JPS62193569A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPS62193569A
JPS62193569A JP61034624A JP3462486A JPS62193569A JP S62193569 A JPS62193569 A JP S62193569A JP 61034624 A JP61034624 A JP 61034624A JP 3462486 A JP3462486 A JP 3462486A JP S62193569 A JPS62193569 A JP S62193569A
Authority
JP
Japan
Prior art keywords
elastic
ultrasonic motor
driving
contact
traveling wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61034624A
Other languages
Japanese (ja)
Other versions
JPH0519393B2 (en
Inventor
Osamu Kawasaki
修 川崎
Ritsuo Inaba
律夫 稲葉
Akira Tokushima
晃 徳島
Katsu Takeda
克 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61034624A priority Critical patent/JPS62193569A/en
Priority to PCT/JP1987/000102 priority patent/WO1987005166A1/en
Priority to DE8787901637T priority patent/DE3782301T2/en
Priority to US07/126,105 priority patent/US4829209A/en
Priority to EP87901637A priority patent/EP0258449B1/en
Publication of JPS62193569A publication Critical patent/JPS62193569A/en
Publication of JPH0519393B2 publication Critical patent/JPH0519393B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To increase the speed of a mover, by enlarging a distance between a neutral surface and a contact surface without preventing two standing waves composing an elastic progressive wave excited on a driving unit, from being excited. CONSTITUTION:A surface side in contact with the mover 6 of an elastic unit 1 composing a driving unit 3 is provided with a projection unit 7. The mover 6 is set in pressure contact with the tip of the projection unit 7 via a slider 4. When an alternating electric field near the resonance frequency of the driving unit 3 is applied to a piezo-electric ceramics 2, then the progressive wave of bending oscillation is excited on the driving unit 3, and the mover 6 is moved by the projection unit 7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体音用いて駆動力全発生する超音波モータ
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor that generates all of its driving force using piezoelectric body sound.

従来の技術 近年、圧電セラミック等の圧電体を用いた駆動体に弾性
振動全励起し、これを駆動力とした超音波モータが注目
さnている。
BACKGROUND OF THE INVENTION In recent years, ultrasonic motors have been attracting attention, in which elastic vibrations are fully excited in a drive body using a piezoelectric material such as a piezoelectric ceramic, and this is used as a driving force.

以下、図面を参照しながら超音波モータの原理について
説明を行う。
The principle of the ultrasonic motor will be explained below with reference to the drawings.

第3図は超音波モータの1例であり、円環形の弾性体1
の円環面の一方に円環形圧電セラミック2を貼合せて、
圧電駆動体3を構成している。4は耐芒耗性材料のスラ
イダ、6は弾性体であり、互いに貼合せられて動体6を
構成している。動体6はスライダ4を介して駆動体3と
接触している。
Figure 3 shows an example of an ultrasonic motor, with an annular elastic body 1
An annular piezoelectric ceramic 2 is pasted on one of the annular surfaces of the
It constitutes a piezoelectric drive body 3. 4 is a slider made of an abrasion-resistant material, and 6 is an elastic body, which are pasted together to form the moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4.

圧電セラミック2に電界全印加すると、駆動体3の周方
向に曲げ振動の進行波が励起さ扛て、動体6を駆動する
。尚、同図中の矢印は動体6の回転力向を示す。
When a full electric field is applied to the piezoelectric ceramic 2 , a traveling wave of bending vibration is excited in the circumferential direction of the driving body 3 and drives the moving body 6 . Note that the arrow in the figure indicates the direction of rotational force of the moving body 6.

第4図は第3図の超音波モータに使用した圧電セラミッ
ク2の電極構造の1例金示している。同図では円周方向
に曲げ振動が9波のるようにしである。同図において、
人、Bはそれぞれ2分の1波長相当の小領域から成る電
極群で、C,Dはそれぞ扛4分の3波長、4分の1v長
の長さの電極である。従って、人の電極群とBの電極群
とは周方向に4分の1波長(=90度)の位相ずnがあ
る。電極群A、B内の隣合う小電極部は互いに反対力向
に厚み方向に分極さnている。圧電セラミック2の弾性
体1との接着面は第4図に示さ扛た面と反対の面であり
、電極はベタ電極である。使用時には電極群A、Bは第
4図に斜線で示さ扛たように、そnぞれ短絡して用いら
れ、ベタ電極が共通電極として用いら扛る。
FIG. 4 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, nine waves of bending vibration are applied in the circumferential direction. In the same figure,
Person and B are electrode groups each consisting of a small area corresponding to 1/2 wavelength, and C and D are electrodes having a length of 3/4 wavelength and 1/4 V length, respectively. Therefore, there is a phase difference n of a quarter wavelength (=90 degrees) in the circumferential direction between the electrode group of the person and the electrode group of B. Adjacent small electrode portions in electrode groups A and B are polarized in the thickness direction in opposite force directions. The adhesive surface of the piezoelectric ceramic 2 with the elastic body 1 is the surface opposite to the surface shown in FIG. 4, and the electrode is a solid electrode. When in use, the electrode groups A and B are short-circuited, as indicated by diagonal lines in FIG. 4, and the solid electrode is not used as a common electrode.

以上のように構成された超音波モータについて、その動
作を以下に説明する。前記圧電体2の電極群人に電圧 V=Vo −5in(ωt)      −−(1)全
印加すると、駆動体3は円周方向に曲げ振動をする。第
5図は第3図の超音波モータの駆動体を直線で近似した
時の斜視図であり、同図(2L)は圧電体2に電圧を印
加していない時、同図(b)は圧電体2に電圧を印加し
た時の様子金示す。
The operation of the ultrasonic motor configured as above will be described below. When the voltage V=Vo −5 in(ωt) --(1) is fully applied to the electrode group of the piezoelectric body 2, the driving body 3 bends and vibrates in the circumferential direction. FIG. 5 is a perspective view when the driving body of the ultrasonic motor in FIG. 3 is approximated by a straight line. The state when a voltage is applied to the piezoelectric body 2 is shown.

第6図は動体6と駆動体3の接触状況?拡大して描いた
ものである。前記圧電体2の電極群AにVo −sin
 (ωt) 、電極群BVCvO−CO8(ωt)ノ互
いに位相がπ/2 だけず扛だ電圧全印加す汎ば1、駆
動体3の円周方向に曲げ振動の進行波全作ることができ
る。一般に進行波は振幅全ξとすればξ=ξo −co
s (ωt −kx)    ・−(2)で表せる。(
2)式は ξ=ξO・(cas(ωt) ・ccs(kX)+5i
n(ωt ) ・sj++(kX )”’ e3)と書
き直せ、(3)式は進行波が時間的にπ/2だけ位相の
ずれた彼房(ωt)と5in(ωt)、および位置的に
π/2だけ位相のずnたcos(kX)とsin (k
x )との、そ扛ぞnの積の和で得られることを示して
いる。前述の説明より、圧電体2は互いに位置的にπ/
2(=λ/4)だけ位相のず九た電極群人。
Is Fig. 6 the contact situation between the moving body 6 and the driving body 3? This is an enlarged drawing. Vo-sin is applied to the electrode group A of the piezoelectric body 2.
(ωt), the phase of the electrode group BVCvO-CO8(ωt) is π/2, and if the entire voltage is applied, a traveling wave of bending vibration can be created in the circumferential direction of the driving body 3. Generally speaking, if the total amplitude of a traveling wave is ξ, then ξ=ξo −co
It can be expressed as s (ωt −kx) ・−(2). (
2) The formula is ξ=ξO・(cas(ωt)・ccs(kX)+5i
Rewritten as n(ωt) ・sj++(kX)'''e3), Equation (3) is expressed as follows: The traveling wave has a temporal phase shift of π/2 between the chamber (ωt) and 5in (ωt), and a positional cos (kX) and sin (k
It shows that it can be obtained by the sum of the products of n and x). From the above explanation, the piezoelectric bodies 2 are positioned at π/
Electrodes with a phase difference of 2 (=λ/4).

Bi持っているので、前記電極群のそれぞ汎にπ/2だ
け位相のずnた電圧全印加すnば、駆動体3に曲げ振動
の進行波全作扛る。
Since it has Bi, if all voltages with a phase difference of π/2 are applied to each of the electrode groups, a traveling wave of bending vibration will be produced in the driving body 3.

第6図は駆動体3の表面ム点が進行波の励起により、長
軸2w、短軸2uの楕円運動をしている様子を示し、駆
動体3上に置かれた動体6が楕円の頂点で接触すること
により、波の進行方向とは逆方向にV=ω・Uの速度で
運動する様子を示している。即ち、動体6は任意の静圧
で駆動体3に押し付けられて、駆動体3の表面に接触し
、動体6と、駆動体3との岸俤力で波の進行方向と逆方
向に速度マで駆動される。両者の間に滑ジがある時には
、速度は上記のv、J:りも小さ・くなる。
Figure 6 shows that the surface point of the driving body 3 is moving in an ellipse with the long axis 2w and the short axis 2u due to the excitation of the traveling wave, and the moving body 6 placed on the driving body 3 is at the apex of the ellipse. The figure shows how the waves move at a speed of V=ω·U in the opposite direction to the direction of wave propagation. In other words, the moving body 6 is pressed against the driving body 3 with an arbitrary static pressure and comes into contact with the surface of the driving body 3, and the shore force between the moving body 6 and the driving body 3 causes a velocity machining in the direction opposite to the direction of wave propagation. is driven by. When there is a slippage between the two, the velocity is also smaller than the above v and J.

発明が解決しようとする問題点 動体6の速度Vは、 v=ωuoCωξo h         ・・・−(
4)で表わせ、駆動体3の県幅値ξ0 と距離りに比例
する。振幅値ξ0は圧電セラミックの許容歪限界値にエ
リ最大貞が決1す、距離りは駆動体3全構成する圧電体
2と弾性体1の材料と厚みが決まれば決定されるので、
動体6の最大速度は決まり、それ以上大きな値を得るこ
とは困難である。
Problem to be solved by the invention The speed V of the moving body 6 is v=ωuoCωξoh...-(
4), which is proportional to the prefectural width value ξ0 of the driving body 3 and the distance. The maximum amplitude value ξ0 is determined by the allowable strain limit of the piezoelectric ceramic, and the distance is determined once the materials and thicknesses of the piezoelectric body 2 and elastic body 1 that make up the entire drive body 3 are determined.
The maximum speed of the moving object 6 is determined, and it is difficult to obtain a larger value than that.

本発明はかかる点に鑑みてなされたもので、簡単な構成
で動体θの速度が大きい超音波モータを提供することを
目的としている。
The present invention has been made in view of these points, and an object of the present invention is to provide an ultrasonic motor that has a simple configuration and can move a moving object θ at a high speed.

問題点を解決するための手段 駆動体に励起される弾性進行波を構成する2つの弾性定
在波の腹の位置を避けて、該弾性進行波の1波長あたり
に4の整数借倒の突起体を、該駆動体3を構成する弾性
体の動体との接触面側に配置し、該突起体の先端部に接
触するように該動体を加圧して設ける。
Means for Solving the Problem Avoiding the antinode positions of the two elastic standing waves constituting the elastic traveling wave excited by the driving body, 4 integer projections are formed per wavelength of the elastic traveling wave. The body is placed on the contact surface side of the elastic body constituting the driving body 3 with the moving body, and the moving body is pressurized so as to come into contact with the tip of the protrusion.

作用 駆動体に励起される弾性進行波を構成する2つの定在波
の励起をさまたげることなく、中性面と接触表面との距
離を大きくすることにより、動体の速度を犬きくするこ
とができる。
The speed of the moving body can be increased by increasing the distance between the neutral surface and the contact surface without interfering with the excitation of the two standing waves that make up the elastic traveling wave excited by the action driving body. .

実施例 以下、図に従って本発明の1実施例について説明する。Example Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の1実施例の超音波モータの切欠き斜視
図である。同図において、7は駆動体3を構成する弾性
体1の動体6との接触面側に設けられた突起体であり、
突起体7の先端に動体6がスライダ4全介して加圧接触
して配置される。圧電セラミック2に駆動体3の共振周
彼数近傍の交番電界が印加されると、駆動体3に曲げ振
動の進行波が励起され、突起体7にエリ動体6を移動す
る。
FIG. 1 is a cutaway perspective view of an ultrasonic motor according to an embodiment of the present invention. In the figure, 7 is a protrusion provided on the contact surface side of the elastic body 1 constituting the drive body 3 with the moving body 6;
The moving body 6 is placed in pressure contact with the tip of the protrusion 7 through the entire slider 4 . When an alternating electric field near the resonant frequency of the driving body 3 is applied to the piezoelectric ceramic 2, a traveling wave of bending vibration is excited in the driving body 3, and the eliminating body 6 is moved to the protrusion 7.

第2図は第1図における駆動体3を説明のために直線化
した時の断面図である。同図中の電極群人には癲彼の電
圧が印加され、電極群Bにはasgの電圧が印加され、
駆動体3に曲げ振動の定在波である同図中のム’、B”
iそれぞれ作る。この2つの定在波ム′、B′は重畳し
て進行波を作る。
FIG. 2 is a cross-sectional view of the driving body 3 in FIG. 1 when it is straightened for explanation. In the figure, a voltage of ASG is applied to the electrode group B, and a voltage of ASG is applied to the electrode group B.
M' and B'' in the same figure are standing waves of bending vibration in the driving body 3.
Make each one. These two standing waves M' and B' are superimposed to form a traveling wave.

突起物7がない時の中性面は図中のLで示される位置に
あり、中性面りと動体6との接触面までの距離はhとな
る。弾性体1の表面に突起体7を設けた場合、中性面の
位置の変化は接触面までの距離の変化に比べて小さい。
The neutral surface when there is no protrusion 7 is located at the position indicated by L in the figure, and the distance between the neutral surface and the contact surface with the moving body 6 is h. When the projections 7 are provided on the surface of the elastic body 1, the change in the position of the neutral surface is smaller than the change in the distance to the contact surface.

突起体7設置後の中性面の位置ヲL′で示し、中性面か
ら接触面までの距離全h′で示している。つまり圧電セ
ラミック2の中性面からの距離が遠くなって、圧電セラ
ミック2の許容限界内の歪率での振幅ξ0が小さくなる
エリも、距離りの大きくなる効果が大きいので、(4)
式エリ大きな速度が得られることがわかる。
The position of the neutral surface after the protrusion 7 is installed is indicated by L', and the total distance from the neutral surface to the contact surface is indicated by h'. In other words, as the distance from the neutral surface of the piezoelectric ceramic 2 increases, the amplitude ξ0 becomes smaller at a strain rate within the allowable limit of the piezoelectric ceramic 2, since the effect of increasing the distance is large, so (4)
It can be seen that a large speed can be obtained using the formula.

突起物7の所での曲げ剛性は大きく、突起体7のない所
での曲げ剛性は小さい。従って、もし曲げ振動の進行波
を作る2つの定在波A’ 、 B/の腹の位置に突起体
7がくれば、この位置は実際には曲がりにくいので、定
在波の腹の位置が曲がりゃすい所に変わり、電極位置か
ら見た最適の定在肢位はと異なり効率的な駆動ができな
くなる。故に、第2図に示したように、定住波A’、B
’ の服の位置に突起体7がこないように設置すれば効
率の良い駆動ができる。この条件ヲ調だすには、1波長
あたり1または2個の突起体を作ることも考えられるが
、この場合には駆動体3の曲げ振動の進行波の横方向成
分が動体6に定常的に伝えられなくなり、動体6の移動
速度はかえって減少する。
The bending rigidity at the protrusion 7 is high, and the bending rigidity at the location without the protrusion 7 is small. Therefore, if the protrusion 7 comes to the position of the antinode of the two standing waves A' and B/ that form the traveling wave of bending vibration, this position is actually difficult to bend, so the position of the antinode of the standing wave will be The bending becomes difficult, and efficient driving becomes impossible, which is different from the optimal standing limb position as seen from the electrode position. Therefore, as shown in Figure 2, the settled waves A', B
Efficient driving can be achieved by installing the protrusion 7 so that it does not come in the position of the clothes. In order to adjust this condition, it is possible to create one or two protrusions per wavelength, but in this case, the lateral component of the traveling wave of the bending vibration of the driving body 3 is constantly transmitted to the moving body 6. The information is no longer transmitted, and the moving speed of the moving body 6 actually decreases.

尚、本実施例では円環形の超音波モータを例にとりて説
明したが、弾性進行波を使りたものなら他の超音波モー
タにも同様の効果が得られる。
Although this embodiment has been described using an annular ultrasonic motor as an example, similar effects can be obtained with other ultrasonic motors that use elastic traveling waves.

発明の効果 本発明によれば、藺単な構成で、大きな速度金得ること
ができる超音波モータを提供できる。
Effects of the Invention According to the present invention, it is possible to provide an ultrasonic motor that can obtain a large speed with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の超音波モータの切欠き斜視
図、第2図は第1図の実施例における駆動体の直線化モ
デル図、第3図は従来の円環形超音波モータの切欠き斜
視図、第4図は第3図の超音波モータに用いられている
圧電体の電極構造金示す平面図、第5図は超音波モータ
の駆動体の振動状態を示すモデル図、第6図は超音波モ
ータの原理説明図である。 1・・・・・・弾性体、2・・・・・・圧電体、3°゛
°°°駆動体、4・・・・・スライダ、6・・・・・弾
性体、6・・・・・・動体、了・・・・・・突起体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓 
1 図 第2図 B′ 第3図 第 4 図 第5図 第6図
Fig. 1 is a cutaway perspective view of an ultrasonic motor according to an embodiment of the present invention, Fig. 2 is a linear model diagram of a driving body in the embodiment of Fig. 1, and Fig. 3 is a conventional annular ultrasonic motor. 4 is a plan view showing the piezoelectric electrode structure used in the ultrasonic motor of FIG. 3, and FIG. 5 is a model diagram showing the vibration state of the driving body of the ultrasonic motor. FIG. 6 is a diagram explaining the principle of an ultrasonic motor. 1...Elastic body, 2...Piezoelectric body, 3°゛°°°driver, 4...Slider, 6...Elastic body, 6... ...Moving body, end...Protruding body. Name of agent: Patent attorney Toshio Nakao and one other name
1 Figure 2 Figure B' Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 弾性体と圧電体とから成る駆動体に弾性進行波を励起す
ることにより、上記駆動体上に接触して設置された動体
を移動させる超音波モータにおいて、該弾性体の動体と
の接触面上に突起体を設けて、該突起体の先端が該動体
と接触するように配置し、該突起体の数が該進行波の1
波長あたりに対して4の整数倍個であり、上記弾性進行
波を構成する2つの弾性定在波の腹の位置を外れた位置
に該突起体を配置したことを特徴とする超音波モータ。
In an ultrasonic motor that moves a moving body placed in contact with the driving body by exciting an elastic traveling wave in a driving body consisting of an elastic body and a piezoelectric body, the contact surface of the elastic body with the moving body is A protrusion is provided in the moving body, and the tip of the protrusion is arranged so as to be in contact with the moving object, and the number of protrusions is equal to 1 of the traveling wave.
An ultrasonic motor characterized in that the number of protrusions is an integer multiple of 4 per wavelength, and the protrusions are arranged at positions outside the antinode of two elastic standing waves constituting the elastic traveling wave.
JP61034624A 1986-02-18 1986-02-18 Ultrasonic motor Granted JPS62193569A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61034624A JPS62193569A (en) 1986-02-18 1986-02-18 Ultrasonic motor
PCT/JP1987/000102 WO1987005166A1 (en) 1986-02-18 1987-02-17 Ultrasonic motor
DE8787901637T DE3782301T2 (en) 1986-02-18 1987-02-17 ULTRASONIC MOTOR.
US07/126,105 US4829209A (en) 1986-02-18 1987-02-17 Ultrasonic motor with stator projections and at least two concentric rings of electrodes
EP87901637A EP0258449B1 (en) 1986-02-18 1987-02-17 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034624A JPS62193569A (en) 1986-02-18 1986-02-18 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JPS62193569A true JPS62193569A (en) 1987-08-25
JPH0519393B2 JPH0519393B2 (en) 1993-03-16

Family

ID=12419544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034624A Granted JPS62193569A (en) 1986-02-18 1986-02-18 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS62193569A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477482A (en) * 1987-09-18 1989-03-23 Nec Corp Ultrasonic motor
JPH02214477A (en) * 1989-02-14 1990-08-27 Canon Inc Vibration wave device
JPH02219475A (en) * 1989-02-17 1990-09-03 Canon Inc Vibration wave device
US5798598A (en) * 1993-10-13 1998-08-25 Canon Kabushiki Kaisha Vibration driven device
JP2010093939A (en) * 2008-10-07 2010-04-22 Mitsuba Corp Electric motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125052A (en) * 1979-03-19 1980-09-26 Toshio Sashita Motor equipment utilizing ultrasonic vibration
JPS59201685A (en) * 1983-04-30 1984-11-15 Canon Inc Vibration wave motor
JPS6096183A (en) * 1983-10-26 1985-05-29 Canon Inc Surface wave motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125052A (en) * 1979-03-19 1980-09-26 Toshio Sashita Motor equipment utilizing ultrasonic vibration
JPS59201685A (en) * 1983-04-30 1984-11-15 Canon Inc Vibration wave motor
JPS6096183A (en) * 1983-10-26 1985-05-29 Canon Inc Surface wave motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477482A (en) * 1987-09-18 1989-03-23 Nec Corp Ultrasonic motor
JPH02214477A (en) * 1989-02-14 1990-08-27 Canon Inc Vibration wave device
JPH02219475A (en) * 1989-02-17 1990-09-03 Canon Inc Vibration wave device
US5798598A (en) * 1993-10-13 1998-08-25 Canon Kabushiki Kaisha Vibration driven device
JP2010093939A (en) * 2008-10-07 2010-04-22 Mitsuba Corp Electric motor

Also Published As

Publication number Publication date
JPH0519393B2 (en) 1993-03-16

Similar Documents

Publication Publication Date Title
JPS6013481A (en) Vibration wave motor
JPH07115782A (en) Vibration wave driver
JPS62193569A (en) Ultrasonic motor
KR100661311B1 (en) Piezoelectric ultrasonic motor
JPS62193571A (en) Ultrasonic motor
JPH0223070A (en) Linear type ultrasonic motor
JP2864479B2 (en) Annular ultrasonic motor
JP2746578B2 (en) Ultrasonic motor
JPS63240382A (en) Ultrasonic motor
JPS62196085A (en) Ultrasonic motor
JPS63283475A (en) Ultrasonic motor
JP2636280B2 (en) Driving method of ultrasonic motor
JP2558661B2 (en) Ultrasonic motor
JP2582176B2 (en) Ultrasonic motor
JP2004187334A (en) Ultrasonic motor and electronic apparatus fitted therewith
JPS61224885A (en) Vibration wave motor
JP2543145B2 (en) Ultrasonic motor
JPS62196080A (en) Ultrasonic motor
JPS62196081A (en) Ultrasonic motor
JPS63268476A (en) Oscillatory wave motor
JPH0479238B2 (en)
JPS60207468A (en) Supersonic motor
JPH0724956Y2 (en) Ultrasonic linear motor
JPS63283477A (en) Ultrasonic motor
JPH0744855B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term