transmission loss at a temperature of -20°C and the time required to remove the lm-long coating of the terminal part for the optical fiber units of the second and third embodiments and the prototype example of the conventional structure are shown below. Shown in Table 1. The wavelength of the measured light was λ1.3 μm.

第1表 第1表の結果より、従来構造を実施例3に示すテープ状
光ファイバ心線を積層した形態とすることにより低温伝
送損失増加は3割改善された。
From the results shown in Table 1, the increase in low-temperature transmission loss was improved by 30% by changing the conventional structure to the configuration in which the tape-shaped optical fibers shown in Example 3 were laminated.

状光ファイバ心線を使用したナイロンー次被覆構造の光
ファイバ素線の低温−20°Cにおける伝送損失の増加
は、従来構造に比べて約半分以下に低減できることが確
認された。
It was confirmed that the increase in transmission loss of an optical fiber having a nylon-sublayer coating structure using a shaped optical fiber core at a low temperature of -20°C can be reduced to about half or less compared to a conventional structure.

加えて被覆引き裂きの機能をもたせた介在紐を装入する
ことにより、被覆除去時間は従来構造に比べて約%に短
縮できることが確認された。
In addition, it was confirmed that by inserting an intervening string with a coating tearing function, the coating removal time could be shortened to about % compared to the conventional structure.

また実施例l、実施例2および実施例3の先ファイバユ
ニットは、介在紐を装入して一体化したことにより、ユ
ニット本体の真円度は向上され、空気の流れによる布設
特性の優れていることが確認された。
In addition, the fiber-end units of Example 1, Example 2, and Example 3 were integrated by inserting an intervening string, so that the roundness of the unit body was improved and the installation characteristics due to air flow were excellent. It was confirmed that there is.

他方、本発明の第4の実施例として第2の実施例に用い
た2心のテープ状光ファイバ心線5lを2枚積層し、硬
化型樹脂の一つである紫外線硬化型樹脂の例として、米
国デソト社製950X 042を用いて一次被覆53を
施し、発泡ポリエチレンを用いて二次披覆54を施した
構造の4心の光ファイバユニットを製造した。その断面
構造を第5図aに示す52は介在紐を示す。
On the other hand, as a fourth embodiment of the present invention, two pieces of the two-core tape-shaped optical fiber core wire 5l used in the second embodiment were laminated to form an example of an ultraviolet curable resin, which is one of the curable resins. A four-core optical fiber unit was manufactured, in which a primary coating 53 was applied using 950X 042 manufactured by DeSoto, USA, and a secondary coating 54 was applied using foamed polyethylene. The cross-sectional structure is shown in FIG. 5a, and reference numeral 52 indicates an intervening string.

本実施例についても光ファイバ素線55としては、コア
径50μmφのマルチモードファイバを使用した。
In this embodiment as well, a multimode fiber with a core diameter of 50 μmφ was used as the optical fiber wire 55.

前述の方法を用いて低温での伝送損失増加と被覆除去時
間を評価した結果を第2表に示す。
Table 2 shows the results of evaluating the transmission loss increase and coating removal time at low temperatures using the method described above.

第2表 第2表の結果より明らかなとおり、低温伝送損失増加、
被覆除去時間のいずれも大きく改善され特に被覆除去時
間については第1、第2、および第3の実施例で一次被
覆に用いた熱可塑性樹脂と比較して、破断伸びが25%
と小さいため、さらに短縮される結果が得られた。
As is clear from the results in Table 2, low-temperature transmission loss increases.
All of the coating removal times were greatly improved, and especially regarding the coating removal time, the elongation at break was 25% compared to the thermoplastic resin used for the primary coating in the first, second, and third examples.
Because of the small size, the result was that it was further shortened.

またこの破断伸びが小さい一次被覆の使用による被覆除
去性の良さは、引裂きに用いる介在紐がなくても2枚の
テープ状光ファイバ心線を両側に引くことにより十分容
易に被覆を除去できる効果もあり、第5図bの第5の実
施例に示した、第5図aの第4の実施例から介在紐52
を除去した構造の4心の光ファイバユニットについての
前述の方法による被覆除去時間は20秒/mと良好な値
を確認できた。
In addition, the good removability of the coating due to the use of a primary coating with low elongation at break means that the coating can be easily removed by pulling two tape-shaped optical fiber cores on both sides without the need for an intervening string used for tearing. There is also an intervening string 52 from the fourth embodiment of FIG. 5a shown in the fifth embodiment of FIG. 5b.
It was confirmed that the coating removal time by the above-mentioned method for the four-core optical fiber unit having the structure in which the coating was removed was 20 seconds/m, which was a good value.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光ファイバユニットは収
納する光ファイバをテープ状光ファイバ心線構造を基に
してテープ状光ファイバ心線の完全一体化構造とするこ
とにより、従来構造の先ファイバ素線単体の集束体構成
による低温伝送損失増加の問題を解決することができた
。また一次被覆も被覆時に流動性のよい樹脂を適用する
ことによって、光ファイバユニットの温度特性の安定化
をはかることができた。
As explained above, the optical fiber unit of the present invention has a completely integrated structure of tape-shaped optical fiber cores based on the tape-shaped optical fiber core structure for the optical fibers to be housed, so that the end fiber of the conventional structure can be We were able to solve the problem of increased low-temperature transmission loss due to the configuration of a bundle of single wires. Furthermore, by applying a highly fluid resin to the primary coating during coating, it was possible to stabilize the temperature characteristics of the optical fiber unit.

さらに本発明の光ファイバユニットの構造により、彩色
識別性、端末処理性にも顕著な改善がなされた。
Further, due to the structure of the optical fiber unit of the present invention, remarkable improvements have been made in color discrimination and termination processing.

またテープ状先ファイバ心線構造により光ファイバユニ
ットの多心化も容易となった。その上介在紐の挿入によ
り先ファイバユニット被覆の引裂性を持たすことが可能
となり光ファイバユニットの真円度も向上され布設特性
も向上された。
Furthermore, the tape-shaped fiber core structure makes it easy to increase the number of fibers in the optical fiber unit. Furthermore, by inserting the intervening string, it is possible to make the covering of the fiber unit tearable, and the roundness of the optical fiber unit is improved, as well as the installation characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図,第2図,第4図,第5図aおよび第5図bはそ
れぞれ本発明の光ファイバユニット実施例l、実施例2
、実施例3、実施例4および実施例5の断面構造図、第
3図は従来の光ファイバユニット例の断面構造図である
。 1 .21, 41. 51・・・テープ状光ファイバ
心線、2,22,42.52・・・介在紐、3 , 2
3, 33, 43. 53・・・一次被覆、4,24
, 34. 44. 54・・・二次被覆、5 , 2
5. 35, 45. 55・・・光ファイバ素線 特許出願人住友電気工業株式会社
1, 2, 4, 5a and 5b are optical fiber unit embodiment 1 and embodiment 2 of the present invention, respectively.
, Example 3, Example 4, and Example 5. FIG. 3 is a cross-sectional view of an example of a conventional optical fiber unit. 1. 21, 41. 51... Tape-shaped optical fiber core wire, 2, 22, 42. 52... Intervening string, 3, 2
3, 33, 43. 53...Primary coating, 4,24
, 34. 44. 54...Secondary coating, 5, 2
5. 35, 45. 55... Optical fiber strand patent applicant Sumitomo Electric Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)パイプの中に通流する流体の流れにより布設する
光ファイバユニットにおいて、 前記光ファイバユニットは、 一枚以上のテープ状光ファイバ心線を重ねて形成した積
層体の外周に樹脂からなる一次被覆と発泡樹脂からなる
二次被覆を施し、一体化した構造を備えてなる ことを特徴とする光ファイバユニット。
(1) In an optical fiber unit that is installed by a flow of fluid flowing through a pipe, the optical fiber unit is made of a resin on the outer periphery of a laminate formed by stacking one or more tape-shaped optical fiber cores. An optical fiber unit characterized by having an integrated structure with a primary coating and a secondary coating made of foamed resin.
(2)パイプの中に通流する流体の流れにより布設する
光ファイバユニットにおいて、 前記光ファイバユニットは、 一枚以上のテープ状光ファイバ心線を重ねて形成した積
層体と一次被覆との間の空間に介在紐を配置した状態で
樹脂からなる一次被覆と発泡樹脂からなる二次被覆を施
し、一体化した構造を備えてなる ことを特徴とする光ファイバユニット。
(2) In an optical fiber unit that is installed by a flow of fluid flowing through a pipe, the optical fiber unit is formed between a laminate formed by stacking one or more tape-shaped optical fiber cores and a primary coating. 1. An optical fiber unit characterized in that it has an integrated structure in which a primary coating made of resin and a secondary coating made of foamed resin are applied with an intervening string placed in the space.
JP2015626A 1989-02-08 1990-01-24 Optical fiber unit Pending JPH02289804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015626A JPH02289804A (en) 1989-02-08 1990-01-24 Optical fiber unit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-29266 1989-02-08
JP2926689 1989-02-08
JP2015626A JPH02289804A (en) 1989-02-08 1990-01-24 Optical fiber unit

Publications (1)

Publication Number Publication Date
JPH02289804A true JPH02289804A (en) 1990-11-29

Family

ID=26351808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015626A Pending JPH02289804A (en) 1989-02-08 1990-01-24 Optical fiber unit

Country Status (1)

Country Link
JP (1) JPH02289804A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629889A1 (en) * 1993-06-17 1994-12-21 Telia Ab Optical cable design
JPH1184185A (en) * 1997-09-12 1999-03-26 Fujikura Ltd Optical fiber cable using optical fiber unit
EP1536262A1 (en) * 2003-11-27 2005-06-01 Samsung Electronics Co., Ltd. Optical fiber cable and method of manufacturing therefor
WO2023120478A1 (en) * 2021-12-20 2023-06-29 住友電気工業株式会社 Optical fiber cable and method for manufacturing optical fiber cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150905A (en) * 1982-03-03 1983-09-07 Nippon Telegr & Teleph Corp <Ntt> Optical cable unit
JPS58211712A (en) * 1982-06-04 1983-12-09 Nippon Telegr & Teleph Corp <Ntt> Taped optical fiber core unit
EP0157610A2 (en) * 1984-03-29 1985-10-09 BRITISH TELECOMMUNICATIONS public limited company Sheated optical fibres

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150905A (en) * 1982-03-03 1983-09-07 Nippon Telegr & Teleph Corp <Ntt> Optical cable unit
JPS58211712A (en) * 1982-06-04 1983-12-09 Nippon Telegr & Teleph Corp <Ntt> Taped optical fiber core unit
EP0157610A2 (en) * 1984-03-29 1985-10-09 BRITISH TELECOMMUNICATIONS public limited company Sheated optical fibres

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629889A1 (en) * 1993-06-17 1994-12-21 Telia Ab Optical cable design
JPH1184185A (en) * 1997-09-12 1999-03-26 Fujikura Ltd Optical fiber cable using optical fiber unit
EP1536262A1 (en) * 2003-11-27 2005-06-01 Samsung Electronics Co., Ltd. Optical fiber cable and method of manufacturing therefor
WO2023120478A1 (en) * 2021-12-20 2023-06-29 住友電気工業株式会社 Optical fiber cable and method for manufacturing optical fiber cable

Similar Documents

Publication Publication Date Title
CN111033342B (en) High optical fiber density ribbon cable
US8363994B2 (en) Fiber optic cable assembly
US4930860A (en) Propellable optical fiber cables
JP4291767B2 (en) Improved fiber optic cable
EP0484687A2 (en) Reinforced protective tube for optical waveguide fibers
US8705921B2 (en) Fiber optic drop cable
US11960137B2 (en) Intermittently bonded optical fibre ribbon
JPH02289805A (en) Optical fiber unit
WO2005101080A1 (en) Optical fiber tape unit and optical fiber cable
US9669592B2 (en) Method of manufacturing a fiber optic drop cable
JP4412040B2 (en) Optical fiber tape unit and optical fiber cable
JPH02289804A (en) Optical fiber unit
WO2012036031A1 (en) Plastic optical fiber unit and plastic optical fiber cable using same
JPH09113773A (en) Coated optical fiber ribbon
JP3681616B2 (en) Self-supporting optical fiber cable
JP4442296B2 (en) Optical fiber tape unit and optical fiber cable
JPH06313827A (en) Optical fiber tape fiber
JPH0722645Y2 (en) Optical fiber unit
JP4304106B2 (en) Optical drop cable
JP2006003689A (en) Optical drop cable
JPH04253008A (en) High-density optical fiber cable
JPH095592A (en) Optical fiber cord
JPH11167052A (en) Optical fiber cable
JPH08171033A (en) Spacer type optical fiber cable
JPH1184185A (en) Optical fiber cable using optical fiber unit