JPS61221585A - Drive circuit of vibration wave motor - Google Patents

Drive circuit of vibration wave motor

Info

Publication number
JPS61221585A
JPS61221585A JP60062837A JP6283785A JPS61221585A JP S61221585 A JPS61221585 A JP S61221585A JP 60062837 A JP60062837 A JP 60062837A JP 6283785 A JP6283785 A JP 6283785A JP S61221585 A JPS61221585 A JP S61221585A
Authority
JP
Japan
Prior art keywords
circuit
frequency
vibration
vibration wave
wave motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60062837A
Other languages
Japanese (ja)
Inventor
Akira Ishizuka
公 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60062837A priority Critical patent/JPS61221585A/en
Priority to US06/832,653 priority patent/US4692649A/en
Publication of JPS61221585A publication Critical patent/JPS61221585A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To enable to drive an ideal vibration wave motor by automatically generating a resonance frequency in response to the signal of an electromechanical converter provided in a vibrator for detecting the vibration, thereby automatically starting the motor. CONSTITUTION:A Meacham circuit 13 generates the frequency that the impedance of an electrostrictive element provided with electrodes 5 for detecting a vibration, i.e., the frequency voltage of the resonance frequency of a stator with the vibrator or the electrostrictive element to vary to follow the external condition change, and the output of the circuit 13 is applied through a band pass filter 14 to a phase shifter 15. The output shifted in the prescribed amount by the shifter 15 is applied through a 90 deg. phase shifter 16, an amplifier 11 and a switch 18 to electrodes 4, and through an amplifier 10 and the switch 18 to electrodes 3 without intermediary of the shifter 16. When the circuit 13 does not generate the output of a resonance frequency, a pulse voltage from a starting pulse generator 17 is applied to the circuit 13.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は進行性表面波により物体を駆動する振動波モー
タの駆動回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a drive circuit for a vibration wave motor that drives an object using progressive surface waves.

〈従来技術) 電歪素子を金属等の弾性体に貼り付け、該電歪素子に周
波電圧を印加することにより励振して弾性体に進行性表
面波を発生させる振動波モータにおいては、前記周波電
圧の周波数を弾性体および電歪素子の共振周波数にしな
ければ効率的な励振を行うことができない、また進行性
表面波を発生させる共振周波数は一般に夫々固有の駆動
モードに対応して複数あるが、効率を高めるためにはか
かる複数の共振周波数のうち最も効率の高い振動モード
に対応した共振周波数で発振している発振回路の電圧を
電歪素子に印加する必要がある。また前述の共振周波数
は一般に温度や負荷等の環境の変化に応じて変動するた
め、かかる変動を検出して前記発振回路にフィードバッ
クして発振回路の発振周波数を自動的に変化させること
によって発振回路の発振周波数を常に共振周波数に追従
させることが必要となる。
<Prior Art> In a vibration wave motor, an electrostrictive element is attached to an elastic body such as a metal, and a frequency voltage is applied to the electrostrictive element to excite it and generate a progressive surface wave in the elastic body. Efficient excitation cannot be achieved unless the frequency of the voltage is set to the resonant frequency of the elastic body and electrostrictive element, and there are generally multiple resonant frequencies that generate traveling surface waves, each corresponding to a unique drive mode. In order to increase the efficiency, it is necessary to apply a voltage to the electrostrictive element from an oscillation circuit that oscillates at a resonant frequency corresponding to the most efficient vibration mode among the plurality of resonant frequencies. Furthermore, since the above-mentioned resonant frequency generally fluctuates according to changes in the environment such as temperature and load, the oscillation circuit is It is necessary to make the oscillation frequency always follow the resonant frequency.

そこで本出願人により出願された特願昭59−2769
62号には振動波モータの駆動状態すなわち振動体が共
振状態で振動しているか否かを検出する振動検出用素子
を駆動波モータに設けて該素子からの信号に応じて発振
回路の発振周波数を自動的に変化させ所望の周波数のみ
を駆動用電歪素子に印加する振動波モータの駆動回路が
提案されている。
Therefore, the patent application No. 59-2769 filed by the present applicant
In No. 62, a vibration detection element is provided in the drive wave motor to detect the drive state of the vibration wave motor, that is, whether or not the vibrating body is vibrating in a resonant state, and the oscillation frequency of the oscillation circuit is determined according to the signal from the element. A driving circuit for a vibration wave motor has been proposed that automatically changes the frequency and applies only a desired frequency to a driving electrostrictive element.

ところで前記した出願において提案されている駆動回路
においては該回路の発振周波数が一旦共振周波数に合え
ば後は外部の条件、例えば振動体に加わる負荷変動や温
度変化によって共振周波数が変化しても該回路の発振周
波数も共振周波数の変化に追従して変化する特性を有し
ているわけであるが、初期状態において共振周波数の帯
域に入っていないと共振周波数で発振することはできず
、周波数微調整用のボリュームを回して手さぐりで共振
周波数に合わせていた。
By the way, in the drive circuit proposed in the above-mentioned application, once the oscillation frequency of the circuit matches the resonant frequency, the resonant frequency remains unchanged even if the resonant frequency changes due to external conditions, such as load fluctuations or temperature changes applied to the vibrating body. The oscillation frequency of the circuit also has the characteristic of changing according to changes in the resonant frequency, but if it is not within the resonant frequency band in the initial state, it will not be possible to oscillate at the resonant frequency, and the frequency fluctuation will change. I turned the adjustment volume and fumbled around to match the resonance frequency.

したがって、かかる回路においては自動的に起動するこ
とができないという欠点があった。
Therefore, such a circuit has the disadvantage that it cannot be activated automatically.

〈発明の目的) 本発明は上述した従来の欠点に鑑みて初期状態において
も自動的に共振周波数を発生し1手さぐりで共振周波数
を発生させる必要のない駆動回路を提供することを目的
とする。
(Object of the Invention) In view of the above-mentioned conventional drawbacks, it is an object of the present invention to provide a drive circuit that automatically generates a resonant frequency even in the initial state and does not require a single touch to generate the resonant frequency.

〈実施例) 本発明の振動波モータの駆動回路の実施例を説明する前
に本発明に係る振動波モータについて説明する。
<Example> Before describing an example of a drive circuit for a vibration wave motor of the present invention, a vibration wave motor according to the present invention will be described.

第1図(a)〜(C)は振動波モータの構造を説明する
図であり、第1図(&)は振動波モータの断面図、第1
図(b)は第1図(a)に示した振動波モータを構成す
る振動体l、電歪素子2からなるステータを斜め上方か
ら見た図、横から見た図、斜め下方から見た場合の電歪
素子の分極パターンを示す図、電極のパターンを示す図
の4つの図を縦に並べてわかりやすく示した図である。
Figures 1 (a) to (C) are diagrams explaining the structure of the vibration wave motor, and Figure 1 (&) is a sectional view of the vibration wave motor.
Figure (b) shows the stator, which consists of the vibrating body l and the electrostrictive element 2, which constitute the vibration wave motor shown in Figure 1 (a), viewed diagonally from above, from the side, and from diagonally below. FIG. 4 is a diagram in which four diagrams, a diagram showing the polarization pattern of the electrostrictive element and a diagram showing the electrode pattern, are arranged vertically for easy understanding.

第1図(c)は電歪素子の分極パターン及びかかる電歪
素子の配線を示した平面図である。
FIG. 1(c) is a plan view showing the polarization pattern of the electrostrictive element and the wiring of the electrostrictive element.

第1図(a)〜(C)においてlは振動体で例えば真ち
ゅうから成る弾性体から構成されている。2は電歪素子
で例えばPZT(チタン酸ジルコン鉛)で振動体lと接
合されている。かかる電歪素子は第1図(C)に平面を
示す様なパターンで分極処理された円環状の電歪素子、
あるいは複数の、電歪素子を円環状に配列して構成され
ている。また電歪素子2の分極パターンは第1図(b)
、(C)に示す様に電極3により周波電圧が印加される
2c群と、電極4により周波電圧が印加される2b群及
び振動検出用の2c群に分けられるが、2b群は2c群
に対して励起されるべき振動波の波長λの1/4だけず
れたピッチで配置される。各群内の電歪素子は1/4λ
のピッチで相隣り合う素子の極性が互いに逆になる様装
置されている0図に示した+、−は分極処理の方向を示
す符号で、電極側がマイナス振動体側がプラスとなる様
に分極されている。
In FIGS. 1(a) to 1(C), reference numeral 1 denotes a vibrating body made of an elastic body made of brass, for example. Reference numeral 2 denotes an electrostrictive element which is connected to the vibrating body 1 using, for example, PZT (lead zirconium titanate). Such an electrostrictive element is an annular electrostrictive element polarized in a pattern as shown in the plane shown in FIG. 1(C).
Alternatively, it is configured by arranging a plurality of electrostrictive elements in an annular shape. The polarization pattern of the electrostrictive element 2 is shown in FIG. 1(b).
, as shown in (C), it is divided into a 2c group to which a frequency voltage is applied by the electrode 3, a 2b group to which a frequency voltage is applied by the electrode 4, and a 2c group for vibration detection, but the 2b group is divided into the 2c group. They are arranged at a pitch shifted by 1/4 of the wavelength λ of the vibration wave to be excited. The electrostrictive element in each group is 1/4λ
The device is arranged so that the polarities of adjacent elements are opposite to each other at a pitch of ing.

6は振動体lに摩擦接触する移動体、7はモータの固定
体、8は移動体を支持する中心軸、9は中心軸8と移動
体との接触部に設けられたベアリングである。10は中
心軸8に図において下方向に力を働かせることにより、
移動体6と振動体1が所定の力で接触する様に設けられ
ているバネである。
Reference numeral 6 denotes a movable body that comes into frictional contact with the vibrating body l, 7 a fixed body of the motor, 8 a central shaft that supports the movable body, and 9 a bearing provided at a contact portion between the central shaft 8 and the movable body. 10 applies a force downward in the figure to the central axis 8,
This is a spring provided so that the moving body 6 and the vibrating body 1 come into contact with each other with a predetermined force.

以上の様に構成された振動波モータは、電歪素子2a群
、2 b群に互いに位相が90°ずれた周波電圧を電極
3.4を介して印加することにより進行性表面波が振動
体に発生し、かかる進行性表面波によって振動体に摩擦
接触された移動体が駆動されるものである。
In the vibration wave motor configured as described above, progressive surface waves are applied to the vibrating body by applying frequency voltages whose phases are shifted by 90° to the electrostrictive elements 2a and 2b via the electrodes 3.4. The moving body that is brought into frictional contact with the vibrating body is driven by this traveling surface wave.

また前記の周波電圧は共振周波数である場合に、最も効
率が高く振動波モータとして駆動される。
Further, when the frequency voltage is at the resonant frequency, the vibration wave motor is driven with the highest efficiency.

次に、第1図(a)〜(C)の振動波モータを駆動する
本発明の駆動回路の第1の実施例を第2図を用いて説明
する。
Next, a first embodiment of the drive circuit of the present invention for driving the vibration wave motors shown in FIGS. 1(a) to (C) will be described with reference to FIG.

第2図において、3,4.5は第1図(b)。In Fig. 2, 3 and 4.5 are Fig. 1(b).

(C)において示した電極であり、電歪素子lの第1図
(b)、(C)に示した位置に配置されている。
This is the electrode shown in FIG. 1(C), and is arranged at the position shown in FIGS. 1(b) and 1(C) of the electrostrictive element 1.

10.11は入力電圧を電歪素子2.振動体1を励振す
るのに充分な電圧に増幅する増幅器、13はミーチャム
回路であり、該ミーチャム回路内の可変抵抗12は共振
周波数の微調節用である。14はミーチャム回路の出力
のうち駆動に必要な共振周波数の出力のみを通過させる
バンドパスフィルタ、15はミーチャム回路の出力電流
と逆起電流の位相を所定の関係に合わせるための移相器
、16は90”移相器である。13は電極3.4に印加
する周波電圧の位相関係を逆転させることによりモータ
の回転方向を逆転させる切り換えスイッチである。17
は起動用のパルスを発生する起動パルス発生回路である
10.11 connects the input voltage to the electrostrictive element 2. An amplifier 13 that amplifies the voltage to a voltage sufficient to excite the vibrating body 1 is a Meacham circuit, and a variable resistor 12 in the Meacham circuit is used for fine adjustment of the resonant frequency. 14 is a bandpass filter that passes only the output of the resonant frequency necessary for driving among the outputs of the Meacham circuit; 15 is a phase shifter for adjusting the phases of the output current of the Meacham circuit and the back electromotive current to a predetermined relationship; and 16 is a 90" phase shifter. 13 is a changeover switch that reverses the rotational direction of the motor by reversing the phase relationship of the frequency voltage applied to the electrodes 3.4. 17
is a starting pulse generation circuit that generates a starting pulse.

次に以上の様に構成される実施例の動作について説明す
る。
Next, the operation of the embodiment configured as above will be explained.

まず該駆動回路において、共振周波数の出力が既にミー
チャム回路13が発生している場合について説明する。
First, a case will be described in which the Meacham circuit 13 has already generated an output at the resonant frequency in the drive circuit.

電極5が設けられている振動検出用の電歪素子のインピ
ーダンスが極小となる周波数すなわち振動体1.電歪素
子2を含めたステータの共振周波数の周波電圧をミーチ
ャム回路13が発生して外部の条件変化に追従して変化
し、ミーチャム回路13の出力はバンドパスフィルタ1
4を介して駆動に必要な共振周波数だけが移相器15に
印加される。移相器15によりミーチャム回路13の発
振が安定に持続する様にバンドパルフィルタの出力の位
相は所定量シフトされる。
The frequency at which the impedance of the vibration detection electrostrictive element provided with the electrode 5 is minimum, that is, the vibrating body 1. The Meacham circuit 13 generates a frequency voltage at the resonant frequency of the stator including the electrostrictive element 2 and changes it in accordance with changes in external conditions, and the output of the Meacham circuit 13 is passed through the bandpass filter 1.
Only the resonance frequency necessary for driving is applied to the phase shifter 15 via the phase shifter 4. A phase shifter 15 shifts the phase of the output of the band-pal filter by a predetermined amount so that the oscillation of the Meacham circuit 13 continues stably.

また移相器15の出力は90°移相器16、増幅器11
、スイッチ17を介して電極4に印加され、また90°
移相器16を介さないで、増幅器lO、スイツ′チ17
を介して電極3に印加されることによって、進行性表面
波が第1図(a)。
In addition, the output of the phase shifter 15 is transferred to the 90° phase shifter 16 and the amplifier 11.
, is applied to the electrode 4 via the switch 17, and also 90°
The amplifier lO and the switch 17 do not pass through the phase shifter 16.
A traveling surface wave is generated by being applied to the electrode 3 via the waveform shown in FIG. 1(a).

(b)に示す電歪素子2.振動体1に励起され、移動体
6が移動するわけである。
Electrostrictive element 2 shown in (b). The movable body 6 is moved by being excited by the vibrating body 1.

次に共振周波数の出力がミーチャム回路13に発生して
いない場合について説明する。この回路において、電源
を投入するとミーチャム回路の定数及び圧電又は電歪素
子のインピーダンスで定まる周波数で発振するが、この
段階で共振周波数ではないのが一般的である。従って前
述した様に、従来は共振周波数に合わせるのにボリュー
ム12を回していたが、本実施例では起動パルス発生回
路から出力される広帯域周波数成分を含んだパルス電圧
の印加に伴って共振周波数が瞬間的に印加されステータ
を強く加振する瞬間が訪れる。この時検出端子5には強
力な逆起電圧が生じ、これが移相器11で処理した適当
な位相関係でミーチャム回路に再び加わるので正帰途が
かかることになり以降は更に振幅が大きくなり、ついに
は振幅が最大になる共振周波数を維持する。
Next, a case will be described in which the output of the resonant frequency is not generated in the Meacham circuit 13. In this circuit, when the power is turned on, it oscillates at a frequency determined by the constant of the Meacham circuit and the impedance of the piezoelectric or electrostrictive element, but it is generally not the resonant frequency at this stage. Therefore, as mentioned above, conventionally the volume 12 was turned to adjust to the resonant frequency, but in this embodiment, the resonant frequency is adjusted by applying a pulse voltage containing a broadband frequency component output from the starting pulse generation circuit. There comes a moment when it is applied momentarily and strongly vibrates the stator. At this time, a strong back electromotive voltage is generated at the detection terminal 5, and this is applied again to the Meacham circuit with an appropriate phase relationship processed by the phase shifter 11, so a positive return path is applied, and the amplitude further increases from then on, until finally maintains the resonant frequency where the amplitude is maximum.

この時に起動パルス発生回路から出力されるパルス電圧
が低電圧の場合には、該パルス電圧が印加されつづけて
も一旦ミーチャム回路13の出力が共振周波数になれば
影響は受けなくなるので、常時低電圧のパルス電圧を印
加したままでもよい。
If the pulse voltage output from the starting pulse generation circuit at this time is a low voltage, even if the pulse voltage continues to be applied, it will not be affected once the output of the Meacham circuit 13 reaches the resonant frequency, so the voltage will always be low. The pulse voltage may remain applied.

本実施例では、パルス振動電圧をミーチャム回路13の
インピーダンス検出端子(ミーチャム回路13を構成す
るオペアンプの反転入力端子)に加えたが、他の箇所で
も同様の効果が期待できる。この箇所を第3図(a)、
(b)に示しておく。
In this embodiment, the pulsed oscillating voltage was applied to the impedance detection terminal of the Meacham circuit 13 (the inverting input terminal of the operational amplifier constituting the Meacham circuit 13), but similar effects can be expected at other locations as well. This point is shown in Figure 3(a).
It is shown in (b).

また本発明はミーチャム回路等内部発振器をもたない振
動帰還型駆動回路の起動にも応用でき、起動の信頼性、
発振停止時の再起動性を上げる効果が得られる。
The present invention can also be applied to the startup of vibration feedback type drive circuits that do not have an internal oscillator, such as Meacham circuits, and improves startup reliability and
This has the effect of increasing restartability when oscillation stops.

以上の実施例において、起動パルス発生回路においては
、広帯域の周波数成分を含んだパルスが発生されたが、
かかるパルスは方形波状であることは勿論であるが、他
の形状のパルスであってもよい。
In the above embodiments, the starting pulse generation circuit generated pulses containing broadband frequency components;
Of course, such a pulse has a square wave shape, but it may have another shape.

また上述した実施例においては、電気−機械エネルギー
変換素子として電歪素子を示したが、他の圧電素子であ
ってもよいのは勿論である。まだ振動波モータとして回
転型のモータを示したが、リニア型のモータであっても
よいし、他の形状であっても振動体を共振させて用いる
モータであれば全て適用できる。
Furthermore, in the embodiments described above, an electrostrictive element is shown as the electro-mechanical energy conversion element, but it goes without saying that other piezoelectric elements may be used. Although a rotary type motor has been shown as the vibration wave motor, it may be a linear type motor, or any other type of motor can be applied as long as it uses a vibrating body to resonate.

(発明の効果) 以上の説明のごとく、本発明に依れば、電源投入直後の
共振周波数合わせが自動化され、更にその後の共振周波
数の追従性を備えた理想的な振動波モータの駆動が可能
となる。また本発明に依れば、パルス発生回路を追加す
るだけという回路的に非常に簡単な方法で構成でき、ま
た無調整に近く本モータの特徴である小型、軽量を失わ
ないという効果を奏する。
(Effects of the Invention) As explained above, according to the present invention, resonant frequency adjustment immediately after power is turned on is automated, and furthermore, it is possible to drive an ideal vibration wave motor with followability of the resonant frequency thereafter. becomes. Further, according to the present invention, the circuit can be configured in a very simple manner by simply adding a pulse generation circuit, and there is an effect that the motor does not require any adjustment and does not lose its small size and light weight, which are the characteristics of this motor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は振動波モータの断面図。 第1図(b)は第1図(a)に示した振動波モータの振
動体1.電歪素子2から成るステータの説明図、 第1図(C)は電歪素子の分極パターン及び配縁を示し
た平面図、 第2図は本発明の第1の実施例の駆動回路の回路図、 第3図は本発明の第2の実施例の駆動回路の回路図であ
る。
FIG. 1(a) is a sectional view of a vibration wave motor. FIG. 1(b) shows the vibrating body 1 of the vibration wave motor shown in FIG. 1(a). An explanatory diagram of a stator consisting of an electrostrictive element 2, FIG. 1(C) is a plan view showing the polarization pattern and arrangement of the electrostrictive element, and FIG. 2 is a circuit diagram of a drive circuit according to a first embodiment of the present invention. FIG. 3 is a circuit diagram of a drive circuit according to a second embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  周波電圧が印加された電気−機械変換素子の伸縮運動
に励起されて振動体に生じる振動波により移動体を駆動
する振動波モータの駆動回路において、前記振動体に設
けられた振動検出用電気−機械変換素子の信号に応じて
自動的に共振周波数を発生する発振回路と該発振回路に
起動用パルスを印加するパルス発生回路とを具備したこ
とを特徴とする振動波モータの駆動回路。
In a drive circuit for a vibration wave motor that drives a moving body by vibration waves generated in a vibrating body by being excited by the expansion and contraction movement of an electro-mechanical transducer to which a frequency voltage is applied, a vibration detecting electric circuit provided in the vibrating body is used. 1. A drive circuit for a vibration wave motor, comprising: an oscillation circuit that automatically generates a resonant frequency according to a signal from a mechanical transducer; and a pulse generation circuit that applies a starting pulse to the oscillation circuit.
JP60062837A 1985-03-01 1985-03-26 Drive circuit of vibration wave motor Pending JPS61221585A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60062837A JPS61221585A (en) 1985-03-26 1985-03-26 Drive circuit of vibration wave motor
US06/832,653 US4692649A (en) 1985-03-01 1986-02-25 Driving circuit of a vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062837A JPS61221585A (en) 1985-03-26 1985-03-26 Drive circuit of vibration wave motor

Publications (1)

Publication Number Publication Date
JPS61221585A true JPS61221585A (en) 1986-10-01

Family

ID=13211823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062837A Pending JPS61221585A (en) 1985-03-01 1985-03-26 Drive circuit of vibration wave motor

Country Status (1)

Country Link
JP (1) JPS61221585A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209481A (en) * 1987-02-24 1988-08-31 Canon Inc Controlling circuit of oscillatory wave motor
US4888514A (en) * 1987-10-16 1989-12-19 Matsushita Electric Industrial Co., Ltd. Driving apparatus for ultrasonic motor
JPH02119586A (en) * 1988-10-27 1990-05-07 Seiko Instr Inc Ultrasonic motor unit
JPH02174572A (en) * 1988-12-23 1990-07-05 Matsushita Electric Ind Co Ltd Ultrasonic motor and driving gear thereof
JP2011087455A (en) * 2009-09-18 2011-04-28 Murata Mfg Co Ltd Piezoelectric actuator driver circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209481A (en) * 1987-02-24 1988-08-31 Canon Inc Controlling circuit of oscillatory wave motor
US4888514A (en) * 1987-10-16 1989-12-19 Matsushita Electric Industrial Co., Ltd. Driving apparatus for ultrasonic motor
JPH02119586A (en) * 1988-10-27 1990-05-07 Seiko Instr Inc Ultrasonic motor unit
JPH02174572A (en) * 1988-12-23 1990-07-05 Matsushita Electric Ind Co Ltd Ultrasonic motor and driving gear thereof
JP2011087455A (en) * 2009-09-18 2011-04-28 Murata Mfg Co Ltd Piezoelectric actuator driver circuit

Similar Documents

Publication Publication Date Title
US4692649A (en) Driving circuit of a vibration wave motor
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JPH09163769A (en) Ultrasonic motor apparatus
JPS631379A (en) Driving circuit for ultrasonic motor
JPS61221585A (en) Drive circuit of vibration wave motor
JPS61221584A (en) Drive circuit of vibration wave motor
JPS61203873A (en) Drive circuit of vibration wave motor
JP2558709B2 (en) Ultrasonic motor drive
JPS61224885A (en) Vibration wave motor
JPH072022B2 (en) Ultrasonic motor driving method
JP2636280B2 (en) Driving method of ultrasonic motor
JP2008294162A (en) Surface acoustic wave actuator
JPS63299788A (en) Ultrasonic motor driving device
SU771773A1 (en) Vibromotor
JPH0937576A (en) Ultrasonic motor and driving method therefor
JPS63249477A (en) Ultrasonic motor driver
JP2616953B2 (en) Drive control method for traveling waveform ultrasonic motor
JPH0662588A (en) Vibrating motor
RU1827708C (en) Piezoelectric reversible drive
JPH09215352A (en) Speed controller of ultrasonic motor
JPH084356B2 (en) Ultrasonic vibration device
JPH04322179A (en) Method of driving ultrasonic motor
JPH0251379A (en) Ultrasonic motor
JPS63294280A (en) Piezoelectric driving device
JPH03138512A (en) Surveying machine