JPS61224885A - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPS61224885A
JPS61224885A JP60065460A JP6546085A JPS61224885A JP S61224885 A JPS61224885 A JP S61224885A JP 60065460 A JP60065460 A JP 60065460A JP 6546085 A JP6546085 A JP 6546085A JP S61224885 A JPS61224885 A JP S61224885A
Authority
JP
Japan
Prior art keywords
vibration
vibration wave
elements
vibrating body
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60065460A
Other languages
Japanese (ja)
Other versions
JPH0681523B2 (en
Inventor
Hitoshi Mukojima
仁 向島
Akira Hiramatsu
平松 明
Akira Ishizuka
公 石塚
Kazuhiro Izukawa
和弘 伊豆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60065460A priority Critical patent/JPH0681523B2/en
Publication of JPS61224885A publication Critical patent/JPS61224885A/en
Publication of JPH0681523B2 publication Critical patent/JPH0681523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Abstract

PURPOSE:To facilitate a mode rejection by providing detecting means for detecting two vibrations at a vibrator, adding or subtracting the output signals to form a signal indicating the vibration of the vibrator. CONSTITUTION:A piezoelectric element 18 has piezoelectric elements 18c, 18c' disposed at the position displaced by integer number times of lambda/2 in A- and B-phases of drive piezoelectric element groups 18a, 18b for detecting a vibration. The elements 18c, 18c' are polarized in the same direction. Thus, a counterelectromotive force E generated at the detecting terminal becomes the sum of the elements 18c, 18c', and a drive circuit follows the resonance point that the detecting terminal voltage takes the maximum value. When the elements 18c, 18c' are symmetrical with respect to the center of the cylinder, a mode rejection can be performed completely for the vibration mode of odd order.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、進行性振動波により駆動する振動波モータに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vibration wave motor driven by progressive vibration waves.

〈従来技術) 振動波モータは例えば特公昭58−32518号にも開
示されているように、圧電振動子に周波電圧を印加した
時に生ずる振動運動を駆動に利用するもので、従来の電
磁モータに比べて巻線を必要としない為、構造が簡単で
小型になり、低速回転時にも高トルクが得られるという
利点があり、近年注目されている。
(Prior art) As disclosed in Japanese Patent Publication No. 58-32518, for example, a vibration wave motor uses the vibration motion generated when a frequency voltage is applied to a piezoelectric vibrator for driving, and is different from a conventional electromagnetic motor. In comparison, it has attracted attention in recent years because it does not require winding, so it has a simple and compact structure, and it has the advantage of being able to obtain high torque even when rotating at low speeds.

振動体に振動を励振する手段は、圧電素子及び電歪素子
及び磁歪素子など1周期的に変形する電気−機械変換素
子を用いればよいが、簡単の為、以後圧電素子で説明す
る。
As means for exciting vibrations in the vibrating body, an electro-mechanical transducer that deforms periodically, such as a piezoelectric element, an electrostrictive element, and a magnetostrictive element, may be used, but for the sake of simplicity, the piezoelectric element will be explained below.

ところで、振動波モータは振動体の振動により移動体を
効率良く摩擦駆動する為、振動体を所望の振動モードで
共振させ、大きな振動を振動体に発生するようにして用
いる。しかし、振動体の共振周波数は、温度、圧力など
環境の変化や、振動体と移動体の加圧力や接触面積など
によっても変動するため、常に効率良く駆動波モータを
駆動するためには、振動体の共振周波数の変化を追従す
る様な駆動回路が必要となる。
By the way, in order to efficiently frictionally drive a movable body by the vibration of a vibrating body, a vibration wave motor is used by causing the vibrating body to resonate in a desired vibration mode and generating large vibrations in the vibrating body. However, the resonant frequency of the vibrating body fluctuates depending on changes in the environment such as temperature and pressure, as well as the pressing force and contact area between the vibrating body and the moving body. A drive circuit that follows changes in the body's resonant frequency is required.

通常、強力超音波振動を利用する装置を駆動する場合の
駆動回路としては、共振周波数を安定して追従させるた
め、振動体の共振点を検知し駆動周波数をフィードバッ
ク制御するいわゆる正帰還発振回路が用いられる。
Normally, the drive circuit for driving a device that uses strong ultrasonic vibrations is a so-called positive feedback oscillation circuit that detects the resonance point of the vibrating body and feedback-controls the drive frequency in order to stably follow the resonance frequency. used.

従って、駆動回路には°振動体の振動状態を検知する手
段が必要であり、かかる手段として例えば、振動体に振
動検出用圧電素子を接合して、その圧電素子の逆圧電効
果によって発生する逆起電力を検出することによって、
前記振動体の振動検知を行う場合もある。この場合には
、駆動振幅が最大すなわち逆起電力が最大値をとる駆動
周波数を求めていく訳だが、振動体の共振点は各種の振
動モードによって数多く存在し、所望の振動モード以外
のモードリジェクションが必要となる。その為1例えば
特開昭59−204477号公報には振動検知端子から
の出力にバンドパスフィルタを通してモードリジェクシ
ョンを行ったりする技術が開示されているが、かかる共
振周波数は非常に接近しているものもあり、完全にモー
ドリジェクションを行うにはバンド巾のせまいバンドパ
スフィルタが必要となった。しかしながら充分な特性を
有するフィルタを製作することは難しく、例え製作した
としても高価となるという欠点があった。
Therefore, the drive circuit requires a means for detecting the vibration state of the vibrating body, and such a means may include, for example, bonding a piezoelectric element for vibration detection to the vibrating body, and causing the reverse piezoelectric effect of the piezoelectric element to occur. By detecting the electromotive force,
In some cases, vibration of the vibrating body is detected. In this case, the drive frequency at which the drive amplitude is maximum, that is, the back electromotive force is at its maximum value, is determined.However, there are many resonance points of the vibrating body due to various vibration modes, and mode rejection other than the desired vibration mode is necessary. action is required. For this reason, 1. For example, Japanese Patent Application Laid-Open No. 59-204477 discloses a technique in which mode rejection is performed by passing the output from the vibration detection terminal through a band-pass filter, but the resonance frequencies are very close to each other. In some cases, a bandpass filter with a narrow band width was required to perform complete mode rejection. However, it is difficult to manufacture a filter with sufficient characteristics, and even if it were manufactured, it would be expensive.

〈発明の目的〉 本発明の目的は、モードリジェクションを良好に行うこ
とが出来る振動波モータを実現する事にある。
<Object of the Invention> An object of the present invention is to realize a vibration wave motor that can perform mode rejection well.

かかる目的の基で本発明は、振動波モータの各々振動し
ている位相が異なる複数の位置に振動検出手段を設け、
該手段の出力加算あるいは減算して゛得られた結果で駆
動回路の発振周波数のフィードバック制御を行う振動波
モータを提供することを第2の目的とする。
Based on this objective, the present invention provides vibration detection means at a plurality of positions of the vibration wave motor, each of which vibrates in a different phase,
A second object of the present invention is to provide a vibration wave motor that performs feedback control of the oscillation frequency of a drive circuit using the result obtained by adding or subtracting the outputs of the means.

〈実施例〉 まず、本発明の詳細な説明する前に振動波モータについ
て説明する。第1図は回転型振動波モータのうち、弾性
体の屈曲運動による進行性表面波を用いたいわゆる表面
波形の振動波モータの構成を示す斜視図、第2図はその
断面図を示している。
<Example> First, before a detailed explanation of the present invention, a vibration wave motor will be explained. Figure 1 is a perspective view showing the configuration of a so-called surface wave type vibration wave motor, which uses progressive surface waves generated by the bending motion of an elastic body, among rotary vibration wave motors, and Figure 2 is a cross-sectional view thereof. .

第1図、第2図において、1は固定カバー2を固定体l
Oに固定するためのビス、3は回転円板5を介して移動
体6を弾性体7に押しつけるためのバネ、4はスラスト
軸受、7は主に金属よりなる弾性体、8は弾性体7に接
合される圧電素子、6は弾性体7に加圧接触する前記移
動体、5は前記回転円板(回転軸)、9は支持用の吸振
体、10は前記固定体である。
In FIGS. 1 and 2, reference numeral 1 indicates that the fixed cover 2
3 is a spring for pressing the movable body 6 against the elastic body 7 via the rotating disk 5, 4 is a thrust bearing, 7 is an elastic body mainly made of metal, and 8 is the elastic body 7 6 is the moving body that presses into contact with the elastic body 7, 5 is the rotating disk (rotating shaft), 9 is a supporting vibration absorber, and 10 is the fixed body.

第3図は、圧電素子8の構成を示す平面図で、点線で示
す扇状の部分が(+)  (−)の記号で示す極性で厚
み方向に分極処理されている。ここで8aで表わされる
A相の圧電素子群に交流電圧V=Vosinωtを印加
し、また、入/4位相のずれた位置にある8bで表わさ
れるB相の圧電素子群にV=±V、)cosωtを印加
して、圧電素子8に接合される弾性体7に進行性の表面
波を発生させる。(士により進行方向が切換わる。)バ
ネ3によりスラスト軸受4を介して弾性体7に加圧接触
する移動体6には、前記進行性表面波による摩擦力が作
用し、移動体6に接合されている回転軸5は回転する。
FIG. 3 is a plan view showing the structure of the piezoelectric element 8, in which the fan-shaped portion indicated by the dotted line is polarized in the thickness direction with polarities indicated by (+) and (-) symbols. Here, an AC voltage V=Vosinωt is applied to the A-phase piezoelectric element group represented by 8a, and V=±V, ) cosωt is applied to generate a traveling surface wave in the elastic body 7 bonded to the piezoelectric element 8. (The direction of movement is changed depending on the direction of movement.) The moving body 6 is brought into pressure contact with the elastic body 7 via the thrust bearing 4 by the spring 3, and the frictional force due to the traveling surface wave acts on the moving body 6, which joins the moving body 6. The rotating shaft 5 rotates.

固定カバー2はビス1により固定体10に固定され、圧
電素子8と固定体10の間に吸振体9を挿入して、弾性
体に発生する振動を固定体lOに伝えない構造となって
いる。
The fixed cover 2 is fixed to the fixed body 10 with screws 1, and a vibration absorber 9 is inserted between the piezoelectric element 8 and the fixed body 10, so that vibrations generated in the elastic body are not transmitted to the fixed body 10. .

第4図は、真ちゅう性の弾性体7(内径φ38.外径φ
46.厚さ4 、7 mm)に第3図に示す様な6波用
の圧電素子8を接合して、該素子8に周波電圧を印加し
て弾性体7に面外振動を発生させた時の軸方向の弾性体
7の変位振幅を測定して得られた周波数と振幅の関係を
示す図である。印加電圧を30Vpp一定とし、駆動周
波数を変化させた場合、種々の共振点が存在するのがわ
かる。a−fに示す振幅のピークは、順に2〜7次の面
外振幅の共振点であり、eが6次に相当する(1次の面
外振動は存在しない)。
Figure 4 shows a brass elastic body 7 (inner diameter φ38, outer diameter φ
46. When a piezoelectric element 8 for six waves as shown in FIG. It is a figure which shows the relationship between the frequency and amplitude obtained by measuring the displacement amplitude of the elastic body 7 in an axial direction. It can be seen that various resonance points exist when the applied voltage is constant at 30 Vpp and the driving frequency is varied. The amplitude peaks shown in a to f are the resonance points of the second to seventh order out-of-plane amplitudes, and e corresponds to the sixth order (there is no first-order out-of-plane vibration).

この様な振動を検出端子により検出する場合、前記−性
体7は6次の振動を生ぜしめる場合、最も効率が良い様
に構成しているため、e以外のモードリジェクションを
行わなければならない。
When such vibrations are detected by the detection terminal, mode rejection other than e must be performed because the negative body 7 is configured to be most efficient when producing sixth-order vibrations. .

第5図は1本発明の1実施例を示す圧電素子18の平面
図である。18a、18bはそれぞれ駆動用圧電素子群
でA相、B相である。
FIG. 5 is a plan view of a piezoelectric element 18 showing one embodiment of the present invention. 18a and 18b are piezoelectric element groups for driving, and are phase A and phase B, respectively.

18c及びl 8 c’は振動検出用の圧電素子で、λ
/2の整数倍のずれた位置に配置しており(λは所望の
振動モードにおける波長〕、この場合は円筒の中心に関
して対称の位置であり、入/2の6倍すなわち3λずれ
た位置に配置した実施例である。圧電素子18は前述の
様に6次の振動を起した際に最も効率が良くなる様な圧
電素子(すなわち6波用の圧電素子)であり、18cと
18♂は同方向に分極処理している。
18c and l 8 c' are piezoelectric elements for vibration detection, and λ
It is placed at a position shifted by an integer multiple of /2 (λ is the wavelength in the desired vibration mode), and in this case it is a symmetrical position with respect to the center of the cylinder, and at a position shifted by 6 times input /2, or 3λ. As mentioned above, the piezoelectric element 18 is a piezoelectric element that is most efficient when a sixth-order vibration is generated (that is, a six-wave piezoelectric element), and 18c and 18♂ are Polarized in the same direction.

第6図は、例えば第5図に示した様に配置される振動検
出用の圧電素子の結線を示す図である。
FIG. 6 is a diagram showing the connection of piezoelectric elements for vibration detection arranged as shown in FIG. 5, for example.

図中の圧電素子中に書いている矢印は分極の向きを表わ
している。第6図(a)は第5図と同様に、検出用圧電
素子18 c 、 18 c’は同じ向きに分極処理し
ている場合で、同じ面側の電極どうしを結線しており、
検出端子に生じる逆起電力Eは、圧電素子18cと18
c′の和となる。ここでかかる素子18c、18c’は
λ/2曝n(n:整数)隔たれているので、nが偶数の
場合には該素子18cとl 8 c’は同位相、nが奇
数の場合には逆位相の逆起電力を発生し、その和はnが
偶数の時最大値をとり、nが奇数の時ゼロとなる。(但
し、18cと18C′の逆起電力が等しい場合である。
The arrows drawn inside the piezoelectric elements in the figure indicate the direction of polarization. Similar to FIG. 5, FIG. 6(a) shows a case where the detection piezoelectric elements 18c and 18c' are polarized in the same direction, and the electrodes on the same side are connected to each other.
The back electromotive force E generated at the detection terminal is caused by the piezoelectric elements 18c and 18
It becomes the sum of c′. Here, the elements 18c and 18c' are separated by λ/2 exposure n (n: an integer), so when n is an even number, the elements 18c and 18c' are in phase, and when n is an odd number, the elements 18c and 18c' are in phase. A back electromotive force of opposite phase is generated, and the sum thereof takes a maximum value when n is an even number, and becomes zero when n is an odd number. (However, this is the case where the back electromotive forces of 18c and 18C' are equal.

)駆動回路は、検出端子電圧が最大値をとる共振点を追
従する為、第6図(a)に示す場合ではnが偶数となる
様に圧電素子18 c 、 l 8 c’の配置を決定
する。第4図に共振周波数を示す6波用の振動子の場合
、6波の振動モードであるeの共振点で最大検出電圧を
示し、その他のモード時には、それ以下の検出電圧とな
る。但し、第5図に示す様に18cと18C′が円筒の
中心に関して対称の位置にある時は、奇数次の振動モー
ドの振動が生じた時には検出端子に生じる電圧はゼロに
なるため駆動回路は動作せず、奇数次の振動モードに対
して完全にモードリジェクションが可能である。他の偶
数次の振動モードはモードリジェクションが出来ずに残
ってしまうが、かかる偶数次の振動モードの共振周波数
の間隔は比較的広いため通常のバンドパスフィルタを用
いることによって所望の振動モードの共振周波数だけを
得ることが…来る。
) Since the drive circuit tracks the resonance point where the detection terminal voltage takes the maximum value, the arrangement of the piezoelectric elements 18 c and l 8 c' is determined so that n is an even number in the case shown in FIG. 6(a). do. In the case of a six-wave vibrator whose resonance frequency is shown in FIG. 4, the maximum detected voltage is shown at the resonance point of e, which is the six-wave vibration mode, and the detected voltage is lower than that in other modes. However, when 18c and 18C' are at symmetrical positions with respect to the center of the cylinder as shown in Figure 5, the voltage generated at the detection terminal becomes zero when vibration in an odd-order vibration mode occurs, so the drive circuit It does not operate, and completely mode rejection is possible for odd-order vibration modes. Other even-order vibration modes remain without mode rejection, but since the interval between the resonance frequencies of these even-order vibration modes is relatively wide, the desired vibration mode can be detected by using a normal bandpass filter. Getting just the resonant frequency...comes.

第6図(b)は検出電圧を得るその他の実施例で、検出
用圧電素子18cと18 c’の分極方向を逆向きにし
た場合で、結線は第6図(a)と同様である。但し、こ
の場合nは奇数となる様に圧電素子18cとl 8 c
’の配置を決定すればよい。
FIG. 6(b) shows another embodiment for obtaining a detection voltage, in which the polarization directions of the detection piezoelectric elements 18c and 18c' are reversed, and the wiring connections are the same as in FIG. 6(a). However, in this case, the piezoelectric elements 18c and l8c are arranged so that n is an odd number.
All you have to do is decide on the placement of '.

第6図(c)は他の実施例で、検出用圧電素子18cと
18どの分極方向は逆向きで、結線を反対の面の電極ど
うし行ったものである。但し、この場合nが偶数となる
様に圧電素子18cと18(’との配置を決定すればよ
い。
FIG. 6(c) shows another embodiment in which the polarization directions of the detection piezoelectric elements 18c and 18 are opposite, and the electrodes on opposite sides are connected. However, in this case, the arrangement of the piezoelectric elements 18c and 18(' may be determined so that n is an even number.

第6図(d)は他の実施例で、検出用圧電素子18cと
18C′の分極方向が同じで、結線を反対の面の電極ど
うし行い、nが奇数となる様に圧電素子18cと18ど
との配置を決定したものである。
FIG. 6(d) shows another embodiment in which the polarization directions of the detection piezoelectric elements 18c and 18C' are the same, and the wires are connected between the electrodes on opposite sides so that n is an odd number. The placement of the doto has been decided.

奇数次の振動モードを励振する場合も同様であるが、第
5図に示す様に検出用圧電素子18c。
The same applies when exciting odd-numbered vibration modes, but as shown in FIG. 5, the detection piezoelectric element 18c.

18 c’を円筒の中心に対して対称の位置に配置する
場合、奇数次の振動モードでは該圧電素子18cと18
 c’は逆位相で振動することになるため起電力も逆位
相になる。したがって第6図に示子(b)あるいは(d
)の様にして用いれば、偶数波の振動モード時には検出
電圧はゼロで完全なモードリジェクションが可能である
0本実施例においても、他の奇数波の振動モードは残っ
てしまうが、駆動周波数からかなり隔たった周波数に共
振点がある為、前述と同様通常のバンドパスフィルタを
用いれば所望の振動モードの共振周波数を得ることがで
き、別の振動モードで振動してしまうことを防ぐことが
できる。
When 18c' is placed at a symmetrical position with respect to the center of the cylinder, in odd-order vibration modes, the piezoelectric elements 18c and 18
Since c' vibrates in opposite phase, the electromotive force also has opposite phase. Therefore, Fig. 6 shows (b) or (d)
), the detection voltage is zero in the even wave vibration mode, and complete mode rejection is possible.In this embodiment, other odd wave vibration modes remain, but the drive frequency Since there is a resonance point at a frequency that is quite far away from the oscilloscope, if you use a normal bandpass filter as mentioned above, you can obtain the resonance frequency of the desired vibration mode and prevent it from vibrating in a different vibration mode. can.

第7図は、他の実施例を示す圧電素子28の平面図であ
る。28a、28b、28cは駆動用の圧電素子群で、
それぞれ人相、B相、C相とすると、順に位相を120
°ずつずらした交流電圧を印加し駆動される。(3相駆
動)28d。
FIG. 7 is a plan view of a piezoelectric element 28 showing another embodiment. 28a, 28b, 28c are piezoelectric element groups for driving;
Assuming the human phase, B phase, and C phase, respectively, the phase is 120 in order.
It is driven by applying alternating current voltages shifted by degrees. (3 phase drive) 28d.

28 d’ 、 28 dは振動検出用の圧電素子であ
り、その結線方法は第6図(a)に相当する。これも6
波用の圧電素子であるが、振動検出用の圧電素子が3個
ある為、第5図に示した実施例に比べて更なるモードリ
ジェクションが可能である。
28 d' and 28 d are piezoelectric elements for vibration detection, and their connection method corresponds to that shown in FIG. 6(a). This is also 6
This piezoelectric element is for waves, but since there are three piezoelectric elements for vibration detection, further mode rejection is possible compared to the embodiment shown in FIG.

以上説明した実施例においては、電気−機械変換素子と
してPZTなどに代表される圧電素子を用いたが、PM
Nなどに代表される電歪素子でも良い、但し、その場合
、説明した分極処理の概念が、バイアスの直流電界に相
当する。また、磁歪素子でもよく、つまり、周期的に変
形する電気−機械変換素子であれば成立する。
In the embodiments described above, piezoelectric elements typified by PZT etc. were used as electro-mechanical conversion elements, but PM
An electrostrictive element such as N may be used, however, in that case, the concept of polarization processing described above corresponds to a bias DC electric field. Further, it may be a magnetostrictive element, that is, an electro-mechanical transducer that periodically deforms.

また1本実施例においては、回転型で説明したが、リニ
アモータの場合も同様であり、駆動に利用する振動モー
ドも面外振動に限るものではない、更に、振動検出素子
は2つに限らず、前述した様に2つ以上ならばそれだけ
モードリジェクションも容易になる。
In addition, in this embodiment, a rotary type was explained, but the same applies to a linear motor, and the vibration mode used for driving is not limited to out-of-plane vibration.Furthermore, the number of vibration detection elements is limited to two. First, as mentioned above, if there are two or more, mode rejection becomes easier.

(発明の効果〉 以上説明した様に、振動体に振動波の172波長の整数
倍の間隔で少なくとも二つの振動を検出する検出手段を
備え、その検出手段からの各出力信号を加算あるいは減
算して、振動体の振動を示す信号とする事により、他の
モードリジェクションを容易にする効果がある。
(Effects of the Invention) As explained above, the vibrating body is provided with a detection means for detecting at least two vibrations at an interval of an integral multiple of 172 wavelengths of vibration waves, and each output signal from the detection means is added or subtracted. By using the signal as a signal indicating the vibration of the vibrating body, there is an effect of facilitating other mode rejections.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超音波モータの構造を示す斜視図、第2図はそ
の断面図、第3図は圧電素子の平面図、第4図は振動体
の各共振点を示す図、第5図は本発明の一実施例の振動
波モータの圧電素子の平面図、第6図は第5図に示した
圧電素子の結線を示す図、第7図は本発明の他の実施例
の振動波モータの圧電素子の平面図である。 8.18.28は圧電素子、7は弾性体、9は吸振体、
6は移動体である。 、製区1b聞メi4i乙  【に阻ゴ 第6図
Figure 1 is a perspective view showing the structure of the ultrasonic motor, Figure 2 is its cross-sectional view, Figure 3 is a plan view of the piezoelectric element, Figure 4 is a diagram showing each resonance point of the vibrating body, and Figure 5 is a diagram showing the resonance points of the vibrating body. A plan view of a piezoelectric element of a vibration wave motor according to an embodiment of the present invention, FIG. 6 is a diagram showing the connection of the piezoelectric element shown in FIG. 5, and FIG. 7 is a diagram of a vibration wave motor according to another embodiment of the invention FIG. 3 is a plan view of a piezoelectric element. 8.18.28 is a piezoelectric element, 7 is an elastic body, 9 is a vibration absorber,
6 is a moving body. , production area 1b monme i4i otsu

Claims (1)

【特許請求の範囲】 1) 弾性体に、周期的に変形する電気−機械変換素子
を接合して、該弾性体に進行性振動波を発生させ振動体
とし、その進行性振動波により、前記振動体に加圧接触
させた移動体を摩擦駆動する振動済モータにおいて、前
記振動体に発生する前記振動波の1/2波長の整数倍の
間隔で少なくとも二つの振動を検出する検出手段を備え
、前記検出手段からの各出力信号を加算あるいは減算し
て、前記振動体の振動を示す信号を得るように構成した
事を特徴とする振動波モータ。 2) 前記電気−機械変換素子及び前記検出手段が、圧
電素子あるいは電歪素子あるいは磁歪素子である事を特
徴とする特許請求の範囲の第1項記載の振動波モータ。 3) 駆動用の前記電気−機械変換素子及び前記検出手
段が、前記振動体の同一面上に配置する事を特徴とする
特許請求の範囲の第1項記載の振動波モータ。 4) 前記振動体が円筒であり、前記検出手段が前記円
筒の中心に関して対称の位置にある事を特徴とする特許
請求の範囲の第1項記載の振動波モータ。
[Scope of Claims] 1) An electro-mechanical transducer that periodically deforms is bonded to an elastic body to generate a progressive vibration wave in the elastic body to form a vibrating body, and the progressive vibration wave causes the above-mentioned A vibrated motor that frictionally drives a movable body brought into pressurized contact with a vibrating body, comprising detection means for detecting at least two vibrations at an interval of an integral multiple of 1/2 wavelength of the vibration wave generated in the vibrating body. . A vibration wave motor, characterized in that the vibration wave motor is configured to add or subtract each output signal from the detection means to obtain a signal indicating the vibration of the vibrating body. 2) The vibration wave motor according to claim 1, wherein the electro-mechanical conversion element and the detection means are piezoelectric elements, electrostrictive elements, or magnetostrictive elements. 3) The vibration wave motor according to claim 1, wherein the electro-mechanical conversion element for driving and the detection means are arranged on the same surface of the vibrating body. 4) The vibration wave motor according to claim 1, wherein the vibrating body is a cylinder, and the detection means is located at a symmetrical position with respect to the center of the cylinder.
JP60065460A 1985-03-29 1985-03-29 Vibration wave motor Expired - Lifetime JPH0681523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60065460A JPH0681523B2 (en) 1985-03-29 1985-03-29 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60065460A JPH0681523B2 (en) 1985-03-29 1985-03-29 Vibration wave motor

Publications (2)

Publication Number Publication Date
JPS61224885A true JPS61224885A (en) 1986-10-06
JPH0681523B2 JPH0681523B2 (en) 1994-10-12

Family

ID=13287757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60065460A Expired - Lifetime JPH0681523B2 (en) 1985-03-29 1985-03-29 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPH0681523B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124783A (en) * 1986-11-14 1988-05-28 Hitachi Maxell Ltd Ultrasonic motor using nonlinear resonance system
JPS6412881A (en) * 1987-07-03 1989-01-17 Canon Kk Oscillatory wave motor
JPH01238471A (en) * 1988-03-16 1989-09-22 Fukoku:Kk Input controller for ultrasonic motor
JP2011200031A (en) * 2010-03-19 2011-10-06 Canon Inc Driving unit of vibration-type actuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204477A (en) * 1983-05-04 1984-11-19 Nippon Kogaku Kk <Nikon> Surface wave motor utilizing supersonic wave vibration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204477A (en) * 1983-05-04 1984-11-19 Nippon Kogaku Kk <Nikon> Surface wave motor utilizing supersonic wave vibration

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124783A (en) * 1986-11-14 1988-05-28 Hitachi Maxell Ltd Ultrasonic motor using nonlinear resonance system
JP2512726B2 (en) * 1986-11-14 1996-07-03 日立マクセル株式会社 Ultrasonic motor using nonlinear resonance system
JPS6412881A (en) * 1987-07-03 1989-01-17 Canon Kk Oscillatory wave motor
JPH01238471A (en) * 1988-03-16 1989-09-22 Fukoku:Kk Input controller for ultrasonic motor
JP2011200031A (en) * 2010-03-19 2011-10-06 Canon Inc Driving unit of vibration-type actuator
US9048760B2 (en) 2010-03-19 2015-06-02 Canon Kabushiki Kaisha Driving unit of vibration-type actuator

Also Published As

Publication number Publication date
JPH0681523B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US4786836A (en) Piezoelectric motor
JPH01129782A (en) Ultrasonic motor
JPS61224885A (en) Vibration wave motor
JP3173902B2 (en) Ultrasonic linear motor and method of manufacturing the same
JPS61221584A (en) Drive circuit of vibration wave motor
JPH05344765A (en) Piezoelectric motor and driving method therefor
JPH01177877A (en) Oscillatory wave motor
JPS61221585A (en) Drive circuit of vibration wave motor
JPS60174078A (en) Piezoelectric motor
JPS62247770A (en) Ultrasonic motor
JPS6135177A (en) Piezoelectric linear motor
JPH04138084A (en) Ultrasonic motor and oscillator thereof
JP2636280B2 (en) Driving method of ultrasonic motor
JPS63283475A (en) Ultrasonic motor
JPS63299788A (en) Ultrasonic motor driving device
JP2616953B2 (en) Drive control method for traveling waveform ultrasonic motor
JPH01177878A (en) Oscillatory wave motor
JPH07178370A (en) Vibrator and vibrating actuator
JP2723122B2 (en) Ultrasonic motor
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor
JPH05950B2 (en)
JPS62196080A (en) Ultrasonic motor
JPS63194580A (en) Ultrasonic motor
JP2506859B2 (en) Ultrasonic motor
JPH07131987A (en) Drive control circuit for ultrasonic motor